
Laryngoscope Investigative Otolaryngology
VC 2016 The Authors Laryngoscope Investigative Otolaryngology
published by Wiley Periodicals, Inc. on behalf of The Triological Society

Animal Models in CRS and Pathophysiologic Insights Gained:

A Systematic Review

Hyun-Woo Shin, MD, PhD

Objective: Chronic rhinosinusitis (CRS) is a multifactorial inflammatory disease. In particular, CRS with eosinophilic fea-
tures and/or nasal polyps (NPs) is often recalcitrant to current treatment; thus, appropriate animal models are mandatory to
elucidate the pathogenesis of CRS and develop novel and efficient treatment modalities. The author reviewed the recently
proposed animal models in CRS and discussed the pathophysiologic insights gained.
Data Sources: Articles in the English language referenced in MEDLINE/PubMed from the year 2006 onward (for last 10 years).
Review Methods: Review of the literature regarding animal models and related pathologic insights in CRS.

Results: Mouse, rabbit, and sheep models of CRS have been used for studying the pathogenesis of CRS. Most of
researchers adopted animal models of CRS to prove any molecular mechanisms or therapeutic efficacy. In vitro or human
findings and related hypothesis were evaluated in vivo using these models. In addition, novel therapeutic candidates for CRS
with or without NP have been applied to animal models.

Conclusion: Animal models have elicited insights into the pathogenesis of CRS and also have been useful in testing new
treatment modalities. Although there are still clear limitations in the animal studies, newly proposed or revised animal mod-
els would be helpful to understand the exact pathophysiology of CRS

INTRODUCTION
Chronic rhinosinusitis (CRS) is characterized by

chronic inflammation of the sinonasal mucosa and is
related to mucosal alterations ranging from epithelial
thickening to nasal polyp (NP) formation.1,2 Chronic rhi-
nosinusitis is frequently categorized into two groups
according to the absence or presence of NP: CRS with
nasal polyps (CRSwNP), and CRS without nasal polyps
(CRSsNP).1 Chronic rhinosinusitis affects approximately
5% to 15% of the general population, both in Europe and
the United States, and causes the tremendous medical
costs.2 The precise etiology and pathogenesis of CRS and

NPs are largely unknown. Possible etiological factors of
CRS include superantigens, abnormal inflammatory cyto-
kine cascade, and biofilms. The presence of NPs, which is
associated with TH2-skewed inflammation—particularly
in Western countries—implies a greater burden of illness
with refractory clinical features.1,3 The complexity of CRS
and/or NP make the clinical and experimental study very
difficult. Recently, several animal models were devel-
oped4–7 and applied to diverse basic and translational
research. These CRS animal models have helped gain a
comprehensive and precise understanding of the patho-
genesis in CRS and nasal polyposis.

In this review, the author presents an overview of
the progress made in CRS animal models and managing
patients afflicted with diseases in the most inaccessible
and variable of the paranasal sinuses.

METHODS

Study Selection
The electronic database of PubMed was systematically

searched for studies using CRS animal models published in
English from January 1, 2006, to May 15, 2016 (the articles
published electronically during this period were included). The
following search terms were used: animal models and chronic
rhinosinusitis. The references of relevant publications were also
reviewed manually to identify additional studies. The study was
performed according to Preferred Reporting Items for Systemat-
ic Reviews and Meta-Analyses statement.8

Data Items and Summary Measures
The selected articles were classified into two groups: 1) model

development and 2) application of the previously established ani-
mal models related to CRS. For last 10 years, 10 reports intro-
duced CRS animal models, for which three species of animals were
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used: mice, rabbit, and sheep. The species of animal, period needed
for model establishment, types of stimulants (e.g., allergens or
adjuvants), and formation of NP were assessed.

RESULTS

Characteristics for Selected Studies of CRS
Animal Models

The characteristics of included studies related to
the development of novel or modified animal models for
CRS were summarized in Table I. These recently devel-
oped in vivo protocols include two Staphylococcus aureus
biofilm models, six CRS models, and two CRS models
with NP lesions. The biofilm models and some CRS mod-
els were generated by surgical procedures, but most of
the CRS with or without NP models were induced by
allergic stimulation and their adjuvants. A detailed
description of each model follows.

Sinusitis Biofilm Models
Australian researchers presented an animal model

using sheep experimentally infected with Staphylococcus
aureus to study the possible association between biofilm
and sinusitis.4 Because bacterial biofilms were detected
on the sinus mucosa of human subjects with CRS,9

diverse kinds of studies of the role of biofilms in CRS
have been published.10 Jia et al. also proposed a rabbit
model of S. aureus biofilms by inoculating bacterial sus-
pension in the maxillary sinus after drilling to the sinus
cavity.11 In addition to S. aureus, fungi have been con-
sidered as one of the etiologic factors in CRS pathogene-
sis. Fungal biofilms have been discovered in CRS
patients; thus, Boase et al. developed a sheep model to
investigate the role of fungal biofilms in sinusitis.12 In
this model, significant fungal biofilm only occurred when
S. aureus was the co-inoculum, indicating the possibility
of fungal and bacterial synergism.

Mouse and Rabbit CRS Models
Lindsay et al. developed a mouse model of chronic

eosinophilic rhinosinusitis using Aspergillus fumigatus
(Af) extract with intraperitoneal injection and subsequent
nasal challenges.7 In fact, the original airway model for
inflammation used ovalbumin (OVA), a protein found in
chicken egg whites, as the allergen to produce asthma in
mice. However, Lindsay et al. selected Af as a study anti-
gen because Af has been implicated in the pathophysiolo-
gy of chronic hyperplastic eosinophilic rhinosinusitis and
in allergic fungal sinusitis. Subsequently, Tansavatdi
et al. developed a murine model for wound healing in
CRS using Af extracts.13 This model mimicked the sinus
wound healing process rather than the pathogenesis of
sinusitis. Considering that sinus surgery is often compli-
cated by adhesions and scarring that can compromise the
success of the procedure, an acceptable animal model for
normal wound-healing processes in chronically inflamed
sinus mucosa is quite meaningful. Liang et al. reported
the rabbit model using phorbol 12-myristate 13-acetate
(PMA), an activator of protein kinase C that stimulates a
vigorous inflammatory response with nasal cavity blockage

using a Merocel (Merocel, Medtronic Xomed, Jacksonville,
FL) sponge. Upon successfully producing CRS in this mod-
el, they further tested their model by investigating the
effect of treatment with intravenous antibiotics. Seven of
nine treated CRS sides were clear of opacification after
treatment; however, all nontreated CRS sides had persis-
tent diseases at week 16.14 Contrary to other CRS models
using allergic or chemical stimulants, Migliavacca et al.
showed a novel rabbit model for CRS with transmaxillary
sinus occlusion without bacterial inoculation.15

Murine Nasal Polyp Models
In 2011, for the first time, the murine model for

CRS with NP was introduced by a South Korean group.5

Accumulating evidences support that Staphylococcus
aureus enterotoxin B (SEB) plays a critical role in the
pathogenesis of nasal polyposis. Considering this point,
the group investigated the histological and immunologic
effects of SEB on the formation of nasal polypoid lesions
in an allergic rhinosinusitis murine model. After induc-
tion of an OVA-induced allergic rhinosinusitis, OVA with
SEB (5 or 500 ng) was instilled into the nasal cavity of
mice for 8 weeks. The group examined polyp formation
and epithelial disruption microscopically from three
coronal sections. Morphologically, polyp lesions were
characterized with edematous connective tissue stroma,
with eosinophilic infiltration and invasive growth of epi-
thelial cells including the microcavities, which were
reported as the characteristic features of NPs in previ-
ous reports.16,17 The exudate with crystal formation and
surrounding eosinophils was also observed in the sino-
nasal lumen. The criteria for NP included 1) a more ele-
vated lesion than surrounding mucosal folds, 2) the
presence of eosinophilic infiltration, and 3) inner micro-
cavities (intraepithelial growth with a differentiated and
ciliated lining).

Basically, the initial NP model using OVA (3%,
three times a week) plus SEB (5 or 10 ng, once a week)
was generated in BALB/c mice; thus, higher level of
OVA (6%, three times a week) and more frequent stimu-
lation of SEB (10 ng, three times a week) was needed to
induce polyp formation in the following study using the
transgenic mice of C57BL/6 strain.18 The C57BL/6 mice
have attenuated allergic airway hyperresponsiveness
when compared with Balb/c mice, although the underly-
ing mechanisms remain unclear.19 Because OVA is not
an airborne allergen but a food allergen, some research-
ers doubted whether OVA was suitable for allergic induc-
tion in respiratory disease model. In fact, house dust
mite (HDM) is the more common allergen, influencing
respiratory allergic diseases including allergic rhinitis
and bronchial asthma. On this account, Khalmuratova
et al. developed the modified murine NP model for
C57BL/six mice with HDM.6 They showed slightly
weaker polyp formation than the BALB/c polyp model
but a very prominent mast cell recruitment commonly
observed in human NP tissues.20 In fact, the number of
mast cells in the OVA plus SEB model in both BALB/c
and B6 mice was around 5 cells/high power field (HPF)
and in the HDM plus SEB model was nearly 20 mast
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cells per HPF in nasal mucosa.5,6 Most recently, Kim
et al. showed that this NP mouse model demonstrated
enhanced B-cell responses reminiscent of B cell
responses in human NP.21

Although this murine polyp model can provide a
very useful tool for studying the pathogenesis of NP, it
should be noted that there are some anatomical differ-
ences between rodents and humans. The maxillary
sinuses in mice and rats are not completely enclosed by
the upper jaw bone (maxilla). For this reason, maxillary
sinuses in rodent and many nonhuman animals are
often referred to as maxillary recesses in the litera-
ture.22,23 In rodents, the mucus from the anterior maxil-
lary sinus drains toward the anterior nares, but the
mucus from the posterior maxillary sinus drains toward
the nasopharynx.23 In addition, the submucosa of the
posterior maxillary sinus in mice and rats is more dense-
ly occupied by submucosal glands than the anterior max-
illary sinus,7 whereas maxillary sinus cavities are lined
with respiratory epithelium containing few or no goblet
cells.24,25

As a result, these different anatomic and physiolog-
ic features should be considered when using the rodent
model of CRS and NPs. Despite the anatomical differ-
ences in these animal models, the epithelial remodeling,
inflammatory cell infiltration, and collagen deposition
(excluding polyp formation) could be evaluated in diverse
experimental conditions. Considering the invaluable
information from the in vivo system, the development
and application of experimental animal models such as
those mentioned above are quite helpful to overcome the
limitations imposed on the study of human subjects,
that is, restriction of sampling and manipulation due to
ethical problems.

DISCUSSION

Applications of Sheep CRS Models for Testing
Novel Therapeutic Candidates

Sheep CRS models have been continuously used for
determining the roles of several etiologic factors and the
effects of therapeutic candidates (Table II). Sheep have a
similar pattern of diseases to humans, including allergic
rhinitis, sinusitis, and nasal polyposis.26,27 Other advan-
tages include their tolerance to long surgical procedures
and their large nasal cavity that renders them suitable
for repeated endoscopic sinus surgery (ESS).4 Based on
these, many researchers in Australia developed and uti-
lized sheep CRS models. Thomas et al. investigated an
eosinophilic response in sheep chronically infected with
O. ovis.27 The effect of chitosan-dextran derivative gel
on mucosal wound healing in CRS was investigated
using the sheep model.28 In particular, the sheep biofilm
model has been actively applied for testing novel anti-
biofilm materials by the Wormald group. Singhal et al.
showed that NVC-422, a potent, fast-acting, broad-spec-
trum nonantibiotic antimicrobial, was an effective topical
agent against S. aureus biofilms, with dose-dependent effi-
cacy in this animal model of biofilm-associated sinusitis.29

Thereafter, Boase et al. studied the influence of bacterial-
induced epithelial damage on Aspergillus fumigatus biofilm

formation in sinusitis.30 Manuka honey (MH) and its active
component methylglyoxal (MGO) were evaluated for the
safety and efficacy of these agents by the same group.31 The
authors concluded that sinus irrigation with MH/MGO at
MGO concentrations between 0.9 and 1.8 mg/mL was both
safe to mucosa and efficacious against S. aureus biofilm;
thus, MH/MGO irrigation could represent a viable treat-
ment option for recalcitrant CRS in an in vivo model. The
Wormald group also assessed the safety and efficacy of topi-
cal colloidal silver solution and topical liposomal nitric oxide
donor for the treatment of S. aureus biofilms in sheep mod-
els.24,32 They showed that both topical agents had effective
anti-biofilm activity in S. aureus CRS; thus, further investi-
gations are needed.

Applications of CRS Models for Elucidating
the Roles of Molecular Targets

Allergic mice models for CRS provided diverse path-
ophysiological features in CRS (Table II). Wang et al.
compared histological and immunological features of
bacterial CRS (BCRS) and allergic CRS (ACRS) using
BALB/c mice.33 In this study, the bacterial CRS was
established by Streptococcus pneumoniae inoculation
plus Merocel (Medtronic) ostiomeatal obstruction for 12
weeks. Allergic CRS was developed by OVA sensitization
and subsequent multiple OVA intranasal challenge for
12 weeks. The authors reported that the Th1/Th2 ratio
in BCRS mice was significantly higher than that in
ACRS mice, and overall histological and immunologic
features of BCRS and ACRS mouse models were similar
to those of human noneosinophilic and eosinophilic CRS,
respectively. Another in vivo study using a murine CRS
model showed the time-dependent changes in tissue-
remodeling cytokine expression corresponding to the
inflammatory tissue changes during CRS induction by
Aspergillus fumigatus.34 The authors suggested further
study on the association between BMP, FGF, and MMP
regulation and tissue remodeling changes resulting from
chronic inflammation.

Applications of Nasal Polyp Models for
Underlying Molecular Mechanisms

Although several kinds of CRS animal models were
introduced and applied, the in vivo model for NP was
quite scarce (Table II). In 2011, Kim et al. developed the
murine polyp model using OVA and SEB,5 which subse-
quently was utilized in diverse studies. Using the NP
model, Shin et al. first demonstrated that hypoxia-
inducible factor-1 (HIF-1)-induced epithelial-to-
mesenchymal transition (EMT) contributed to nasal pol-
yposis and then suggested that HIF-1a inhibitors could
be novel therapeutic candidates.35 Epithelial-to-
mesenchymal transition, a cellular process whereby epi-
thelial cells acquire mesenchymal properties and loose
cell–cell interactions and apicobasal polarity, is known to
play fundamental roles in organ development and tumor
invasion.31 In fact, the authors utilized the murine NP
model and showed that several HIF-1 inhibitors could
suppress polyp formation in vivo. Recently, the same
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research group showed that SIRT1—a histone deacety-
lase—could play a defensive role in CRS; it seems that
SIRT1 loss aggravates sinonasal mucosa inflammation,
finally leading to epithelial remodeling, including poly-
pogenesis.18 Mechanistically, SIRT1 inhibited the tran-
scriptional activity of HIF-1a by acetylating it and
suppressed HIF-1–induced EMT in human nasal epithe-
lial cells. The murine NP model was also used for prob-
ing the therapeutic efficacy of resveratrol, a well-known
SIRT1 activator against NP formation. Interestingly, the
anti-polyp effect of resveratrol was also found in earlier
in an vivo study in which resveratrol was considered as
an antiinflammatory agent to inhibit the lipoxygenase
pathway.36

Similarly, many investigators have utilized the NP
mouse model using OVA and SEB to show the effects of
their candidate drugs or target molecules. Kim et al.
showed that loss of periostin appeared to enhance polyp-
like lesion formation and mast cell infiltration in a
mouse model of eosinophilic rhinosinusitis with NPs.37

They induced the NP formation in both periostin-null
and wild-type mice by the repeated nasal administration
of OVA and SEB. Periostin, a component of the extracel-
lular matrix, was identified in the periosteum and peri-
odontal ligament in adult mice and was presumed to
play a role in the recruitment and attachment of osteo-
blast precursors in the periosteum.38 Jin et al. found
that epithelial expression of interleukin (IL)217C was
significantly higher in experimental NP mice compared
to control mice.39 They observed that SEB-induced IL-
17C expression in nasal epithelial cells was mediated by
reactive oxygen species production. Recently, Shin et al.
reported that IL-25 secreted from the sinonasal epithelia
and infiltrating mast cells play a crucial role in the
pathogenesis of CRS with NPs in Asian patients.40

Human NPs exhibited higher levels of both IL-25 protein
and mRNA. The NP lesions in the mice model also
showed the prominent IL-25 expression and were
reduced by anti–IL-25 therapy. Beside the number of
polyps, anti–IL-25 treatment reduced mucosal edema
thickness, collagen deposition, and infiltration of inflam-
matory cells such as eosinophils and neutrophils. This
treatment also inhibited expression of local inflammato-
ry cytokines, including IL-4 and IFN-c. Other research
groups investigated the effects of chronic exposure to
cigarette smoke or topical cyclosporine on CRSwNP
using this murine NP model.41,42

Advantages and Pitfalls of CRS Animal Models
for Studying Its Pathogenesis

Animal models for CRS and/or NPs have many ben-
efits for practicing scientists. We can test a specific
hypothesis using animal models, which cannot be proven
in clinical studies. Mice, rabbits, and sheep currently
used in CRS models have their own strengths and weak-
nesses. Mice are inexpensive and easy to handle, and
many murine specific reagents are commercially avail-
able.7 Transgenic or knockout mice are readily available,
offering a meaningful advantage over rabbit or sheep
models of sinusitis. Transgenic manipulation has

provided remarkable advances in uncovering the basic
pathophysiologic mechanisms of disease.18,35 However,
some authors mentioned that the murine model is limit-
ed because mice have very small sinus cavities and dif-
ferent immunologic reactions from human.14 Rabbits
have sinus cavities that are well pneumatized, and both
their sinonasal anatomy and immunologic reactions are
very similar to those of humans, which is considered to
be superior to mice. Sheep also have a similar pattern of
sinonasal diseases to human.26,27 Gardiner et al. showed
that the sinonasal anatomy and structure of the nasal
cavity, turbinates, frontal, and maxillary sinuses of
sheep are analogous to humans.43 In addition, their tol-
erance to long operative procedures and their large
nasal cavity render them suitable for repeated ESS.4

These animal models for CRS could bring new insights
into the pathogenesis and treatment modality in terms
of the ostial obstruction or biofilm formation.

However, there are some pitfalls in the application of
the animal models. Investigators should note the anatom-
ical characteristics of each animal, which are quite differ-
ent from human. For example, mice do not have true
sinuses like a human, as mentioned above. However, the
rabbit or sheep sinus can be well served when the patho-
physiologic mechanisms related to ostial obstruction are
explored and a true sinus is necessary.7 Immunologic
responses also vary with the species and the environ-
ment; thus, the traits or phenotypes observed in animal
studies should be confirmed in human tissues or cases.

CONCLUSION
Here, this review summarized the previously

reported animal CRS models and discussed the patho-
physiologic meanings from their applications published
for last 10 years. The classical animal models for CRS
have been modified, and several novel models for NP
were developed. Although there still are clear limitations
in the animal studies, newly proposed or revised animal
models would be helpful to understand the exact patho-
physiology of CRS.
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