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Factors affecting RIG-I-Like
receptors activation - New
research direction for viral
hemorrhagic fevers
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1Doctoral School, University of Szczecin, Szczecin, Poland, 2Institute of Biology, University of
Szczecin, Szczecin, Poland
Viral hemorrhagic fever (VHF) is a term referring to a group of life-threatening

infections caused by several virus families (Arenaviridae, Bunyaviridae,

Filoviridae and Flaviviridae). Depending on the virus, the infection can be mild

and can be also characterized by an acute course with fever accompanied by

hypervolemia and coagulopathy, resulting in bleeding and shock. It has been

suggested that the course of the disease is strongly influenced by the activation

of signaling pathways leading to RIG-I-like receptor-dependent interferon

production. RIG-I-like receptors (RLRs) are one of two major receptor

families that detect viral nucleic acid. RLR receptor activation is influenced by

a number of factors that may have a key role in the differences that occur

during the antiviral immune response in VHF. In the present study, we collected

data on RLR receptors in viral hemorrhagic fevers and described factors that

may influence the activation of the antiviral response. RLR receptors seem to be

a good target for VHF research, whichmay contribute to better therapeutic and

diagnostic strategies. However, due to the difficulty of conducting such studies

in humans, we suggest using Lagovirus europaeus as an animal model for VHF.

KEYWORDS

RLR, immune activation, signaling, signaling pathways, VHF, Lagovirus europaeus,
interferon, MAVS
1 Introduction

There are two levels of immune system functions: innate and adaptive, although in

practice there is much interaction between them. Innate immunity is a rapid, but non-

specific early warning system for global immunity (1). If pathogens circumvented

physical barriers such as the skin or mucus membranes, biochemical mechanisms

quickly identify any “non-self” molecules (2). The host recognizes conserved molecular

structures known as pathogen-associated molecular patterns (PAMPs) that are present in

pathogens. These PAMPs are sensed by the host’s pattern recognition receptors (PRRs)
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which are expressed on innate immune cells (3, 4). Elimination

of pathogens is caused via the activation of complex signaling

pathways which induce inflammatory responses mediated by

various cytokines and chemokines (4).

PRRs are responsible for the initiation of immune responses

in mammals. They are located in subcellular compartments

(cellular and endosomal membranes), the cytosol and

extracellularly, in secreted forms present in the bloodstream

and interstitial fluids (5). PRRs recognize PAMPs, such as

lipopolysaccharide in gram-negative bacteria or intercellular

single- and double-stranded viral RNA (6, 7). Different kinds

of PRRs are specialized to recognize different PAMPs. To date,

five classes of PRRs, such as Toll-like receptors (TLRs), RIG-I-

like receptors (RLRs), NOD-like receptors (NLRs), C-type

lectin-like receptors (CRLs) and AIM-2-like receptors (ARLs),

have been characterized (8–12). The recognition of viral

infection involves the cytosolic DNA sensor cyclic GMP–AMP

synthase (cGAS), TLRs and RLRs (9, 13). Of the TLRs that we

know, TLR3 recognizes viral dsRNA, TLR7 and human TLR8

identify viral ssRNA and TLR9 detects viral DNA. These TLRs

are located in endosomal compartments. These receptors

activate the signaling pathways that lead to the production of

type I interferons and inflammatory cytokines (14).
2 RIG-I-like receptors

RIG-I-like receptors are a family of helicases, that function

as cytoplasmic sensors of pathogen-associated molecular

patterns (PAMPs) within viral RNA. They recognized

intracellular single- and double-stranded RNA that is

introduced to the cytosol during viral infection and

replication. To date, three RLR members have been identified:

RIG-I (retinoic acid-inducible gene I), MDA5 (melanoma

differentiation associated factor 5), and LGP2 (laboratory of

genetics and physiology 2 and a homolog of mouse D11lgp2)

(15). The RLRs signal production of type 1 interferon (IFN) and

antiviral gene expression that cause an intracellular immune

response to control virus infection (15).

RIG-I is encoded by the DDX58 gene identified in 1997 by

Sun (16). Yoneyama et al. (7) confirmed the involvement of this

gene in the induction of antiviral response by searching the

cDNA library for a factor that activates IFN-b expression. The

gene encoding MDA5, also called Helicard, IFIH1 (interferon

induced with helicase C domain 1) or RH116 (RNA helicase

116), was discovered in 2002 by subtractive hybridization (17). It

is involved in the induction of interferon expression during viral

infection (18). The DHX58 gene encoding LGP2 protein was

identified as a factor that is expressed in breast cancer cells (19).

The LGP2 receptor modifies viral RNA by releasing proteins

from ribonucleoprotein (RNP) complexes and altering the

structure of RNA, which enables a recognition of viral dsRNA

by RIG-I and MDA5 receptors (20).
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RIG-I and MDA5 are mostly known for their functions

inside innate immune cells, such as macrophages, neutrophils,

and dendritic cells, as well as in other cells like mucosal epithelial

cells, but they are expressed in all types of cells (21). They are

classified as ATP-dependent DExD/H box RNA helicases (22).

N-terminal portion of RIG-I encompassed the signalling domain

with 2 repeats of the Caspase activation and recruitment domain

(CARD). The largest portion of RIG-I is the helicase domain

DExD/H. The C-terminal domain (CTD) consists of four

conserved cysteines (C810, C813, C864, C869) linked by zinc

or, less commonly, a mercury atom. These are the major

structural and functional components of this protein that is

responsible for transmitting the signal that activates the antiviral

response by binding dsRNA and ssRNA 5’-triphosphate (23, 24).

The activation of RIG-I receptor expression is only possible

when the appropriate ligand interacts with the CTD domain (9).

RIG-I also contains a repressor domain (RD) that is mapped to a

region partially overlapping the RNA-binding domain (25).

Receptors MDA5 consists of all these domains, but its RNA

recognition domain has a significantly low affinity for dsRNA as

well as little repression (25, 26). Yoneyama et al. (7) observed

that RIG-I shows 23% homology in amino acid composition for

the N-terminal tandem CARD and 35% for the helicase domain

(Figure 1). Unlike RIG-I and MDA5, LGP2 lacks the N-terminal

tandem CARD, which is responsible for transmitting

intracellular signals. It is supposed that the lack of CARD

domains in the LGP2 prevents the recognition of viral RNA

through this receptor (27).
2.1 Virus recognition mechanism

The recognition of viral nucleic acid in the cytoplasm is

based on the detection of unmodified ssRNA and dsRNA

molecules that are not naturally synthesized in host cells (9,

16) (Table 1). RIG-I binds short dsRNA fragments 21-27

nucleotides long resulting from digestion by RNase III,

whereas MDA5 recognizes long fragments of dsRNA (>2 kbp)

(9). In addition, both receptors recognize the synthetic dsRNA

analog poly(I:C). Poly(I:C) of approximately 300 bp length is a

ligand for the RIG-I receptor, whereas MDA5 recognizes poly(I:

C) molecules of 4-8 kbp length (9, 28). Studies also showed that

short 1,2-1,4 kbp viral dsRNA chains induced RIG-I receptor

expression, whereas dsRNA chains of 3,4 kbp length activated

MDA5 expression (25). In addition, the RIG-I receptor also

distinguishes ssRNA containing a 5’ triphosphate at the 5’ end

(5’ppp) (29). Pathogen recognition by RIG-I-like receptors is a

complex and multistep process. Previous results indicated that

the length of the viral nucleic acid chain is a major determinant

of identification and ligand binding by RIG-I or MDA5. The

mechanism by which these receptors discriminate between

PAMP ligands in terms of their length is unclear.
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Kowalinski and co-workers (30) delineated the structural

biology of RIG-I receptor activation. In uninfected cells, RIG-I

is thought to be in an autorepressed conformation, with the

CARDs unavailable for signal transduction. The CTD mediates

RNA binding to RIG-I by binding blunt-end 5′ppp-dsRNA. After
connection with RNA ligand, the helicase domain of RIG-I tightly

wraps around the RNA in a C-clamp-like fashion (13). Viral RNA

binding to RIG-I is thought to induce conformational changes

that expose the CARDs, allowing E3-ligase tripartite motif-

containing 25 (TRIM25)-dependent K63 polyubiquitination of

Lys172 or endogenous K63-linked polyubiquitin chain binding

(31, 32). Then polyubiquitinated CARDs from RLRs interact with

the CARD domain found in mitochondrial antiviral-signaling

protein (MAVS which is also known as IFN-b promotor
Frontiers in Immunology 03
stimulator 1 [IPS-1], CARD adapter inducing IFN-b [Cardif] or

virus-induced signaling adapter [VISA]). MAVS is anchored with

its transmembrane domain into mitochondria. MAVS activates

the adaptor protein TRADD (tumour necrosis factor receptor type

1-associated death domain protein) and triggers two alternative

pathways for intracellular signal transduction: the TNF receptor-

associated factor 3 (TRAF3) protein-dependent or the Fas-

associated death domain (FADD) protein-dependent (33–35)

(Figure 2). The first is based on transmitting a signal to TANK-

binding kinase 1 (TBK1) and IkB kinase-ϵ (IKKϵ) (13). Then, the
transcription factors IRF3 (interferon regulatory factor 3) and

IRF7 (interferon regulatory factor 7) are activated and coordinate

the expression of type I IFN genes (36). The second pathway

involves the protein FADD, which forms a complex with RIP1
TABLE 1 Ligands and viruses that associate with each RLR.

RIG-I-like
receptor

PAMPs Synthetic
ligands

Example of viruses

RIG-I • short dsRNA
(<2kbp)
•5’ppp dsRNA
•5’ppp ssRNA

• poly(I:C)
(~300bp)

Reovirus, dengue, West Nile, rotavirus, Sendai, Vesicular stomatitis, influenza A, influenza B, hepatitis C, Japanese
encephalitis, ebola, Newcastle disease, Lassa virus, Epstein-Barr virus

MDA5 •long dsRNA
(>2kbp)

•poly(I:C)
(4-8bp)

Reovirus, dengue, West Nile, rotavirus, Sendai, mengo, encephalomyocarditis, polio, murine norovirus, Theiler

LGP2 •dsRNA
•5’ppp ssRNA

– Encephalomyocarditis, vaccinia, mengo*
*only viruses which cause that LGP2 take a role in the antiviral immune response.
FIGURE 1

Schematic structure of RIG-I-like receptors.
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(receptor interacting protein 1) kinase via its death domain (DD).

In addition, it also interacts with caspases 8 and 10, which activate

the IKK complex (IKK-a, IKK-b and NEMO/IKKg protein).

Activated IkB undergoes phosphorylation and degradation

releasing NF-kB (nuclear factor-kB). The NF-кB factor travels

to the cell nucleus, where it induces the expression of pro-

inflammatory cytokines (37, 38).
3 Mechanisms affecting RLR activity

Many factors influence the activity of RLR receptors.

Mechanisms taking place inside the cell can affect both the

precise operation of the signaling pathway and contribute to

protein inactivation. Below, we would like to present the

processes that can affect the regulation of RIG-I-like

receptors (Table 2).
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3.1 Positive regulators of RLR

3.1.1 MFN1
Mitofusin 1 (MFN1) plays an important role in MAVS

redistribution and is a key regulator of mitochondrial fusion

forming MAVS-MFN1 complexes, which stimulates

mitochondrial fusion and elongation. In this process, it

positively affects the activation of the RLR signalling pathway.

Moreover, MFN1 knockdown causes inhibition of IFNb and

NF-kB promoter activation caused by mitochondrial

fragmentation (39). In addition, MAVS redistribution has been

shown to be induced by various viral infections and 5′-ppp-RNA
transfection and is dependent on functional MFN1 (40).

3.1.2 STING (MITA)
STING (MITA, mediator of IRF-3 activator) is a protein that

binds to MAVS and is crucial for IFN production and NF-kB
activation after viral infection. The endoplasmic reticulum (ER)
FIGURE 2

Diagram showing activation of the immune response leading to RLR receptor-dependent production of type I interferon and pro-inflammatory
cytokines (CARD, caspase activation and recruitment domain; RD, repressor/regulatory domain; MDA5, melanoma differentiation associated
gene 5; RIG-I, retinoic acid-inducible gene-I; MAVS, mitochondrial antiviral signaling protein; TRADD, TNFR1-associated death domain; TRAF3,
TNF receptor-associated factor 3; RIP1, receptor interacting protein 1; FADD, Fas-associated death domain; NEMO, NF-kB essential modulator;
NF-kB essential modulator; TBK1, TANK-binding kinase 1; IKK, IkB kinase; IRF, IFN-gene regulatory factor; NF-kB –nuclear factor kB; IFN,
interferon).
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was found to be more associated with elongated mitochondria

during infection compared to control cells. This enabled the

hypothesis that elongation of mitochondria after RLR activation

promotes MAVS binding to the ER factor required for signaling.

It is suggested that due to the formation of MAVS-STING and

MAVS-MFN1 complexes, at the site of ER binding to the

mitochondrion, MAVS is activated and transmits the signal

further for type I IFN and cytokine production (39).
3.1.3 Ankrd17
Proteins with ankyrin repeats are involved in various

physiological processes, such as cell cycle control ,

transcriptional regulation and inflammatory responses (41).

Ankrd17 belongs to a family of such proteins and consists of

25 ankyrin repeats at its N-terminus, which are divided into two

clusters by a linker region. For some time, it was only known to

be involved in cell cycle regulation (54). Over time, however, it

was discovered that ankrd17 interacts strongly with MAVS by

enhancing its interaction with RIG-I and MDA5. In addition,

ankrd17 was found to coordinate with VISA to increase the

expression of ISRE, NF-kB and IFN-b reporters without

affecting cell viability. Activation of ISRE (IFN-stimulated

response elements), NF-kB and IFN-b promoters is mediated

by RIG-I. Moreover, it was also observed that ankrd17 enhanced

MDA5-mediated activation and promoted MITA-mediated

activation of the ISRE reporter (41).
3.1.4 Ubiquitination
As previously mentioned, ubiquitination plays an important

role in the activation of the RLR receptor-dependent signalling

pathway. It provides specificity and regulates the intensity of
Frontiers in Immunology 05
innate immunity. Ubiquitination is a post-translational protein

modification (PTM) that involves the covalent attachment of the

some protein ubiquitin to target proteins (55). Ubiquitination is

catalyzed by ubiquitin activating enzyme (E1), ubiquitin-

conjugatin enzyme (E2) and ubiquitin protein ligase (E3).

Ubiquitin can undergo ubiquitination itself on its seven lysine

residues (K6, K11, K27, K29, K33, K48 and K63), building

lysine-linked polyubiquitin chains (48). Unfolded CARD RIG-

I undergoes tetramerization upon K63-bound polyquitination or

upon attachment of an unanchored polyquitin chain (56). These

modifications contribute to the accumulation of RIG-I, which

promotes the interaction of the CARD RIG-I domain with the

CARD MAVS domain and induces its oligomerization and

fibrosis. Oligomerization and polyubiquitination stabilize

activated CARD RIG-I due to the high amount of

hydrophobic residues in this domain (48).

The first known and described site at which RIG-I undergoes

ubiquitination is K172, and it is dependent on the E3 activity of

the three-element motif 25 (TRIM25) protein (31). In addition,

three CARD residues K154, K164 and K172 are ubiquitinated by

gene (RING) finger protein-135 (RNF135) (42). RNF135 enables

activation of CARD RIG-I by TRIM25 after ubiquitination of

RD residues K849 and K851. Knockdown of RNF135 inhibits

the interaction between RIG-I:TRIM25 and eliminates TBK1

recruitment (57).

3.1.5 RAVER1
Another protein that participates in the regulation of RLR

receptors and more specifically MDA5 is RAVER1 (ribonucleic

PTB-binding 1). RAVER1 is specifically bound to MDA5, and its

dormancy inhibits type I IFN induction via this receptor, but not

via RIG-I. Mechanistically, RAVER1 promotes MDA5 binding
TABLE 2 Factors affecting activation of the RIG-I-like receptor-dependent signaling pathway.

Effect Factor Target Mechanism References

Positive MFN1 MAVS stimulation mitochondrial fusion and elongation (39, 40)

STING MAVS TBK1 and IRF-3 recruitment to MAVS (39)

Ankrd17 RIG-I, MDA5 strong interaction with MAVS by enhancing its interaction with RIG-I and MDA5 (41)

RNF135 RIG-I RIG-I ubiquitination (42)

TRIM25 RIG-I RIG-I ubiquitination (31)

RAVER1 MDA5 promotion of MDA5 binding to poly(I:C) (43)

Negative USP3, USP15, USP21,
CYLD

RIG-I K63 deubiquitination (44–47)

RNF125 RIG-I, MDA5,
MAVS

leading to degradation of RIG-I, MDA5 and MAVS (48, 49)

HOIL-1L RIG-I competing with TRIM25 for RIG-I CARD binding (48)

HOIP RIG-I promotion M1- and K48-linked polyubiquitination of TRIM25 and inducing its proteasomal
degradation

(48)

NLRX1 MAVS competing with activated RIG-I and MDA5 for binding of the CARD domain of the MAVS (48, 50)

A20 TBK1, IKKi kinase deubiquitination (51)

TAX1BP1 RIG-I acting as an adaptor molecule for A20 (52)

Atg5-Atg12 MAVS, RIG-I interaction directly with MAVS and RIG-I through CARD domains (53)
fr
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to poly(I:C), and its knockdown inhibits activation of ISRE, NF-

kB and the IFN-b promoter (43).
3.2 Negative regulators of RLR

3.2.1 DUBs
As stated before, ubiquitination is pivotal for activating the

antiviral immune response. However, it should be emphasized

that ubiquitin (Ub) chains can also be remodeled by

deubiquitinating enzymes (DUBs). This regulates the function

and abundance of proteins involved in the regulation of innate

immunity (48). Viruses use post-translational modifications to

degrade various viral and cellular proteins to overcome host

defense mechanisms at various stages of infection. They use

DUBs to reverse the biological effects of ubiquitinated proteins

by removing Ub from target proteins during viral infection of

the host (58). DUBs such as USP3, USP15, USP21 and

cylindromatosis (CYLD) are involved in type I IFN inhibition

by directly targeting the RIG-I receptor causing K63

deubiquitination (44–47). In addition, cellular DUBs may be

involved in altering the infectivity, replication, and pathogenicity

of the virus. USP14 increases the replicability of a panel of

viruses such as encephalomyocarditis virus, Sindbis virus and La

Crosse virus and Epstein-Barr virus (EBV) uses USP7 to initiate

disruption of PML nuclear bodies (59, 60). However, not all

DUBs negatively affect the activation of the RLR-dependent

signaling pathway. Some may have beneficial effects, for

example, by enhancing NF-kB activity in the TLR pathway or

stabilizing RIG-I by removing the poly-Ub K-48 chain (61, 62).
3.2.2 RNF125 and LUBAC
RLR signaling can also be reduced by modifying Ub.

Involved in this is RNF125 (ring-finger protein 125, called also

TRAC-1 [T cell RING protein identified in activation screen]),

which binds K48-linked polyubiquitin chains to CARD-

activated RIG-I and MDA5, leading to degradation of both

receptors and impairment of IFN-I signaling (48). RNF125

also ubiquitinates and degrades activated MAVS suggesting

that it is capable of destabilizing the protein containing

activated CARD (49). Because the CARD domain is often

found in proteins involved in immune signaling pathways,

RNF125 is considered an antagonist of immune signaling (63).

Another factor that negatively affects RIG-I receptor

activation is the linear ubiquitin complex (LUBAC), which

contains the IRP2 ubiquitin ligase 1L (HOIL-1L) and the

HOIP protein, which interacts with HOIL-1L. These two

structures regulate type I IFN expression through two

mechanisms that act independently of each other (64). HOIL-

1L competes with TRIM25 for RIG-I CARD binding, abolishing

the RIG-I:MAVS interaction. In turn, HOIP, promotes M1- and

K48-linked polyubiquitination of TRIM25 and induces its
Frontiers in Immunology 06
proteasomal degradation. Thus, TRIM25-mediated activation

of RIG-I is reduced (48).

3.2.3 NLRX1
NLRX1 belongs to the NLR family of receptors, which are

also involved in the antiviral immune response. NLRX1 is

localized in the outer mitochondrial membrane. It has been

found to compete with activated RIG-I and MDA5 for binding

of the CARD domain of the MAVS protein resulting in

inhibition of type I IFN secretion (48). The C-terminal

domain of the LRR of the NLRX1 receptor interacts with the

CARD domain of MAVS blocking its activation and signal

transduction involving the RIG-I or MDA5 receptors (50).

3.2.4 A20 and TAX1BP1
A20 (also called TNFAIP3) is a ubiquitin-modifying enzyme

that down-regulates antiviral signaling pathways that lead to

IRF3 activation (51). The mechanisms by which A20 inhibits the

antiviral response are poorly described; however, a protein that

interacts with A20, TAX1BP1 (Tax1 binding protein 1, also

known as T6BP or TXBP151), has been identified as a negative

regulator of antiviral signaling pathways (52). A20 and

TAX1BP1 work together to interrupt antiviral signaling. This

is done by antagonizing Lys63-linked polyubiquitination of

TBK1 and IKKi. A20 is unable to interact with TBK1 or IKKi

in the absence of TAX1BP1, so TAX1BP1 is thought to act as an

adaptor molecule for A20. In addition, A20 has been shown to

block signaling to IRF3. Moreover, TAX1BP1 expression was

shown to strongly block IFNb activation mediated by virus

infection, and TAX1BP1 overexpression blocked NF-kB
activation (52, 65, 66).

3.2.5 Atg5-Atg12
The role of autophagy in viral infection and activation of the

RLR-dependent antiviral response is not fully elucidated (53).

Autophagy is an essential process for physiological homeostasis,

and is also involved in the elimination of some intracellular

bacteria, such as invasive group A Streptococcus,Mycobacterium

tuberculosis and Shigella flexneri (67–69). Studies have shown

that members of the Atg family associated with autophagy (LC3,

Atg5 and Atg12) co-localize with double-membrane cytoplasmic

vesicles, where the viral RNA replication complex accumulates

and initiates replication of the viral genome. The Atg5-Atg12

conjugate has been shown to interact directly with MAVS and

RIG-I through CARD domains. This results in inhibition of type

I IFN production and allows the virus to replicate in cells (53).

LRRC25 (leucine-rich repeat containing protein 25) was also

shown to bind to ISG15-modified RIG-I facilitating the

interaction between RIG-I and the autophagic cargo receptor

p62. This causes selective autophagy of RIG-I, resulting in

reduced type I IFN production (70). Some viruses also

cooperate with autophagy and weaken the immune response.
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It has been confirmed that human parainfluenza virus type 3

(HPIV3) can induce mitophagy, resulting in the degradation of

MAVS and a reduction in the IFN response, in which RLRs are

involved (71). Another study showed that Beclin-1 also interacts

with MAVS CARD by blocking RIG-I signaling (72). Moreover,

both increased levels of mitochondrial mass were observed and a

higher percentage of cells that accumulated damaged

mitochondria were detected in Atg5-deficient cells. This results

in higher MAVS expression and thus increased signaling

through the RLR. In addition, mitochondria are major

producers of reactive oxygen species (ROS). The lack of

autophagy contributes to the lack of removal of damaged

mitochondria, which represent an additional source of ROS in

the cell. It has been confirmed that an increase in ROS levels in

the absence of autophagy results in RLR stimulation and

increased IFN production. These results allow us to conclude

that the absence of autophagy leads to an enhancement of RLR

signaling in two ways. First, mitochondria accumulate in the cell,

leading to the accumulation of MAVS, which is a key signaling

protein for RLR. Second, damaged mitochondria that do not

degrade are a source of ROS, which enhance RLR signaling in

Atg5 knockout cells (73).
4 Mechanism of action of RLR in
viral hemorrhagic fever

Viral hemorrhagic fever (VHF) is a group of acute zoonotic

diseases with high mortality rates that infect both humans and

animals. These diseases are endemic in some parts of the world

and can cause serious outbreaks. Due to the poor prognosis and

lack of specific vaccines or drugs, VHF remains a serious health

problem worldwide. Understanding the pathogenesis of VHF

disease can provide effective means to treat and monitor disease

outcomes (74). The US Institute for Infectious Disease Medical

Research lists four families of RNA viruses as the main

etiological agents of VHF: Arenaviridae, Bunyaviridae,

Filoviridae and Flaviviridae (75). Information on RIG-I-like

receptors and the factors affecting them is residual. The

following is the current state of knowledge in this

field (Figure 3).
4.1 Arenaviridae

Arenaviruses belong to the enveloped viruses whose genetic

material is the (–)ssRNA molecule. The arenavirus genome is

two-segmented and consists of one large segment (L) of about

7.2 kb and one small segment (S) of about 3.4 kb. The S segment

is responsible for encoding the viral glycoprotein (GP)

precursor, which is post-translationally cut into a stable signal

peptide (SSP) and mature GP1 and GP2. GP1 and GP2 form
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spikes located on the surface of the virus, which are responsible

for binding to host receptors and mediating entry into cells. The

S segment also encodes a nucleoprotein (NP), which is the major

structural component of the nucleocapsid and is the most

abundant protein during infection. The L segment encodes the

RNA-dependent RNA polymerase L protein and a small, zinc

finger protein (Z), which is responsible for virus particle

formation (76, 77). All human pathogens in the family

Arenaviridae belong to the genus Mammarenavirus, which we

can further divide into two groups based on geography and

phylogeny: Old World (OW) arenaviruses and New World

(NW) arenaviruses (78, 79).

Both ends of the arenavirus genome form structures that

contain 5’ppp acting as PAMPs (77). Studies on the Junıń virus

(JUNV), which belongs to the NW arenaviruses, have shown

that dsRNA-derived signalling is in the same location as RIG-I

and MDA5, suggesting that RLRs are involved in the recognition

of arenavirus infection (80). Furthermore, IFN and interferon-

stimulated genes (ISGs) were shown to be up-regulated during

infection with this virus (81, 82). The use of siRNA to

knockdown RIG-I resulted in a decrease in IFN-b and ISG.

These results confirm that IFN pathway activation is RIG-I

receptor-dependent in JUNV infection (83). Autophagy also

occurs in JUNV infection. Studies have shown that the

autophagy proteins Atg5 and Beclin-1 are essential for virus

replication (84). These results contradict previously published

information about the negative effects of these proteins on RLR

receptor activation. This is an interesting aspect that certainly

requires further analysis to better understand the impact of

autophagy on the initiation of innate immunity.

However, the Lassa virus (LASV), which is classified as an

OW arenavirus, has been shown to develop the ability to evade

the RIG-I response (85). IFN-b is not increased during LASV

infection, suggesting that this virus either avoids or inhibits the

signalling pathway leading to IFN production (82). Furthermore,

studies on myeloid dendritic cells showed that LASV does not

increase MDA5 gene expression (86).
4.2 Bunyaviridae

Bunyaviruses are a family of spherical, enveloped viruses.

They contain three segments of antisense (and sometimes

ambisense) single-stranded RNA linked to a nucleoprotein

(76). The two outer glycoproteins form projections on the

surface of the virus. A virus-encoded transcriptase is present

in the virion. Bunyaviruses replicate in the cytoplasm. Their

RNA genome is transcribed into mRNA. The host RNA

sequence in some representative viruses initiates the synthesis

of viral mRNA. Bunyaviruses mature by budding into vesicles in

or near the Golgi apparatus. Bunyaviruses are responsible for

many diseases that run feverishly in humans and other

vertebrates (87).
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FIGURE 3

Diagram showing relationship between RIG-I-like receptors, their factors and viral hemorrhagic fevers (JUNV, Junín virus; LASV, Lassa virus;
SFTSV, severe fever with thrombocytopenia syndrome virus; CCHFV, Crimean-Congo hemorrhagic fever virus; HTNV, Hantaan virus; RVFV, Rift
Valley Fever Virus; DENV, dengue virus; ATMUV, avian Tembus virus; EBOV, Ebola virus; MARV, Marburg virus; RLRs, RIG-I-like receptors).
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Studies on severe fever with thrombocytopenia syndrome

virus (SFTSV) have shown that its non-structural protein can

antagonize the RIG-I and MDA5 signalling cascade by targeting

the downstream kinases TBK1/IKKϵ and inhibiting type I IFN

production. These results suggest that RLRs are involved in the

immune response during SFTSV infection (88–91). Other

studies have shown that SFTSV infection results in increased

mRNA and protein expression of RIG-I and MDA5. However, it

does not increase the expression of MAVS. Furthermore,

knockdown of MAVS results in blockade of IFN-b and NF-kB
promoter activation stimulated by SFTSV (92). Its non-

structural protein can also bind and sequester TRIM25,

blocking its functions (93).

Another virus in the Bunyaviridae family, Crimean-Congo

hemorrhagic fever virus (CCHFV), has a genome with a 5’

monophosphate (5’p) end (94). Because RIG-I recognizes only

the 5′ppp and 5′pp ends, it is considered not to be involved in

initiating the immune response upon CCHFV infection.

However, our study supports the role for RIG-I in the antiviral

response of CCHFV. RIG-I has been shown to be involved in

increasing ISG expression and IFN-b production in CCHFV

infection. Furthermore, knockdown of RIG-I resulted in an

average increase in viral titer of 3.95-fold and 3.75-fold,
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respectively. This demonstrates that RIG-I also has an effect

on virus replication (95). CCHFV infection is also characterized

by a slight increase in autophagy proteins (Atg5, Atg7, Atg3,

Atg12 and Becn1) (96). However, they have been shown not to

affect RLR receptor activation. As in the case of JUNV infection,

studies on the mechanisms affecting RLR receptors in these virus

infections may be key to understanding the relationship between

these mechanisms.

To date, there are no studies available on RIG-I-like

receptors in infection with other hemorrhagic fever viruses of

the Bunyaviridae family. However, there are studies on Hantaan

virus (HTNV) that have shown that this virus manipulates the

autophagic process to its advantage. During HTNV infection,

mitophagy occurs (97). As we described earlier, this process

affects RLR-dependent inhibition of IFN production. In

addition, Beclin-1 knockdown inhibits HTNV replication (76,

97), so we speculate that this phenomenon may also be related to

the RIG-I-like receptor signaling pathway and interferon

production. In Rift Valley Fever Virus (RVFV) infection,

silencing of autophagy proteins (Atg5, Atg7 and Becn1) has

been shown to negatively affect the host antiviral response and

increase viral replication (98). We suppose that in this case the

situation may be similar to JUNV and CCHFV infection and the
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autophagy process does not negatively affect RLR signaling.

However, confirmation of this theory requires studies.
4.3 Flaviviridae

Flaviviridae are a family of viruses whose genetic material is

the (+)ssRNA molecule. They encode at least three structural

proteins such as C (capsid), M/prM (vestibule) and E (envelope)

and seven non-structural proteins (NS1, NS2A, NS2B, NS3,

NS4A, NS4B and NS5) (76, 99). Flavivirus contains more than

70 viruses, including dengue virus (DENV), West Nile virus

(WNV), Zika virus (ZIKV), Japanese encephalitis virus (JEV),

and avian Tembus virus (ATMUV) (100, 101).

In DENV studies, it was demonstrated that 5′-pppRNA
effectively initiated an antiviral response that was dependent

on the RIG-I/MAVS/TBK1/IRF3 pathway and contributed to

the reduction of infection (102). Te nonstructural proteins

(NS2A and NS4B) of DENV serotype 4 (DENV4) were shown

to inhibit IFN-b secretion that is induced by RIG-I-, MDA5-,

MAVS-, and TBK1/IKKϵ. However, it is noteworthy that

blocking the pathway does not occur by affecting the RLR

receptors themselves, but by inhibiting the phosphorylation of

TBK1 and IRF3, that is, at the level of activation of the TBK1

complex (103). In the case of DENV infection, there is again a

pattern where RLR receptor activation is noted in parallel with

autophagy supporting viral replication. During infection,

increased expression of Atg5 and Atg12, potential inhibitors of

RLR receptors, was demonstrated (104). In addition, the DENV

NS2B3 protease cleaves MFN1 and MFN2 preventing proper

mitochondrial function (105). The same protease can inhibit

type I IFN production by cleaving human STING (74).

For other viruses in the Flaviviridae family, ATMUV has

been shown to increase MDA5 expression, and silencing of

MDA5 contributes to a significant decrease in IFN production.

Based on these data, MDA5 has a key role in activating the

immune response in ATMUV infection; however, the role of

RIG-I has not been elucidated (106). RIG-I also recognizes JEV

and secretes inflammatory factors (IL-6, IL-12p70, MCP-1, IP-

10, and TNF- a) that help fight the virus (107).
4.4 Filoviridae

Members of the Filoviridae family are (–) ssRNA viruses,

which include three genera: Ebolavirus, Marburgvirus, and

Cuevavirus. They encode at least four proteins that counter

host antiviral defense strategies such as glycoprotein (GP) and

the viral proteins (VP) VP24, VP35, and VP40 (76, 108).

VP35 filovirus proteins are multifunctional. One of their

functions is to counteract the induction of antiviral response.

Ebola virus (EBOV) and Marburg virus (MARV) VP35 proteins

bind viral dsRNAs to prevent their recognition by RIG-I and
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MDA5 (109, 110). A number of conserved basic residues

facilitate the binding of EBOV VP35 to the phosphodiester

backbone of dsRNA thereby inhibiting IFN secretion (110,

111). Some viral proteins such as EBOV and MARV VP35

inhibit RIG-I activation by targeting PACT, which induces

activation of RIG-I-dependent IFNb promoter activity.

Expression of the C-terminal domain of EBOV VP35 inhibits

RIG-I ATPase activity as well as IFNb promoter activity (112,

113). EBOV VP35 also inhibits signalling mediated by IRF3 and

IRF7. It partially binds to and inhibits the function of upstream

kinases TBK1 and IKKϵ. MARV VP35 also inhibits IRF3

phosphorylation and IRF3 reporter gene activity, even in the

presence of TBK1 and IKKϵ overexpression (109). Inhibition of

RIG-I and MDA5 receptor activation in EBOV infection may be

caused by autophagy. Studies have shown that autophagy

proteins are necessary for the virus to enter the host via

macropinocytosis. In addition, deletion of Becn1 and ATG7

was confirmed to block virus entry (76, 114). However, TRIM25

was found to inhibit EBOV transcription and replication

through inhibition of virus-l ike frequency (trVLP)

propagation. TRIM25 interacts with the viral helical

ribonucleoprotein complex, causing its auto-ubiquitination

and ubiquitination of the viral nucleoprotein. As can be seen,

this process is independent of RIG-I, so in this case TRIM25

does not act on RLR receptors as a positive factor (115).
5 Lagovirus europaeus

VHF is characterized by a difficult diagnostic process and a

lack of effective treatments, so they pose a public health

challenge, especially in subtropical regions. High virulence and

rare outbreaks occurring in geographically remote areas with

poor diagnostic facilities are the main factors making VHF

analysis in humans ineffective (116). Therefore, animal models

are a key element for advancing knowledge of VHF and

establishing new therapeutic and diagnostic strategies (76). A

good VHF model should meet the following criteria:

uncontrolled viral expansion into multiple organs, viral

suppression of the type I interferon response, triggering the

secretion of large amounts of pro-inflammatory cytokines,

induced primary infection of monocytes/macrophages and

dendritic cells, and liver damage caused by infection of

Kupffer cells and hepatocytes (117). We believe that Lagovirus

europaeus infection shares many characteristics with VHF and

probably it makes this virus a very good animal model for testing

to other viral hemorrhagic fevers.

Lagovirus europaeus/GI.1 is highly pathogenic virus that

causes rabbit hemorrhagic disease (RHD) in both, wild and

domestic European rabbits (Oryctolagus cuniculus). It belongs to

the Caliciviridae family, and was first detected in 1984 in China

(118). L. europaeus/GI.2 first appeared in 2010 in France. It can

infect both European rabbits and other hare species (Lepus).
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Among other things, innate immunity plays an important role in

Lagovirus europaeus infection (119). One of the characteristic

features of the virus is that non-young rabbits are resistant to

infection until 4 weeks of age (GI.2) and 9 weeks of age (GI.1),

respectively. Only 3% of adults survive Lagovirus europaeus

infection. Such a high mortality rate and the rapid spread of

RHD worldwide prompted work on a vaccine. However, to date,

there is no system that allows in vitro culture of Lagovirus

europaeus strains. For this reason, vaccines are based on

inactivated virus isolated from the livers of infected rabbits.

Current vaccines contain one or two antigens from both strains

of the virus, as it has been proven that vaccination for Lagovirus

europaeus confers limited cross-immunity to the other strain

and vice versa (119). L. europaeus/GI.1 and GI.2 infection can

occur in three clinical forms:subacute, acute, and chronic. RHD

is characterized by acute fulminant hepatitis, splenomegaly,

hemorrhage and congestion of several organs such as trachea,

lungs, heart and kidneys, mainly associated with massive

disseminated intravascular coagulation (120). Postmortem

imaging shows acute hepatitis and an enlarged spleen (121). In

addition, the virus also attacks macrophages and monocytes of

the lungs, lymph nodes and monocytes located inside the liver

vessels (122). Kupffer cells have been proven to be involved in

viral replication and are presumably involved in the spread of

virus particles in the body (123). Pathology after L. europaeus

infection is characterized by two main processes (119). The first

is related to impaired physiology with severe organ destruction

(liver, spleen, kidney) and rapid viral replication (124). Infected

rabbits show the presence of the virus in periventricular

hepatocytes and macrophages of the liver, lungs and spleen

during immunohistology and in situ hybridization (ISH). As the

disease progresses, increased apoptosis of hepatocytes and liver

endothelial cells is noted (121, 125). Multiorgan dysfunction is

identified by respiratory acidosis, hypoglycemia and increased

creatinine kinase activity (119). The second process involves an

impaired immune response with induction of systemic

lymphocyte apoptosis. Apoptosis of B and T lymphocytes in

the liver and peripheral blood combined with neutrophilic

infiltration results in decreased numbers of regulatory T

lymphocytes and severe leukopenia before death (126–129).

Increased expression of pro-inflammatory cytokines in the

liver, spleen and serum of rabbits has also been demonstrated

during infection (129).

Another important aspect is that RLR receptors have not yet

been studied in Lagovirus europaeus infection, so this could be a

good start for research using this virus. However, there are few

data on autophagy in this infection. The increase in autophagy

proteins such as Beclin-1, Atg12, Atg5 and LC3 suggests that

there should be inhibition of the RIG-I-like receptor-dependent

signaling pathway (130). However, cases such as DENV, RVFV,

CCHFV and JUNV infection show that these mechanisms can

occur in parallel and not affect each other. Therefore, conducting

studies on L. europaeus infection may contribute to a deeper
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understanding of the relationship between these mechanisms

and the pathogenesis of these infections. A routine diagnostic

tool in L. europaeus infection is real-time PCR. This method has

been shown to be 100% sensitive and to detect 10 copies of the

virus per well. The test uses a liver fragment from an infected

rabbit, from which a homogenate is then made (131).
6 Conclusion

In this review, we described the role played by RLR receptors

in activating the antiviral response using viral hemorrhagic fevers

as an example. We showed that the course of the disease depends

on whether RLR receptors are activated, and IFN production

occurs. However, the activation of RIG-I and MDA5 is influenced

by many factors, including autophagy, which appears to be crucial

in VHF, as viruses can use it as a strategy to evade the immune

response (76). Just as it seems clear that RLR receptors play a key

role in combating VHF, the mechanisms of receptor action and

the factors affecting their activation have not been fully described.

There is little data on RLR receptors in the VHF, and we know

even less about how positive and negative factors can affect them.

Further studies are needed to explore and describe these

mechanisms. Given that there is an ongoing need for more

effective treatment strategies for viral hemorrhagic fevers, the

study of RLRs and the factors that regulate their function seems

promising. However, due to the difficulties associated with

studying VHFs in humans, we propose Lagovirus europaeus as

an animal model, whose characteristics indicate that it meets the

conditions we outlined earlier.
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129. Teixeira L, Marques RM, Águas AP, Ferreira PG. Regulatory T cells are
decreased in acute RHDV lethal infection of adult rabbits. Veterinary Immunol
Immunopathology (2012) 148:343–7. doi: 10.1016/j.vetimm.2012.05.006

130. Vallejo D, Crespo I, San-Miguel B, Álvarez M, Prieto J, Tuñón MJ, et al.
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