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MOTIVATION Imaging flow cytometry has emerged as a powerful tool for high-throughput single-cell
morphology analysis and, in conjunction with machine learning approaches, has the potential to transform
the diagnosis of hematological diseases. The requirement for manually labeled single-cell images for ma-
chine learning model training has so far severely limited the scope and application of such diagnosis stra-
tegies. To address this gap, here we present iCellCnn, a weakly supervised deep learning approach for la-
bel-free IFC-based blood diagnostics.
SUMMARY
The application of machine learning approaches to imaging flow cytometry (IFC) data has the potential to
transform the diagnosis of hematological diseases. However, the need for manually labeled single-cell im-
ages for machine learning model training has severely limited its clinical application. To address this, we pre-
sent iCellCnn, a weakly supervised deep learning approach for label-free IFC-based blood diagnostics. We
demonstrate the capability of iCellCnn to achieve diagnosis of Sézary syndrome (SS) frompatient samples on
the basis of bright-field IFC images of T cells obtained after fluorescence-activated cell sorting of human pe-
ripheral blood mononuclear cell specimens. With a sample size of four healthy donors and five SS patients,
iCellCnn achieved a 100% classification accuracy. As iCellCnn is not restricted to the diagnosis of SS, we
expect such weakly supervised approaches to tap the diagnostic potential of IFC by providing automatic
data-driven diagnosis of diseases with so-far unknown morphological manifestations.
INTRODUCTION

The accurate and sensitive diagnosis of pathologies is an essen-

tial determinant of patient treatment outcome and prognosis.

Given that cell morphology, structure, and chemical composition

are linked to physiological function, they can be used as essen-

tial markers for diagnosis (Alizadeh et al., 2020). Among such

markers, morphology is still themost important criterion for diag-

nosis and also constitutes a more resource-effective alternative

to molecular diagnosis approaches if two conditions are met: (1)

morphological patterns are available for accurate and sensitive

diagnosis and (2) these patterns can be efficiently and (ideally)

automatically evaluated (Bain, 2005; Ford, 2013).
Cell Rep
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Imaging flow cytometry (IFC) has emerged as a powerful tool

for high-throughput single-cell morphology analysis and, in

conjunction with machine learning approaches, has the potential

to transform diagnosis of hematological diseases (Doan et al.,

2018). Traditionally, such diagnostic procedures rely on manual

expert microscopical evaluation of blood cell morphology and

suffer from subjectivity, limited throughput, and low sensitivity.

This situation hasmotivated an ongoing transition towardmolec-

ular diagnostic assays, and shifted the challenge toward identi-

fying suitable molecular targets (Scarisbrick et al., 2018). To

circumvent the problems related to the requirement for labels

when identifying molecular diagnostic markers, IFC can provide

high-resolution morphological information of individual cells at
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high throughput and thus sensitively identify pathological aberra-

tions of cellular morphology.

Although conventional (fluorescence-based) IFCs allow for

relatively high-throughput quantitation of cellular populations,

they are costly, mechanically complex, consume large sample

and reagent volumes (due to the use of sheath flows to hydrody-

namically focus samples into a narrow stream), and require

trained personnel for both operation and maintenance (Basiji

et al., 2007). In this respect, the development of image-based

analysis within microfluidic formats provides an opportunity to

develop new platforms for characterizing single cells, which

leverage and combine the high-throughput nature of microscale

flow cytometry with the enhanced sensitivity of a microscope

(Rane et al., 2017; Stavrakis et al., 2019).

Recently, machine learning approaches have been used to

classify cellular morphology from IFC data (Hennig et al.,

2017). In a recent study, a commercial imaging flow cytometer

(Amnis ImageStreamX Mk II, Luminex) operating in a label-free

detection mode (bright field and dark field) was used to identify

phases in the cell cycle (Eulenberg et al., 2017) and classify white

blood cell type (Lippeveld et al., 2020; Nassar et al., 2019). Simi-

larly, the same imaging flow cytometer was used for acute

lymphoblastic leukemia diagnostics, with 88% accuracy when

using a residual convolutional neural network (CNN) architecture

(Doan et al., 2020a). Other studies have focused on integrating

imaging technology with deep learning technology. For example,

a time-stretch phase-imaging system was used to obtain quan-

titative phase and intensity images in real time, with feature

extraction and deep learning algorithms used to achieve label-

free classification of cancerous cells (Chen et al., 2016). An

improved version of this imaging platform, termed optofluidic

time-stretch microscopy, allowed for ultra-fast acquisition

(250,000 frames/s) of bright-field images as well as integrating

a deep convolutional autoencoder to identify drug-induced

morphological changes in leukemic cells (Kobayashi et al.,

2019). Other researchers have also used similar optical ap-

proaches in conjunction with deep learning to realize

morphology-based identification and enumeration of aggre-

gated platelets in blood (Jiang et al., 2017). However, these ap-

proaches possess significant limitations that preclude their diag-

nostic use in clinical applications. Most importantly, all of the

above approaches incorporate strongly supervised machine

learning models, whose establishment requires difficult-to-

obtain examples of manually annotated single-cell images,

ideally in large numbers. This requirement further precludes their

application to disease entities without a priori knowledge of diag-

nostic morphological patterns.

Herein, we present iCellCnn, a weakly supervised deep

learning approach for label-free IFC-based clinical diagnostics

that circumvents the necessity for manually annotated single-

cell images. We demonstrate iCellCnn’s capabilities for diag-

nosis through the diagnosis of Sézary syndrome (SS) (Broder

et al., 1976), an aggressive form of cutaneous T cell lymphoma

(Bobrowicz et al., 2020; Phan et al., 2016; Willemze et al.,

2019). SS is characterized by circulating tumor T cells with cer-

ebriform nuclei that serve as potentially useful morphological

diagnostic features. This morphological manifestation of malig-

nant T cells with cerebriform nuclei consisting of overlapping
2 Cell Reports Methods 1, 100094, October 25, 2021
folds and clefts (Lutzner et al., 1971) offers a unique opportunity

to visualize these cells within a patient’s blood. Accurate detec-

tion of these cells could contribute to diagnosing the disease at

an early stage, which is of high importance for timely and effec-

tive treatment.

RESULTS

iCellCnn: Weakly supervised learning of diagnostic
cellular morphology from IFC data
iCellCnn is a weakly supervised approach for classifying a pa-

tient’s disease status on the basis of IFC data from a clinical

specimen, i.e., an image collection of cells that are specific as

well as unspecific to the disease (Figure 1A). In contrast to con-

ventional strongly supervised approaches, which are tedious

and whose establishment requires individual cell images labeled

as ‘‘specific’’ or ‘‘unspecific’’ to the disease, iCellCnn can be

trained by using only the information on the disease state at

the level of the specimen, i.e., the entire cell image collection

that results from the specimen. iCellCnn circumvents the

requirement for strong supervision by using a set of images

rather than individual images as an input, in a similar fashion as

reported for conventional (non-imaging) flow cytometry data

(Arvaniti and Claassen, 2017). In contrast to the comparably

low dimensionality of the conventional flow cytometry input

(Arvaniti and Claassen, 2017), our approach employs high-

dimensional IFC single-cell images summarized by a vector of

relevant morphology features defined in a data-driven fashion

(Goodfellow et al., 2020). Specifically, iCellCnn utilizes a deep

convolutional autoencoder architecture (Goodfellow et al.,

2020) to represent each image as a feature vector in a latent

space representation.

Multiple cell image representations from the same patient

specimen were concatenated as a ‘‘bag of cells’’ (BoC) in a

two-dimensional feature vector. Here, themost relevant features

were learned and enhanced by mean pooling, with the resulting

one-dimensional feature vector used as an input to a random for-

est classifier, indicating the presence or absence of diseased

cells in the input cell collection. Training of the iCellCnn model

defines, in a data-driven fashion, morphological patterns of dis-

ease-specific cells, while themodel learns to ignore confounding

non-disease-specific cells, and ultimately enables diagnosis of

diseased patients from the IFC measurements.

IFC of peripheral bloodmononuclear cells of SS patients
Peripheral blood mononuclear cell (PBMC) samples were

collected from four healthy donors (HDs) and five SS patients.

In some cases, fluorescence-activated cell sorting was per-

formed to enrich the data pool for SS T cells (see STAR

Methods), as these cells are a subset of immune cells contained

in the PBMC samples.

The resulting cell suspensions are then introduced into the mi-

crofluidic device and elasto-inertially focused into a single file. An

in-house developed, small-footprint, cost-effective IFC that in-

corporates a microfluidic platform for three-dimensional cell

focusing was used for the acquisition of individual PBMC images

at high throughput (see STAR Methods; Figure S1). Here, cells

are elasto-inertially focused if the channel dimensions are



Figure 1. Workflow for label-free IFC-based clinical diagnostics

(A) Peripheral blood mononuclear cell samples are imaged using our IFC platform. The digitized cell images are preprocessed and then used to train a machine

learning model, with labels either at a whole-sample level or (weak) labels at an individual image level. Multiple images are pooled together in a bag of cells, and

used to train a classifier to provide a final diagnosis probability.

(B) Number of cell images acquired per patient sample.

(C and D) (C) Signal-to-noise ratio and contrast-to-noise ratio of the IFC images. (D) Example images of healthy donor cells and Sézary syndrome patient cells

captured using both imaging flow cytometry and high-resolution electron microscopy. Scale bars, 5 mm.
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adjusted to yield a blockage ratio, b (b = a/h, where a is the

average cell diameter, and h is the channel diameter), smaller

than 0.25 (Romeo et al., 2013). A straight microchannel with a

cross-section of 45 3 45 mm in combination with a 1,000 ppm,

1 MDa PEO solution was used to focus cells in all experiments.

More than 100,000 images were collected in total, with at least

2,000 cell images per patient as shown in Figure 1B. An

embedded graphics processing unit (GPU) platform was used

to pre-filter and save only ‘‘in focus’’ images containing cells

within the field of view (see STAR Methods; Figure S1C). Given

the relatively shallow depth of field of the 603 imaging objective,

obtaining high-resolution images of flowing cells necessitates

focusing the individual cell into a single file within the working

distance of the lens. Figure 1D highlights the image quality

achieved by using such an approach, with a mean signal-to-

noise ratio (SNR) of 9.8 (SD 1.4) and a mean contrast-to-noise

(CNR) of 0.45 (SD 0.59) when imaging cells at a flow rate of

55 mL/min (Figure 1C; see STAR Methods for the calculation of

SNR and CNR). Representative IFC images highlight the typical

irregular nucleus, containing lobulations and indentations, of

SS cells (Figure 1D), as observed in the associated high-resolu-

tion scanning electron microscope (SEM) images (see STAR
Methods for SEM acquisition and protocol details). The recorded

images are used to train the weakly supervised iCellCnn for the

identification of disease-specific morphological signatures.

Identification of a diagnostic cellular morphology in
PBMCs of SS patients with iCellCnn
We assessed iCellCnn’s (see Figure 2) capability for diagnosis of

SS and compared it with strongly supervised learning ap-

proaches. Specifically, we considered two variants of strong su-

pervision, naiveandmanual imageannotation,where for both var-

iants the label of each individual cell imagewasusedwhen training

the model. In the naive annotation approach we implemented a

CNN model based on the ResNet18 architecture (He et al.,

2016), consisting of 18 convolutional layers, followed by a fully

connected layer and a softmax activation function. The model

was trained on cell images with individual labels. We defined a

naive annotation, where all the cells from the same patient spec-

imen were assigned with the respective patient’s health status

(i.e., healthy or diseased). The model was trained on the basis

thatSSpatientshavea largerpercentageofmorphologically atyp-

ical cells. Throughout this work, when reporting the classification

results and number of diseased (Sézary) cells in the blood of HDs
Cell Reports Methods 1, 100094, October 25, 2021 3



Figure 2. iCellCnn model architecture

The digitized cell images are preprocessed and

used to train a machine learning model, with labels

either at an individual image level or (weak) labels at

the whole-sample level. A convolutional au-

toencoder is trained as a feature extractor to

represent each single image in a latent space.

Multiple images are pooled together in a bag of

cells, which is represented in a latent space (bag of

cell features), and used to train a random forest

classifier to provide the final diagnosis probability.
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and SS patients, this is read as the number of cells with atypical

morphology as assigned by the trained model. A leave-one-out-

cross-validation (LOOCV) approach was used for training and

evaluating the performance of the model. All the performance re-

sults are reported on the validation set (see STARMethods). A pa-

tient-wise breakdown of the predictions of our approach can be

seen in Figures 3A–3C and S2B, with the healthy donors denoted

asHD1–4, and theSSpatients asSS1–5.Using this approach, the

healthy specimenscontainedameanof 31.6%(SD18.3%)of their

cells classified as diseased and the SS patients a mean of 71%

(SD 12.1%), with a patient-level classification accuracy of

86.7% (SD 9.3%) (Figure 3A).

In the manual (expert labels) annotation approach, the same

model was used and trained on naively annotated cells of healthy

individuals and a subset of manually annotated pathological cells

from SS patients. A total of 1,000 cell images were annotated as

pathological, on the basis of the clear cerebriform appearance

of their nuclei. The model was trained by using only cell images
4 Cell Reports Methods 1, 100094, October 25, 2021
from the healthy specimen data and the

manually annotated pathological cell im-

ages in an LOOCV approach. Using such

an approach, healthy specimens had a

mean of 9.1% (SD 3.9%) of their cells clas-

sified as diseased and SS a value of 26.8%

(SD 7.7%) (Figure 3B). Themodel accuracy

was also evaluated on the expert annotated

Sézary cell images, where it achieved a

mean accuracy of 94.2% (SD 2.7%) (Fig-

ure S2C). A class separating threshold that

maximizes the distance between the two

classes was determined for the predicted

SS cell frequency. A threshold value of

15.94%that led toapatient-level classifica-

tion accuracy of 100%was computed in an

LOOCVapproachas themeanbetween the

highest predicted SS cell frequency from

the healthy donor class and the smallest

prediction from the diseased class.

For the weak supervision approach

(iCellCnn), a convolutional autoencoder

with five convolutional layers in the

encoder and decoder blocks was imple-

mented to extract features from all speci-

mens in an unsupervised manner. Multiple

images from the same patient were then
grouped in a BoC, and assigned collectively a (weak) label corre-

sponding to the disease state of the respective patient.

After representing each cell image as a feature vector

computed by the encoder block of the convolutional autoen-

coder, BoCs of the patients could be represented as ‘‘bags of

cell features’’ (BoCF). The BoCF was then used to train a random

forest classifier. Figure 2 illustrates a flow-chart of this approach.

Using this method, all patients were correctly classified, with the

healthy specimens having a mean of 13.9% (SD 7.2%) of their

cells classified as diseased and the SS patients being assigned

a mean of 84.6% (SD 13.1%) of their cells classified as diseased

(Figure 3C). Comparison of the approaches across the complete

patient cohort demonstrates the excellent separation capability

of iCellCnn (Figures 3D and 3E). The Mann-Whitney U test de-

tected significant differences between the mean estimated cell

frequency of the two classes for all approaches.

Although strong supervision using expert labels and weak su-

pervision approaches achieved similar patient-level classification



Figure 3. Predicted percentage of cells with atypical (Sézary) morphology in the blood of healthy and diseased specimens

This was achieved using (A) strong supervision using naive labels, (B) strong supervision with a subset of annotations on diseased cells, (C) bag of cells approach

using weak supervision, and (D) group-wise amounts of healthy donor and Sézary syndrome patient predicted cells with atypical (Sézary) morphology.

(E) Patient-level classification accuracy, p values, andHellinger distance between healthy and diseased probability distributions. The error-bars represent the test

accuracy standard deviation across five training experiments.
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accuracies (Figure 3E top) and p values (Figure 3E middle), the

weak supervision approach achieved superior separation be-

tween classes, with a Hellinger distance of 0.98, compared with

strong supervision approaches using expert labels (0.75) and

naive labels (0.66) (Figure 3E bottom; see STAR Methods). The

Hellinger distance metric was used to quantify the similarity be-

tween the classes, with a score of 1 signifying a maximum sepa-

ration of the classes. On the basis of an analysis of the aforemen-

tioned results, the weak supervision approach, iCellCnn,

achieved considerable improvement on disease predictions

compared with those achieved with strong supervision models,

without the need of manually providing annotated labels and

the overhead associated with this process.

DISCUSSION

We present iCellCnn, a weakly supervised approach for the dis-

ease diagnosis from patient blood samples by using image flow
cytometry. To the best of our knowledge, this is the first study

that implements a combination of label-free IFC and machine

learning in a weakly supervised manner for disease diagnosis,

i.e., a data-driven approach circumventing the limiting require-

ment of single-cell image annotations. Furthermore, this is the

first study using machine learning morphology-based diagnosis

of SS.

In the current study, we developed a simple yet high-perfor-

mance imaging flow cytometer with dimensions of 20 3 25 3

30 cm (weighing 7.5 kg). Compared with existing IFC platforms,

the presented instrument is significantly cheaper and more

compact, with the system costing less than 10,000 Swiss Francs

to build. This cytometer comprises a straight microfluidic chan-

nel and does not require hydrodynamic focusing of the sample;

a feature that makes the system robust and simple to operate. In

addition, the platform has a simple hardware configuration, only

incorporating a custom optical unit for bright-field imaging, a

moderate numerical aperture objective lens, a low-cost CMOS
Cell Reports Methods 1, 100094, October 25, 2021 5
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camera, and a single-channel microfluidic chip. In this regard, it

is important to note that, even with moderate bright-field resolu-

tion, we are able to demonstrate the predictive power of the

iCellCnn CNN in morphological classification of Sézary cells.

The presented pipeline is capable of enumerating single-cell im-

ages in flow and identifying morphological features of the ac-

quired images by using minimal hardware and, in conjunction

with the iCellCnn approach, to learn diagnostic cellular

morphology. By virtue of the technical simplicity of the device

and the portability of the machine learning analysis, we expect

that this integrated IFC approach can be established in a

plethora of clinical laboratories.

First, we presented a strong supervision approach with naive

labels, where 50%of HDs and 80%of SS patients were correctly

classified, considering a 50% boundary (prediction) threshold

and a 95% confidence interval. Although the 70%mean of iden-

tified Sézary cells in the SS patients might seem significantly

larger than the healthy donor mean of 31%, two of the healthy

donors (HD3 and HD4) had means closer to the SS patients

than to their healthy counterparts. Moreover, these predicted

values are larger than those described in the literature (Bernengo

et al., 2001; Meyer et al., 1977). Therefore, we hypothesize that

the larger number of identified diseased cells does not reflect

the actual number of cells with Sézary morphology, but rather

the fact our naive annotation model was unable to generalize

precisely to other data on the basis of the naive labels provided,

as well as to a lower extent for the manual expert labels.

To improve the classification accuracy, we then used a similar

approach after manually annotating a subset of SS patient cell

images as the diseased state. This improved the model predic-

tions, with all the HD individuals having less than 16% of their

cells counted as morphologically atypical (2.9%–15.8%), and

all the SS individuals havingmore than 16%of their cells counted

as morphologically atypical (16.1%–40.9%). Although the sepa-

ration between the two classes was improved, the total number

of predicted diseased cells for the SS patients was low. This can

be explained by the fact that only a subset of the data were

manually annotated and, in addition, because of the time con-

straints of this process, we only annotated the positive

(diseased) samples. This setup consequently results in morpho-

logically abnormal T cells from healthy individuals being labeled

as ‘‘healthy,’’ therefore distorting the model predictions. These

issues indicate the limitations that accompany automatic diag-

nosis approaches depending on manual annotation of single-

cell images.

We assume that the trend toward inflated Sézary annotations

is related to the observation that a fraction of Sézary cells are

morphologically indistinguishable from normal lymphocytes. As

stated in (Bernengo et al., 2001), the percentage of Sézary cells

with abnormal morphology can range from 8% to 90%, with a

mean of 32.8% (SD 23). Cells with atypical morphology can

also be found in healthy individuals (Meyer et al., 1977) at be-

tween 3.2% and 13.3%, with a mean of 8.7% (SD 3.5). It is worth

noting that these studies were conducted by using high-resolu-

tion electronmicroscopy, as opposed to lower-resolution bright-

field imaging. Nevertheless, there was an overlap between the

classes, with four out of six HDs having their numbers within

the range of SS patients. Interestingly, in our study, when using
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the manual expert label strong supervision approach, similar

values were identified for healthy (2.9%–15.8%, mean of 9.1%)

and diseased patients (16.1%–40.9%, mean of 26.8%), albeit

with a narrow separation between classes of 0.3%.

To overcome such limitations, we propose iCellCnn as a

weakly supervised model. Because of the possibility that healthy

individual PBMC samples might consist of lymphocytes with

morphological patterns similar to Sézary cells, and SS patient

PBMC samples might comprise non-pathological cells, our

weakly supervisedmodel is based on a BoC approach that pools

cell images from the same patient and processes them under a

collective label. In addition, the use of a convolutional autoen-

coder offered the advantage that relevant morphological fea-

tures can be compactly extracted in an unsupervised manner,

which presumably increases feature (the learned latent space

representations) robustness to noise (Vincent et al., 2008) in

the cell images, given that it does not use any prior assumptions

regarding the data (Carbonneau et al., 2018). A random forest

was chosen as the final classification layer because it requires

considerably less data for training when compared with conven-

tional neural networks. This is essential, because by using the

BoC approach the amount of data (bags) for training is reduced

by the same factor as the size (number of cells) of the bag. This

approach achieved a 100%patient-level classification accuracy,

with all healthy individuals being assigned a lower frequency

(<27%) and all the SS patients being assigned a higher frequency

of their cells counted as diseased (>56%).

Given that our model estimates the frequency of occurrence of

cells with Sézary morphology, we believe that our approach

would be useful in examining disease progression, assuming

that a patient with amore advanced diseased state would exhibit

more cells with Sézary morphology, and therefore our model

would yield a higher SS cell frequency.

We speculate about the degree of potential improvement of

classification performance. Accordingly, we estimated the upper

bounds of classification accuracy and separation by using the

following heuristic. We implemented a BoCmodel where the au-

toencoder was not trained on all cells as before, but instead only

on manually annotated diseased cells (Figures S2A and S2B).

The resulting latent representation of the IFC images would

therefore be specific for features of diseased cells only, and

not for the spectrum of features characterizing all cells. In this

approach, healthy patients had less than 22% of their cells

counted as diseased, compared with more than 61% for SS pa-

tients. Our weak supervision approach achieved similar classifi-

cation performance to that of the strong supervision model in

terms of the number of cells classified as positive (for the healthy

and diseased specimens), without the need to provide manually

annotated labels. Such a capability avoids several limitations.

First, annotating data of certain pathologies requires expert

domain knowledge of a physician. Second, the process of label-

ing a large amount of data are time-consuming and laborious

and can lead to labeling errors caused by human intervention.

Furthermore, there are many diseases without a priori known

diagnostic cellular morphology. Thus, because cell images in

these situations cannot be manually annotated, conventional

strong supervision approaches are not applicable for training

automatic diagnosis models.
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Although the specimens investigated in this study were either

HDs or patients diagnosed with SS—providing a clear label for

the dataset, the diagnosis label of the patients was not based

on cell morphology, but based on molecular diagnostic assays

and patient symptoms. The phenotype between the healthy

and diseased cells evaluated by our machine learning model

was made by using donor and patient cell images, therefore re-

sulting in a more complex and challenging dataset. This is

because a fraction of Sézary cells are morphologically indistin-

guishable from normal lymphocytes (Bernengo et al., 2001),

whereas cells with atypical morphology can also be found in

healthy individuals (Meyer et al., 1977).

In our study, using the IFC bright-field images, a total number

of 1,000 cells were annotated as pathological, on the basis of the

clear distinct cerebriform appearance of their nuclei, and ac-

counting for 1.1% of the total number of SS patient cell images.

On the basis of the relatively low percentage of cells with distinct

cribriform morphology, we believe our method would achieve

similar results on other datasets where the diseased cell fre-

quencies are comparably low.

Digital hematology applications based on machine-learning-

assisted IFC have great potential to achieve more accurate

and significantly faster classification with minimal human

intervention. By integrating IFC and deep learning, our

iCellCnn approach has been shown to successfully provide

morphology-based diagnosis of SS. Currently, commercially

available IFC systems require complex equipment and operation

by trained personnel, which prevents their deployment in almost

all field or clinical environments. These drawbacks can be miti-

gated through the adoption of our pipeline that incorporates

portable, simple, and high-performance IFC combined with a

weakly supervised approach. Although the focus of this study

was on SS, our approach is almost certainly applicable to a va-

riety of other hematological malignancies or other diseases

inducing morphological changes in the blood cell compartment,

such as leukemia, or even inflammatory skin diseases. Given that

most adults undergo routine blood tests every 1 to 5 years (Boul-

ware et al., 2007) our proposed pipeline can lead to routine

screening of a wide range of pathologies, such as cutaneous

lymphomas and non-neoplastic disease, which traditionally are

considered infeasible due to cost reasons.

Limitations of the study
All the data in our study were acquired by using an in-house built

IFC platform. We assume that refining the model for data ac-

quired from a different IFC might involve re-training of the

iCellCnn. Given that data availability of the same pathologymight

be limited, an alternative approach could involve using domain

adaptation (Tomczak et al., 2020), where an image translation

model is learned between the source (in-house IFC device) and

the target domain (new IFC device).

A limitation of our weakly supervised approach is that the

feature extraction network of iCellCnn was decoupled from the

BoC classification layer. Other weakly supervised approaches

based on CNNs (Chikontwe et al., 2020; Sudharshan et al.,

2019) or Multi-layer Perceptron Networks (Wang et al., 2018)

have been proposed. Doan et al. (2020b) used another weakly

supervised approach for assessing the quality of stored red
blood cells, using CNN as a feature extractor on single-cell

images; features that were afterward used to train a one-dimen-

sional UMAP embedding. However, the denomination as

‘‘weakly supervised’’ learning is used in different ways by us

and Doan et al., and discussed generally in (Zhou, 2017).

Following our notion, Doan et al. use strong supervision in terms

of associating a label to each single-cell image and learning a

feature extractor to map the two spaces, and weak (or self) su-

pervision for training the UMAP embedding. Our approach asso-

ciates a label with a BoC, which we refer to as weak labeling of a

set of inputs, instead of as strong labeling of individual inputs.

We opted for a different approach, because by using BoCs

instead of single images for training a CNN the memory capacity

increases linearly with the bag size and memory errors can be

encountered. This would limit the number of cell images present

in a bag, as well as the batch size (training data used in one iter-

ation) even on a high-performance GPU cluster. Moreover, as

with the BoC approach, the number of available BoCs scales

inversely with the number of cells in a BoC, leading to suboptimal

CNN training due to limited data availability.

It is significant to note that iCellCnn is not restricted to the

diagnosis of SS and we expect this weakly supervised approach

to be extendable to the diagnosis of other diseaseswithmorpho-

logical aberration in blood cells. Although generalization to other

diseases is likely to be dependent on the degree of morpholog-

ical similarity between the new investigated pathology and SS, a

transfer learning approach could be used to limit this depen-

dence (Khan et al., 2019). In such an approach, the entire or

part of the already trained CNN could be used for feature

extraction, and only the final classification layer would have to

be re-trained.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

anti-human CD3 monoclonal antibody

conjugated with PerCP

Miltenyi Biotec, Gladbach, Germany clone BW264/56, Cat#130-096-910; RRID:

AB_2725962

Biological Samples

Sezary Syndrome patient PBMCs University of Z€urich Biobank Biobank project (EK No. 647)

Healthy donor PBMCs Blutspende SRK Z€urich N/A

Chemicals, Peptides, and Recombinant Proteins

SYTOXTM Red Dead Cell Stain ThermoFisher Scientific Cat#S34859

Formaldehyde solution Sigma-Aldrich, Buchs, Switzerland Cat# 47608, CAS: 50-00-0

Poly-L-lysin Sigma-Aldrich, Buchs, Switzerland Cat# P6282, CAS: 25988-63-0

Glutaraldehyde solution Sigma-Aldrich, Buchs, Switzerland Cat# G7776, CAS:111-30-8

Osmium tetroxide Sigma-Aldrich, Buchs, Switzerland Cat# 201030, CAS:20816-12-0

Thiocarbohydrazide Sigma-Aldrich, Buchs, Switzerland Cat# 223220, CAS:2231-57-4

Epoxy embedding medium Sigma-Aldrich, Buchs, Switzerland Cat# 45345

Uranyl Acetate 98%, ACS Reagent Polysciences Ref: 45345

Deposited Data

IFC image data This paper https://doi.org/10.5281/zenodo.5391154

Software and Algorithms

python 2.7 Python Software Foundation https://www.python.org/

tensorflow 1.7 Abadi et al. (2016) https://www.tensorflow.org/

keras 2.1.5 Chollet (2018) https://keras.io/

scikit-learn 0.19 Pedregosa et al. (2011) https://scikit-learn.org/
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Prof.

Manfred Claassen (Manfred.Claassen@med.uni-tuebingen.de).

Materials availability
This study did not generate new unique reagents.

Data and code availability

d The raw image data reported in this study does not represent a standardized data type, being the result of a custom-built IFC

device. The data reported in this paper was deposited in a public general-purpose repository. The DOI is listed in the key re-

sources table.

d This paper does not report original code. Deep learning models and machine learning models reported in this work used stan-

dard libraries and scripts that are publicly available in Keras (Chollet, 2018), TensorFlow (Abadi et al., 2016) and scikit-learn

(Pedregosa et al., 2011) and listed in the key resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human blood samples from patients and healthy individuals
We used blood samples from SS patients whose diagnosis was established according to the recommendations of the International

Society for Cutaneous Lymphomas (ISCL) and World Health Organization–European Organization of Research and Treatment of
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Cancer (EORTC). These include clinical presentation with erythroderma and lymphadenopathy and neoplastic T cells as determined

by an absolute Sézary cell count of 1000/mL, or an expanded CD4+ T-cell population resulting in a CD4/CD8 ratio >10, CD4+/CD7-

cells >30%, or CD4+/CD26- cells >40%, in combination withmonoclonal rearrangement of the T cell receptor (Thiers, 2008;Willemze

et al., 2019). Blood samples from SS patients were collected from the University of Z€urich Biobank. All patients provided consent to

use samples and the related clinical data, according to the Biobank project (EK No. 647) and the ‘‘Generalkonsent des USZ’’ of the

University Hospital Z€urich. Blood from healthy individuals was obtained anonymously from Blutspende SRK Z€urich. The study was

conducted in accordance with the principles of the Declaration of Helsinki and the design was approved by the Institutional Review

Board of the Canton of Z€urich (KEK-ZH-Nr. 2018-02326). Blood from five SS patients and four healthy donors was used in this study.

Information regarding age, sex or gender identity of the healthy donors could not be provided due to anonymity reasons. The SS

patients were three Caucasian elderly male (70, 71, and 78 years old) and two Caucasian elderly female (71, 74 years old).

METHOD DETAILS

Isolation of T cells and FACS
Peripheral blood mononuclear cells (PBMCs) from patients with SS and healthy individuals were obtained via Ficoll/Paque density

gradient separation (17-1440-03, GE Healthcare, Opfikon, Switzerland). For FACS experiments, the PBMC samples were stained

with anti-human monoclonal antibodies: anti-human CD3 monoclonal antibody conjugated with PerCP (clone BW264/56, #130-

096-910, Miltenyi Biotec, Gladbach, Germany), anti-human CD4 monoclonal antibody conjugated with APC-Vio770 (clone

REA623, #130-113-223, Miltenyi Biotec,Gladbach, Germany) and anti-human CD8 monoclonal antibody conjugated with PE-

Vio770 (clone REA734, #130-110-680,Miltenyi Biotec, Gladbach, Germany). SYTOXTM RedDeadCell Stain (#S34859, ThermoFisher

Scientific, Zurich, Switzerland) was used for dead cell removal. The live CD3+/ CD4+/ CD8- T cells were subsequently sorted on a BD

FACSAria Fusion (BD Biosciences, Allschwil, Switzerland) flow cytometer.

Sample preparation for IFC
In all experiments, after cell sorting using FACS, cells were fixed with a 4% formaldehyde solution, washed with Dulbecco’s Phos-

phate-Buffered Saline (DPBS, Life Technologies, Zug, Switzerland) and resuspended in a viscoelastic polyethylene oxide solution

(PEO) solution to allow for elasto inertial focusing. Multiple parameters must be controlled to ensure efficient focusing cells into a

single file. These include the molecular weight of the polymer, concentration of the polymer solution, microfluidic channel geometry,

the blockage ratio and flow rate of the suspension. A detailed description of the specific influence of each of these parameters can be

found elsewhere (Holzner et al., 2017). Based on this analysis, current experiments were carried out using a 4400 ppm/1 MDa PEO

(Sigma-Aldrich, Buchs, Switzerland) solution. A stock solution at a concentration of 10,000 ppm was prepared and aged at room

temperature for a month, to ensure stability. The stock solution was diluted with DPBS to the desired concentration and used imme-

diately or stored at 4�C.

Microfluidic device fabrication
Microfluidic devices containing a straight microchannel (with a 45x45 mm cross-section) were fabricated using standard soft-litho-

graphic techniques. The two-dimensional channel pattern was designed using AutoCAD (Autodesk, San Rafael, USA) and printed

onto a transparent film photomask (Micro Lithography Services Ltd, Chelmsford, United Kingdom). This photomask was subse-

quently used to pattern an SU-8 (Microchem Corporation, Westborough, USA) coated silicon wafer using conventional photolithog-

raphy. A 10:1 mixture of polydimethylsiloxane (PDMS) monomer and curing agent (Sylgard 184, Dow Corning, Midland, USA) was

poured over the master-mold and peeled off after polymerization at 70�C for 4 hours. Inlet and outlet ports were punched using a

holepuncher (Technical Innovations, West Palm Beach, USA) and the PDMS substrate subsequently bonded to a planar glass

substrate with a thickness of 170 mm (Menzel-Glaser, Braunschweig, Germany), after treating both surfaces with an oxygen plasma

(EMITECH K1000X, Quorum Technologies, East Sussex, United Kingdom) for 60 seconds. After bonding, microfluidic devices were

maintained at 70�C for at least 4 hours to recover hydrophobicity and prevent adhesion of the cells to the channel walls.

Device operation
The cell suspensionwas loaded into a 1mL syringe (Gastight Syringes, Hamilton Laboratory Products, NV, USA) and delivered at flow

rates of up to 1.5 mL/min using a precision Aladdin syringe pump (World Precision Instruments, Friedberg, Germany). Settling of cells

within syringes was minimized by matching the density of the medium to the cell suspension using a 36% v/v Optiprep Density

Gradient Medium (Sigma-Aldrich, Buchs, Switzerland).

IFC system
The IFC system comprised a homemademicroscope and a USB 3CMOS camera with a pixel size of 5.86 mm (UI-3060CP Rev. 2, IDS

Imaging Development Systems, Obersulm, Germany). Illumination of the microscope was provided by a green light-emitting diode

(LED) (CBT-120, Luminus, Sunnyvale, USA). LED light was coupled into a liquid waveguide (LLG05-4H, Thorlabs, Dachau, Germany)

using a set of two lenses (ACL5040U, Thorlabs, Dachau, Germany) in a 4f configuration. Light coming from the waveguide was

focused to a tight spot in the imaging plane of the microfluidic channel using two lenses (OSL2FOC, Thorlabs, Dachau, Germany).
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A 60x 0.70 NA objective (Nikon, Plan Fluor, ELWD, Nikon, Zurich, Switzerland) mounted on a z-movable stage (SM1Z, Thorlabs,

Dachau, Germany) was used to collect brightfield images. A convex lens with a focal length of 200mm (LA1708-A 1" 200.0mm, Plano

Convex Lens, Thorlabs, Dachau, Germany), mounted in a 30 mm optical cage system (Thorlabs, Dachau, Germany) was used as the

tube lens and a dielectric mirror (KCB1C, Thorlabs, Dachau, Germany) guided the light to the USB 3 CMOS camera. In addition to

these components, the system incorporates an embedded computing platform for real-time image processing based on machine

learning. The embedded GPU platform was used to pre-filter and save only relevant images for a classification task (i.e. in focus im-

ages with cells in the field-of-view). Cell images outside the field-of-view, images containing cell debris and empty images were dis-

carded. Figure S1C presents an overview of typical images acquired prior to filtering. Pre-filtering was performed using a convolu-

tional neural network architecture, with three sequences of convolutional and max pooling layers, followed by two fully connected

layers. In order to pre-filter images which were not relevant, a total of 2253 empty images were collected by the IFC apparatus,

without providing any cells as input. Furthermore, a total of 14900 cells were annotated, either as relevant images, or non-relevant

images. When training the aforementioned CNN classifier in a preliminary data acquisition, 14.3% of all images were discarded.

Graphical user interface
We developed a graphical user interface (GUI) using the Qt 5 software development tool (www.qt.io) to control all the components of

the instrument. This includes settings of the camera (e.g. frame rate, gain, region of interest, output trigger and exposure time) light

intensity, pressure for flow control and the mixing time. The interface can also display images as they are recorded. However, since

this is computationally costly, the software can also process the images without real-time visualization. The software is able to save

images according to the assigned class along with the corresponding score values. It can also be used for image processing steps

such as image thresholding, contour finding, background subtraction and extracting plots of area vs shape and x vs y positions of the

contour.

Data pre-processing
Cell images were normalized to rescale intensities to the full range representation of unsigned integers of 8 bits, uint8 (i.e [0, 255]). The

data were zero-centered using mean subtraction and the mean values were precomputed from the training dataset. Data augmen-

tation techniques were used to increase the data pool and improve model generalizability (Bloice et al., 2019). These augmentation

techniques included horizontal or vertical flips, rotations of 0,90,180 or 270 degrees and brightness and contrast changes in a range

of [-10,10] % of initial value. The aforementioned techniques were applied and combined randomly for each image.

Deep-learning model used in strong supervised approach
A convolutional neural network (CNN) based on the ResNet18 architecture (He et al., 2016) was implemented, consisting of 18 con-

volutional layers (a series of convolution and identity blocks), followed by a max pooling layer, fully connected layer and a softmax

activation function. A dropout layer was used before the fully connected layer, with a dropout rate of 0.9 for regularization purposes.

In a LOOCV approach, a subset of patients was used for training, while the remaining patient specimen was used as test data for

validation. This results in Ntrain training iterations, with Ntrain equal to the number of patients (i.e. 9). This approach was repeated 5

times, with the test accuracy (the accuracy achieved on the patient specimen that was left out of the training process) reported

throughout the paper. The data used for training were further split into a training set and a validation set at a proportion of 80% to

20%. The model was trained using a binary cross entropy loss function and optimized using a stochastic gradient descent, with a

learning rate of 0.00005. A batch size of 64 was used, and the training duration was set to 250 epochs up to the point where the vali-

dation loss did not decrease for more than 10 epochs. All models were implemented in Python using Keras with a TensorFlow

backend.

Weakly supervised approach
A convolutional auto-encoder (AE) consists of encoder and decoder structures. The encoder structure is used to transform the input

into a compressed representation, termed ‘‘latent space’’. The decoder structure’s goal is to reconstruct the original input from the

low dimensional representation. The AE used a symmetric encoder-decoder structure. The encoder consisted of 5 convolutional

layers with a kernel size of 3x3 and a number of layers with values 32, 24, 16, 16 and 16. The encoder was used to represent

each patient image in a latent space. The model was trained using a mean square error loss function between input and recon-

structed images. Themodel was then optimized usingAdam (Kingma andBa, 2014), an adaptive learning rate optimization algorithm,

with a learning rate of 0.0001, a batch size of 64, and trained for 250 epochs up to the point where the validation loss did not decrease

for more than 10 epochs.

Groups of cells (Nbag) from the same patient were defined by proximity in the latent representation, forming a BoCF of dimensions

NlxNbag, where Nl is the latent space dimension, and the label was assigned corresponding to the disease state of the respective

patient. After an average pooling operation was performed across the cells, reducing the dimensions of the BOCFs to 1xNbag

they were used to train a random forest classifier in a LOOCV approach. The random forest classifier is an ensemble learningmethod,

where an ensemble of decision trees are built during training time, and the output of the random forest is the class selected by the

majority of trees. In this study, the predicted class is the one with the highest mean probability estimate across all the trees in the

random forest. A bag size of Nbag = 50 was used in all the experiments performed. The random forest classifier was implemented
e3 Cell Reports Methods 1, 100094, October 25, 2021
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using the sklearn package in python. It consisted of 100 trees, with a maximum depth of 2, a maximum number of features of 10 and

used the gini criterion to measure node split quality. Figure 2 illustrates the flow-chart of this approach.

Sample preparation for scanning electron microscope (SEM) imaging
All reagents used for SEM imaging were purchased from Sigma-Aldrich (Buchs, Switzerland). Cells in suspension were fixed in 4%

Formaldehyde, washed and adhered on cleaned carbon-coated coverslips using a poly-L-lysine coating. The cell monolayer was

fixed in 2.5% Glutaraldehyde, postfixed with 1% Osmiumtetroxide, treated with 1% Thiocarbohydrazide and once again with 1%

Osmiumtetroxide. After incubation with 2% Uranylacetate, the monolayer was dehydrated in a series of ascending ethanol concen-

trations followed by stepwise immersions in Epon/Araldite resin. A resin-filled capsule was placed upside-down on top of the cells.

After polymerization at 60�C the cover glass was detached and the resin block trimmed. Half of the cell was removed, then median

cross-sections were cut in an ultra-microtome, and 80 nm thick sections were transferred onto silicon-wafer chips. After montage

onto SEM-stubs, regions of interest were selected. Imaging was performed in a FEI Magellan 400 scanning electron microscope

(FEI, Oregon, USA) at 1,8 kV and 0,8 nA by backscatter electron detection and a pixel size of 10 nm.

QUANTIFICATION AND STATISTICAL ANALYSIS

IFC image metrics
Signal-to-noise ratio was calculated as the ratio of the average signal value msigto the standard deviation of the signal ssig, i.e.

SNR =
msig

ssig

In addition, contrast-to-noise ratio (CNR) was defined as:

CNR = 2

�
mcell � mbg

�2
scell

2 + sbg
2

;

where mcell and mbg represent the mean intensity values of the cell and background regions, respectively, and scell and sbg are their

corresponding standard deviations.

Quantification of distance between the cell predictions for the two classes
The kernel density estimation, which is a non-parametric approach for estimating the probability density function of a population, was

used to model the probability density function of the predicted number of Sézary cells for both healthy and diseased patients. After-

wards, the Hellinger distance, a type of f-divergence function (one that measures the difference between two probability distribu-

tions), was used to quantify the similarity between the healthy (HD) and diseased (SS) probability functions using the formula,

HðHD;SSÞ = 1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xk

i = 1

� ffiffiffiffiffiffiffiffi
hdi

p
+

ffiffiffiffiffiffi
ssi

p �2

;

vuut

where HD= ðhd1;hd2; ::; hdkÞ and SS= ðss1; ss2; ::; sskÞ are the discrete probability density functions. TheMATLAB Statistics andMa-

chine Learning Toolbox was used for the kernel density estimation.
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