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Objective: Accumulating evidence suggests that oxidative stress plays a role in the pathophysiology of schizophrenia and that 
the potent antioxidants may be potential therapeutic drugs for schizophrenia. This study was undertaken to examine the effects 
of the potent antioxidant sulforaphane (SFN), found in cruciferous vegetables, on behavioral abnormalities (e.g., hyperlocomotion 
and prepulse inhibition [PPI] deficits) in mice after a single administration of the N-methyl-D-aspartate (NMDA)-receptor antago-
nist phencyclidine (PCP). 
Methods: Effects of SFN (3, 10, and 30 mg/kg, intraperitoneally [i.p.]) on hyperlocomotion and PPI deficits in the adult male 
ddY mice after administration of PCP (3.0 mg/kg, subcutaneously [s.c.]) were examined. 
Results: Administration of SFN (30 mg/kg, intraperitoneally [i.p.]), but not low doses (3 and 10 mg/kg, i.p.), significantly attenuated 
hyperlocomotion in mice after PCP administration (3.0 mg/kg, subcutaneously [s.c.]). Furthermore, administration of SFN (3, 10, 
and 30 mg/kg, i.p.) attenuated the PPI deficits in mice after PCP administration (3.0 mg/kg, s.c.) in a dose-dependent manner. 
Conclusion: These results suggest that SFN has antipsychotic activity in an animal model of schizophrenia. Therefore, it is 
likely that SFN may be a potential therapeutic drug for schizophrenia.
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INTRODUCTION

Multiple lines of evidence suggest that a dysfunction in 
glutamatergic neurotransmission via the N-methyl-D-aspar-
tate (NMDA) receptor might be involved in the patho-
physiology of schizophrenia.1-8) NMDA receptor antago-
nists such as phencyclidine (PCP) and ketamine induce 
schizophrenia-like symptoms including positive symp-
toms, negative symptoms, and cognitive deficits in 
healthy subjects;1,9-12) consequently, PCP has been used 
widely in animal models of schizophrenia.13-20) Prepulse 
inhibition (PPI) of the acoustic startle response in the form 
of sensorimotor gating is defined as an inhibition of the 
startle response when a low-intensity stimulus, the pre-
pulse, precedes the startle stimulus. Deficits in PPI have 
been reported in several psychiatric disorders including 
schizophrenia, suggesting that deficient PPI per se or ab-

normalities in neural circuits regulating PPI may cause 
some symptoms of schizophrenia.21-24) Therefore, phar-
macological models of PCP-induced PPI deficits are ex-
cellent predictors of antipsychotic activity.25-28)

Accumulating evidence suggests that oxidative stress 
plays a role in the pathophysiology of schizophrenia and 
that potent antioxidants would be potential therapeutic 
drugs for schizophrenia.29-38) The potent antioxidant sul-
foraphane (SFN, 1-isothiocyanato-4-methylsulfinylbu-
tane) (Fig. 1) is an organosulfur compound derived from a 
glucosinolate precursor found in cruciferous vegetables 
such as broccoli, Brussels sprouts, and cabbage.39-41) SFN 
is also derived largely from its glucosinolate through the 
action of endogenous myrosinase during the isolation pro-
cedure and chewing. 

Nuclear factor E2-related factor 2 (Nrf2) is a master 
regulator that induces a battery of cytoprotective genes, 
including antioxidative enzymes, antiinflammatory medi-
ators, the proteasome, and several transcription factors in-
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volved in mitochondrial biogenesis.41-43) Following its nu-
clear translocation, Nrf2 binds the antioxidant response 
elements (AREs) in the promoter regions of its target 
genes. The protection afforded by SFN is thought to be 
mediated via activation of the Nrf2 pathway and sub-
sequent upregulation of phase II detoxification enzymes 
and antioxidant proteins, through an enhancer sequence 
referred to as the electrophilic responsive elements or 
AREs.41-43) We have reported that SFN prevents behav-
ioral abnormalities and dopaminergic neurotoxicity in 
mice after administration of the psychostimulant meth-
amphetamine, suggesting that SFN could be a potential 
therapeutic drug for neuropsychiatric diseases, including 
methamphetamine abuse.44)

Considering the potent antioxidant action of SFN, we 
hypothesized that SFN may possess antipsychotic activity 
in animal models of schizophrenia. Therefore, the present 
study was conducted to investigate whether SFN attenu-
ates hyperlocomotion and PPI deficits in mice after PCP 
administration.

METHODS

Animals
Male Std:ddy mice (age, 6 weeks old; weight, 25-30 g) 

were purchased from SLC Japan (Hamamatsu, Shizuoka, 
Japan). The mice were housed in clear polycarbonate cag-
es (22.5×33.8×14.0 cm) in groups of five or six per cage 
under a controlled 12/12-hour light-dark cycle (lights on 
from 7:00 AM to 7:00 PM), with room temperature at 
23±1oC and humidity of 55±5%. The mice were given free 
access to water and food pellets. This experimental proce-
dure was approved by the Animal Care and Use Commit-
tee of Chiba University. 

Drugs
SFN was purchased from Toronto Research Chemicals, 

Inc. (North York, Ontario, Canada) and was dissolved in 
10% corn oil (Wako Pure Chemical Co., Tokyo, Japan). 
PCP hydrochloride was synthesized in our laboratory, and 
the dose (3.0 mg/kg) of PCP was expressed as a hydro-
chloride salt. Other drugs were purchased from commer-
cial sources. 

Effect of SFN on Hyperlocomotion after a Single 
Administration of PCP 

After habituation (30 minutes) in the cage, SFN or ve-
hicle was injected into mice (n=8/group). Thirty minutes 
after a single administration of SFN (3.0, 10, or 30 mg/kg, 

intraperitoneally [i.p.]) or vehicle (10 ml/kg, 10% corn 
oil), PCP (3.0 mg/kg) or vehicle (physiological saline; 10 
ml/kg) was administered subcutaneously (s.c.) to the 
mice. Locomotor activity was measured using an animal 
movement-analysis system (SCANET MV-40; Melquest, 
Toyama, Japan). The system consisted of a rectangular en-
closure (560×560 mm). The side walls (height, 60 mm) of 
the enclosure were equipped with 144 pairs of photo-
sensors located at 6-mm intervals at a height of 30 mm 
from the bottom edge. An animal was placed in the ob-
servation cage 30 minutes (habituation) before injection 
of vehicle or SFN. Vehicle or PCP was injected 30 minutes 
after injection of vehicle or SFN, and locomotor activity 
was measured for 120 minutes after injection. A pair of 
photosensors was scanned every 0.1 second to detect ani-
mal movements. The intersection of paired photosensors 
(10 mm apart) in the enclosure was counted as one unit of 
locomotor activity. Data collected for 180 minutes were 
used in this study. The sum of locomotion in mice for 120 
minutes after PCP administration was used for data 
analysis.

Effect of SFN on PPI Deficits after a Single PCP 
Injection 

The mice were tested for their acoustic startle reactivity 
in a startle chamber (SR-LAB; San Diego Instruments, 
San Diego, CA, USA) using standard methods described 
previously.45-48) The test sessions began after an initial 
10-minute acclimation period in the chamber. The mice 
were subjected to one of six trials: (1) pulse alone, as a 
40-ms broadband burst; the pulse (40-ms broadband 
burst) preceded by 100 ms with a 20-ms prepulse that was 
(2) 4 dB, (3) 8 dB, (4) 12 dB, or (5) 16 dB above back-
ground level (65 dB); or (6) background only (no stim-
ulus). The amount of PPI was expressed as the percentage 
decrease in the amplitude of the startle reactivity caused 
by presentation of the prepulse (% PPI). SFN (3.0, 10, or 
30 mg/kg) or vehicle (10% corn oil) (10 ml/kg) was ad-
ministered i.p. 30 minutes (including the 10-minute accli-
mation period) before the machine began recording, and 
PCP (3.0 mg/kg) or saline (10 ml/kg) was administered 
s.c. 10 minutes (including the 10-minute acclimation peri-
od) before. The PPI test lasted 20 minutes in total. 

Statistical Analysis
Data are presented as the mean±standard error of the 

mean. Hyperlocomotion data were analyzed by one-way 
analysis of variance (ANOVA), followed by a post hoc 
Bonferroni/Dunn test. The PPI data were analyzed by 
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Fig. 2. Effect of sulforaphane (SFN) on phencyclidine (PCP)- 

induced hyperlocomotion in mice. Thirty minutes after a single 

intraperitoneally administration of vehicle (10 ml/kg), or SFN (3.0, 

10 or 30 mg/kg), PCP (3 mg/kg) or vehicle (10 ml/kg) was 

administered subcutaneously into the mice. Behavior (locomotion) 

in the mice was evaluated for 2 hours after administration of PCP. 

Each value is the mean±standard error of the mean (n=8 per 

group). ***p＜0.001 as compared with the vehicle＋PCP group. 

Fig. 3. Effect of sulforaphane (SFN) on phencyclidine (PCP)- 

induced prepulse inhibition deficits in mice. Thirty minutes after a 

single intraperitoneally administration of vehicle (10 ml/kg), or SFN 

(3.0, 10 or 30 mg/kg), PCP (3 mg/kg) or vehicle (10 ml/kg) was 

administered subcutaneously to the mice. Each value is the 

mean±standard error of the mean (n=17-21 per group). PPI, 

prepulse inhibition. *p＜0.05, ***p＜0.01 as compared with the 

vehicle＋PCP treated group.

multivariate analysis of variance (MANOVA). When ap-
propriate, group means at individual dB levels were com-
pared by one-way ANOVA, followed by a post hoc 
Bonferroni/Dunn test. A p-value ＜0.05 was considered 
significant.

RESULTS

A single administration of PCP (3.0 mg/kg, s.c.) mark-
edly increased locomotion in mice. The one-way ANOVA 
revealed significant differences among the six groups (F 
[5, 42]=14.18, p＜0.001]. Pretreatment with SFN (30 
mg/kg), but not low doses (3 and 10 mg/kg), significantly 
(p＜0.001) attenuated PCP-induced hyperlocomotion in 
mice (Fig. 2). In contrast, administration of SFN (30 mg/kg) 
alone did not affect spontaneous locomotion in mice. 

Fig. 2 shows the effects of SFN (3.0, 10, or 30 mg/kg) 
on PCP (3.0 mg/kg)-induced PPI deficits in mice. The 
MANOVA analysis of all PPI data revealed a significant 
effect (Wilks lambda=0.500; p＜0.001). Subsequent 
ANOVA analyses revealed significant differences (p＜ 

0.001) for all dB groups (69, 73, 77, and 81 dB). A post hoc 
analysis indicated a significant (p＜0.001) difference in 
PPI deficits between the vehicle and vehicle＋PCP (3.0 
mg/kg) groups at all dB levels (Fig. 3). Pretreatment with 
SFN (3.0, 10, or 30 mg/kg) attenuated PCP-induced PPI 
deficits in a dose-dependent manner. A high SFN dose (30 
mg/kg) significantly attenuated PCP-induced PPI deficits 
at 73 and 81 dB (Fig. 3). In contrast, PPI in mice after SFN 

administration (30 mg/kg) alone was similar to that in con-
trol mice (Fig. 3).

DISCUSSION

We found that SFN attenuated hyperlocomotion and 
PPI deficits in mice after PCP administration. This is the 
first report to demonstrate that SFN is effective in a PCP 
model of schizophrenia. We have reported that SFN at-
tenuates acute hyperlocomotion in mice after a single ad-
ministration of methamphetamine and that SFN blocks 
the development of behavioral sensitization after repeated 
administration of methamphetamine.44) Additionally, we 
have reported that SFN protects against dopaminergic 
neurotoxicity in the striatum after repeated administration 
of methamphetamine.44) Taken together, these findings 
suggest that SFN could be a potential therapeutic drug for 
schizophrenia. 

SFN is widely reported to induce Nrf2-dependent gene 
expression, although its molecular targets have not been 
fully characterized.42,43) It remains unclear whether activa-
tion of the Nrf-2-electrophile-responsive element/ARE 
pathway accounts for the ability of SFN to diminish the 
acute behavioral effects (e.g., hyperlocomotion and PPI 
deficits) induced by PCP in mice. SFN increases Nrf2 pro-
tein levels in the mouse striatum, and SFN protected 
against methyl-4-phenyl-1,2,3,6-tetrahydropyridine-in-
duced death of nigral dopaminergic neurons in a cell-cul-
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ture model of Parkinson’s disease.49) We have also re-
ported that SFN could protect against dopaminergic neu-
rotoxicity in the mouse striatum after repeated meth-
amphetamine administration.44) Taken together, these re-
sults suggest the likelihood that SFN protects against dop-
aminergic neurotoxicity in the mouse striatum by increas-
ing Nrf2 expression, although this needs to be confirmed. 
Further studies on the other mechanisms of SFN to ameli-
orate PCP-associated acute neurochemical and behavioral 
effects will also be necessary.

Adjunctive medication for antipsychotic treatment is 
one approach used to improve several symptoms (e.g., 
positive symptoms, negative symptoms, cognitive impair-
ment) of schizophrenia. A number of potential therapeutic 
drugs for schizophrenia have been developed,50-53) but no 
reports have shown the efficacy of SFN in patients with 
schizophrenia, although dietary SFN-rich sprouts reduce 
colonization and attenuate gastritis in Helicobacter pylo-
ri-infected humans.54) Additionally, a phase II study of 
SFN (200μmol [35 mg] daily) in patients with recurrent 
prostate cancer is now in progress (NCT01228084). 
Therefore, it is of great interest to study the effects of SFN 
on symptoms of schizophrenia. A randomized, place-
bo-controlled study of SFN (or dietary SFN-rich sprouts) 
adjunctive therapy will be necessary to confirm the clin-
ical efficacy of this effect in patients with schizophrenia. 

In conclusion, the present results suggest that SFN has 
potential antipsychotic activity in an animal model of 
schizophrenia. Therefore, SFN could potentially be used 
to treat schizophrenia, as it is a naturally occurring com-
pound found in cruciferous vegetables.

This study is supported partly by a grant for Intramural 
Research Grant (22-2: to K.H.) for Neurological and 
Psychiatric Disorders of NCNP, Japan. 
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