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CT-based peritumoral radiomics signatures
to predict early recurrence in hepatocellular
carcinoma after curative tumor resection or
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Abstract

Objective: To construct a prediction model based on peritumoral radiomics signatures from CT images and
investigate its efficiency in predicting early recurrence (ER) of hepatocellular carcinoma (HCC) after curative
treatment.

Materials and methods: In total, 156 patients with primary HCC were randomly divided into the training cohort
(109 patients) and the validation cohort (47 patients). From the pretreatment CT images, we extracted 3-phase two-
dimensional images from the largest cross-sectional area of the tumor. A region of interest (ROI) was manually
delineated around the lesion for tumoral radiomics (T-RO) feature extraction, and another ROI was outlined with an
additional 2 cm peritumoral area for peritumoral radiomics (PT-RO) feature extraction. The least absolute shrinkage
and selection operator (LASSO) logistic regression model was applied for feature selection and model construction.
The T-RO and PT-RO models were constructed. In the validation cohort, the prediction efficiencies of the two
models and peritumoral enhancement (PT-E) were evaluated qualitatively by receiver operating characteristic (ROC)
curves, calibration curves and decision curves and quantitatively by area under the curve (AUC), the category-free
net reclassification index (cfNRI) and integrated discrimination improvement values (IDI).

Results: By comparing AUC values, the prediction accuracy in the validation cohort was good for the PT-RO model
(0.80 vs. 0.79, P = 0.47) but poor for the T-RO model (0.82 vs. 0.62, P < 0.01), which was significantly overfitted. In the
validation cohort, the ROC curves, calibration curves and decision curves indicated that the PT-RO model had better
calibration efficiency and provided greater clinical benefits. CfNRI indicated that the PT-RO model correctly
reclassified 47% of ER patients and 32% of non-ER patients compared to the T-RO model (P < 0.01); additionally, the
PT-RO model correctly reclassified 24% of ER patients and 41% of non-ER patients compared to PT-E (P = 0.02). IDI
indicated that the PT-RO model could improve prediction accuracy by 0.22 (P < 0.01) compared to the T-RO model
and by 0.20 (P = 0.01) compared to PT-E.

Conclusion: The CT-based PT-RO model can effectively predict the ER of HCC and is more efficient than the T-RO
model and the conventional imaging feature PT-E.

Keywords: Hepatocellular carcinoma, Recurrence, Tomography, Radiomics

* Correspondence: wangw73@mail.sysu.edu.cn; kuangm@mail.sysu.edu.cn
1Department of Medical Ultrasonics, Institute of Diagnostic and
Interventional Ultrasound, Ultrasomics Artificial Intelligence X-Lab, the First
Affiliated Hospital of Sun Yat-Sen University, 58 Zhong Shan Road 2,
Guangzhou 510080, China
Full list of author information is available at the end of the article

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Shan et al. Cancer Imaging           (2019) 19:11 
https://doi.org/10.1186/s40644-019-0197-5

http://crossmark.crossref.org/dialog/?doi=10.1186/s40644-019-0197-5&domain=pdf
http://orcid.org/0000-0003-0113-8020
http://orcid.org/0000-0002-5361-233X
http://orcid.org/0000-0002-9761-9525
http://orcid.org/0000-0002-9771-8144
http://orcid.org/0000-0002-9485-583X
http://orcid.org/0000-0002-7397-5779
mailto:wangw73@mail.sysu.edu.cn
mailto:kuangm@mail.sysu.edu.cn
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Introduction
Hepatocellular carcinoma (HCC) is the fifth most com-
mon type of cancer [1] and the third leading cause of
cancer-related deaths in China [2]. When possible, resec-
tion and ablation are treatment options for primary
HCC [1]. However, the prognosis of HCC remains poor
due to the high frequency of early recurrence (ER) [3–
6], which means that the recurrence after resection or
ablation occurs within two years. MVI is a histopatho-
logical diagnosis based on peritumoral tissues, and as it
is generally known that microvascular invasion (MVI) is
the major risk factor affecting the ER of HCC [7–11],
peritumoral tissues might have valuable predictive infor-
mation of HCC prognosis. It is important to identify im-
aging biomarkers for predicting MVI preoperatively.
Several studies have reported that certain imaging find-
ings based on the peritumoral tissues, including peritu-
moral enhancement (PT-E) and peritumoral
hypointensity (PT-H), in the hepatobiliary phase are use-
ful for predicting MVI and ER in HCC [11–16]. How-
ever, the prediction accuracy of those conventional
imaging features was not satisfactory, which may be at-
tributed to the subjective or qualitative characteristics of
conventional imaging features.
Radiomics is a new method for medical image analysis,

defined as the high-throughput extraction of quantitative
metric features that result in the conversion of images
into mineable data and the subsequent analysis of these
data for decision support [17, 18]. The peritumoral re-
gion captured by radiomic analysis may possess valuable
predictive information of treatment response and out-
comes in glioblastoma multiforme and breast cancer [19,
20]. Researchers found that peritumoral radiomics
(PT-RO) might further improve survival prediction over
intratumoral radiomics (T-RO) and some clinical param-
eters. Available studies that preoperatively predicted re-
currence and survival in HCC were all based on T-RO
[21, 22], but the generalizability of their findings awaits
further investigation due to a lack of validation. There-
fore, we intend to use a new radiomics method to iden-
tify peritumoral imaging biomarkers for predicting ER in
HCC.
In this study, we explored the application of PT-RO

for the first time for the noninvasive prediction of ER
after HCC resection or ablation based on pretreatment
computed tomography (CT), and we used an independ-
ent validation group to assess its prediction accuracy.

Materials and methods
Patients
This retrospective study was approved by our institu-
tional review board and was conducted by searching for
electronic medical records. A total of 1076 patients who
underwent tumor resection or ablation at our institution

with histopathologically confirmed HCC were recruited
from January 2010 to September 2015. Figure 1 depicts
the patient selection flow diagram. The inclusion criteria
were as follows: (1) patients who had tumor resection or
ablation with curative intent between January 2010 to
September 2015 and (2) those who had preoperative CT
performed within one month before treatment. Patients
were excluded from the study if they met the following
criteria: (1) those with a history of previous HCC treat-
ment or a combination of other malignancies (n = 397);
(2) those who received a combination of other
anti-tumor treatments (n = 55), such as transarterial che-
moembolization (TACE), targeting therapy, radiotherapy,
and so on, or palliative care (n = 33); (3) patients who
lacked digital CT imaging data or patients who did not
undergo pretreatment CT 1month before tumor resec-
tion or ablation (n = 200); (4) those with major throm-
bosis in a branch of the portal vein, hepatic vein
thrombosis, or abdominal lymph node metastasis or dis-
tant metastases that were confirmed with pathology or
imaging (n = 167); or (5) those who were followed up for
less than 2 years (n = 68). Therefore, the final study
population included 156 patients. The entire cohort was
randomly divided into a training dataset (109 cases) and
validation dataset (47 cases) by a ratio of 7:3. The train-
ing dataset was used to compose models that were eval-
uated by the validation dataset.

Follow-up surveillance after tumor resection or ablation
Our post-treatment tumor surveillance program con-
sisted of physical examinations and laboratory tests, in-
cluding tests for serum alpha-fetoprotein (AFP),
performed 1month after surgery and then every 3
months thereafter. In addition, abdominal CECT, CEMR
or CEUS imaging was performed every 3 months. The
endpoint was ER, which was defined as the presence of
new intrahepatic lesions or metastasis with typical im-
aging features of HCC, or atypical findings with histo-
pathological confirmation within 2 years after curative
resection or ablation of HCC.

CT scan protocols
CECT was performed at our institute with one of the
following machines: a 64-detector row (Aquilion CXL,
Toshiba Medical System, Tokyo, Japan) or 320-detector
row CT machine (Aquilion One, Toshiba Medical Sys-
tem, Tokyo, Japan). We used the same scanning parame-
ters for both machines as follows: tube voltage, 120 kV;
tube current, 250 mA; and slice thickness, 1 mm. After a
routine unenhanced scan, 1.5 mL/kg of contrast media
(Ultravist, Bayer, Germany) was injected into an antecu-
bital vein at a rate of 3.0 mL/s via a pump injector (P3T
abdomen module, Medrad Inc.). Hepatic arterial phase
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CT images were obtained at 35 s, and portal venous
phase CT images were obtained at 65 s [23, 24].

Image analysis
Two radiologists (S.T.F. and P.Z.P.), both with 15 years of
abdominal CT interpretation, and both blinded to the
clinical data, independently evaluated the imaging features
randomly. The radiologists independently recorded inci-
dences of PT-E (defined as detectable arterial-enhancing
portions adjacent to the tumor border on arterial-phase
images that became isodense with the background liver
parenchyma on delayed-phase images [25]); when there
were disagreements, they reached a consensus by
discussion.
CT images (1 mm) on the largest cross-sectional area

of the tumor, including routine unenhanced (Fig. 2a),

hepatic arterial and portal venous phases, were recorded
as digital imaging data and communications in medicine
(DICOM) files. The slice chosen for delineating the le-
sion was confirmed by two radiologists in consensus.

Radiomics features extraction and radiomics models
building in the training set
DICOM images were used to extract radiomics features
using A. K. software (Artificial Intelligence Kit, Version
1.0.0, GE Life Science, Institute of Precision Medicine),
including routine unenhanced, hepatic arterial and por-
tal venous phases. A T-RO region of interest (ROI) was
manually delineated around the lesion (Fig. 2b). A
PT-RO ROI of automatically expanded 2 cm from the le-
sion, and if the ROI was beyond the parenchyma of the
liver after the expansion, the portion beyond the

Fig. 1 Flow diagram of the patient selection process. Abbreviations: HCC hepatocellular carcinoma, CT computed tomography, LN lymph node
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parenchyma was removed manually (Fig. 2c). The radiol-
ogists tried to keep ROIs in the three phases as consist-
ent as possible.
Radiomics features were extracted from the ROIs

using the A.K. software. A total of 1044 features were
extracted from one single ROI, including four types
of features: gray-level histogram texture, wavelet-
transformed texture, transformed matrix texture, and

filter-transformed texture. With the histogram texture,
we extracted the texture feature parameters and made
a quantitative or qualitative description of the texture
based on the gray value of the images. With the
wavelet-transformed texture, we analyzed the charac-
teristics of the ROI through different levels of reso-
lution. The transformed matrix texture reflected the
high-level information of the ROI by a series of

Fig. 2 Drawing of the region of interest (ROI). A 65-year-old male with histopathologically confirmed hepatocellular carcinoma within segment 6/
7 and a tumor size of 7.4 cm × 7.0 cm. (a) CT image (1 mm) of the largest cross-sectional area of the tumor in the routine unenhanced phase. (b)
The manually delineated ROI around the lesion for the T-RO model. (c) The ROI for the PT-RO model was automatically expanded 2 cm from the
lesion, and if the ROI was beyond the parenchyma of the liver after expansion, the portion beyond the parenchyma was manually removed
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matrix transformations. With the filter-transformed
texture, we obtained a series of target features by dif-
ferent types of filters.
Fifty patients were randomly selected, and their ROIs

(containing T-RO and PT-RO) in the selected DICOM
images were delineated by two radiologists (S.T.F. and
P.Z.P.) blinded to the clinical data. Then, radiologist
S.T.F. finished the final 106 patient ROIs. Radiomics fea-
tures were automatically extracted from the ROIs by A.
K. software through computing algorithms and recorded
as comma separated values (CSVs).
The radiomics features extracted from the 50 patients

by radiologist S.T.F. were compared with the features ex-
tracted by radiologist P.Z.P. using an independent sam-
ple t-test or a Kruskal-Wallis H test. Interclass
correlation coefficients (ICCs) were used to assess the
interobserver agreement of the feature extractions.
Radiomics features with an ICC greater than 0.6 (indi-
cating moderate-excellent agreement) were recorded for
further analysis.
The linear regression least absolute shrinkage and se-

lection operator (LASSO) regression was performed to
select the features [26, 27] after manually eliminating
the features that had an absolute value less than 0.6 for
the coefficients of ER from the radiomics features ex-
tracted by radiologist S.T.F. in the training set of 109 pa-
tients. Finally, the PT-RO model was built using the
selected features extracted from the ROIs of PT-RO, and
the T-RO model was built using the selected features ex-
tracted from the ROIs of T-RO.

Performance of the PT-RO model, T-RO model and PT-E
The PT-RO model, T-RO model and PT-E were first
assessed in the training set and then validated in the
independent validation set. The receiver operating
characteristic (ROC) curve was plotted to show the
prediction accuracy of predicting ER. Prediction ac-
curacy was quantified with area under the curve
(AUC). The more the ROC curve deviated from the
baseline, the greater the AUC value was, which indi-
cated higher accuracy of the prediction. The signifi-
cant difference in AUC between the training and
validation cohorts indicated overfitting. Calibrations
(i.e., the agreement between observed outcome fre-
quencies and predicted probabilities) were plotted to
explore the predictive accuracy of the models in the
validation cohort. The unreliability (U) statistic was
used to assess the calibration, and P values of more
than 0.05 were considered well-calibrated [28]. Deci-
sion curve analysis (DCA) was conducted to deter-
mine the clinical usefulness of the prediction models
by quantifying the net benefits at different threshold
probabilities in the validation cohort [29]. The more
the curve deviated from the baseline, the greater the

benefit was. The improvement in the predictive accur-
acy of the models was evaluated by calculating the in-
tegrated discrimination improvement (IDI) and the
category-free net reclassification index (cfNRI). CfNRI
generalizes to any upward or downward movement in
predicted risks. IDI is the absolute value of the
change in predicting accuracy.

Statistical analysis
The baseline information in the training and valid-
ation cohorts were compared using the chi-squared
test or the Fisher exact test for categorical variables
and the two-sample t-test or the Mann–Whitney U
test for continuous variables. P values of less than
0.05 (two-sided) were considered statistically signifi-
cant. Computer-generated random numbers were used
to assign 7/10 of the patients to the training dataset
and 3/10 of the patients to the validation dataset. To
test the intraobserver variability of the enhancement
patterns, the intraclass correlation coefficient (ICC)
was calculated. An ICC greater than 0.6 indicated
moderate-excellent agreement.
The ROC curves were plotted to demonstrate the

performance of the PT-RO model, T-RO model and
PT-E in predicting ER in the training cohort and val-
idation cohort, and AUC was used to evaluate the
accuracy of the two models and PT-E in predicting
the ER. Calibration curves were plotted to explore
the predictive accuracy. DCA was conducted to de-
termine the clinical usefulness by quantifying the net
benefits at different threshold probabilities in the val-
idation cohort. The improvement in the predictive
accuracy of the models was evaluated by calculating
IDI and cfNRI. CfNRI generalizes to any upward or
downward movement in predicted risks. IDI is the
absolute value of the change in predicting accuracy.
The detailed methods introducing the calibration
curves, DCA, cfNRI and IDI are provided in the
Additional file 1.
All statistical analyses were conducted with the

open-source statistical computing environment R (R
Foundation for Statistical Computing, version 3.4.1;
https://www.r-project.org/). The ICC was applied with
the R package “irr”. Data cleaning was conducted using
the R packages “knnImputation” and “DMwR”. The
“glmnet” package of R was used for the LASSO regres-
sion. Univariate and multivariate logistic regressions
were calculated and plotted using the R package
“glm”. The “pROC” package was used to plot the
ROC curves and measure the AUC. The “Calibration-
Curves” package was used for the calibration curves.
The “DecisionCurve” package was used to perform
DCA. CfNRI and IDI were conducted with the R
package “nricens” and “PredictABEL”.
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Results
Patient characteristics
The baseline clinical information in the training and val-
idation cohorts is summarized in Table 1. There was no
significant difference between the training and validation
cohorts for age (P = 0.29), gender (P = 0.25), AFP (P =
1.00), lesion diameter (P = 0.57), number of nodules (P =
0.35), treatment method (P = 0.15) and ER rate (P =
0.51). In addition, there were no significant differences
between the two cohorts in positive PT-E rate, T-RO risk
score and PT-RO risk score.

Radiomics model-based prediction of early recurrence
Every patient had three DICOM images, including rou-
tine unenhanced images, hepatic arterial phase images
and portal venous phase images; every image was used
to extract two ROIs (T-RO and PT-RO). A total of 1044
extracted features were extracted from every ROI, and in
all of the extracted features, approximately 43% were
ICC ≥ 0.6. Then, based on the training cohort, this 43%
of the 1044 features was reduced to 6 potential predic-
tors both in the T-RO and PT-RO models using the
LASSO regression model.

PT-RO model:

3.133089–39.22685*InverseDifferenceMoment_
AllDirection_offset2_SD (routine unenhanced phase)
+ 1.004993 × 10− 5*ClusterShade_AllDirection_offset9_
SD (routine unenhanced phase) + 1.827011 × 10−
5*ClusterShade_AllDirection_offset1_SD (hepatic
arterial phase) - 2.826571*LongRunEmphasis_
angle90_offset5 (hepatic arterial phase) - 6.908005 ×

10− 6*ClusterShade_AllDirection_offset5 (portal
venous phase) + 1.170673 × 10− 2*HighGreyLevel
RunEmphasis_AllDirection_offset8_SD (portal venous
phase)

T-RO model:

− 17.25829 + 2.491076 × 102*AngularSecondMoment
(routine unenhanced phase)

-10.46937*inverseDifferenceMoment (routine
unenhanced phase) -3.584612 × 10− 3* Quantile0.025
(hepatic arterial phase)

-64.52834*InverseDifferenceMoment_AllDirection_
offset2_SD (hepatic arterial phase) -7.422241 × 10−
6*ClusterShade_angle0_offset7 (portal venous phase)
+ 18.42472*ShortRunEmphasis_angle90_offset9 (portal
venous phase).

Evaluating overfitting of the prediction models between
the training and validation sets
AUC values were measured to demonstrate overfit-
ting of the PT-RO model, T-RO model and PT-E
(Table 2). The PT-RO model yielded an AUC of 0.80
(95% CI, 0.72 to 0.89) in the training cohort and
0.79 (95% CI, 0.66 to 0.92) in the validation cohort
with no significant difference between cohorts (P =
0.47). The T-RO model yielded an AUC of 0.82 (95%
CI, 0.74 to 0.90) in the training cohort and 0.62
(95% CI, 0.46 to 0.79) in the validation cohort with
a significant difference between cohorts (P < 0.01),

Table 1 Patient characteristics

Characteristics Training Set (N = 109) Validation Set (N = 47) P

Gender (Male/ Female) 59/50 29/18 0.25

Age (Mean ± SD) 53.2 ± 12.4 55.4 ± 10.6 0.29

Preoperative AFP (Mean ± SD) (ng/mL) 946.7 ± 50,371.4 7891.4 ± 3530.9 1.00

Cirrhosis (positive/negative) 67/42 28/19 0.82

Hepatitis (positive/negative) 96/13 42/5 0.82

Number of nodules (1/≥2) 87/22 33/14 0.35

Lesion diameter (Mean ± SD) (cm) 4.2 ± 2.9 3.9 ± 3.3 0.57

Treatment method (resection/ablation) 33/76 18/29 0.15

ER (%) 50/109(45.9) 25/47(53.2) 0.51

PT-E positive rate (%) 23/109 (21%) 16/47 (34%) 0.13

T-RO risk score (mean ± SD) 0.46 ± 0.28 0.43 ± 0.36 0.58

PT-RO risk score (mean ± SD) 0.46 ± 0.26 0.44 ± 0.29 0.67

SD standard deviation, AFP alpha-fetoprotein. Hepatitis, Hepatitis B or C; ER early recurrence, PT-E peritumoral enhancement, T-RO tumoral radiomics, PT-RO
peritumoral radiomics, T-RO risk score refers to the application of T-RO model to the image of the cases in the training and validation sets, and obtain the risk
score of each case (the output is the specific value, 0–1). PT-RO risk score refers to the application of PT-RO model to the image of the cases in the training and
validation sets, and obtain the risk score of each case (the output is the specific value, 0–1). P-value reflected the differences between the training and validation
cohorts, and P values of less than 0.05 (two-sided) were considered statistically significant
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which demonstrated extreme overfitting. The PT-E
yielded an AUC of 0.64 (95% CI, 0.56 to 0.72) in the
training cohort and 0.61 (95% CI, 0.47 to 0.74) in
the validation cohort with no significant difference
between cohorts (P = 0.11).

Evaluation and comparison of prediction performance in
the validation set
Prediction accuracy
The ROC curves of the two radiomics models and
PT-E were plotted to show the prediction accuracy in
the validation cohort (Fig. 3). AUC values were mea-
sured to quantify the prediction accuracy of the

radiomics models and PT-E (Table 3). The AUC of
the PT-RO model was significantly higher than that
of the T-RO model (P < 0.01) or PT-E (P < 0.01) in
the validation cohort. The positive predictive value
(PPV) of the PT-RO model was significantly higher
than that of the T-RO model (P < 0.01) or PT-E (P <
0.01) in the validation cohort, while the negative
predictive value (NPV) of the PT-RO model was
similar with that of the T-RO model (P = 0.92) and
PT-E (P = 0.38).

Calibration
The calibration curves of the PT-RO model (Fig. 4a),
T-RO model (Fig. 4b) and PT-E (Fig. 4c) applied to the
validation cohort are shown. To evaluate whether the
prediction models were well-calibrated, the unreliability
(U) statistics were calculated to reflect the reliability of
the calibration curves. The PT-RO model and PT-E
showed reliable results for the calibration curves (P >
0.05), meaning that the PT-RO model and PT-E
showed good agreement between prediction and ob-
servation. However, the T-RO model was not
well-calibrated (P < 0.01), indicating poor agreement
between prediction and observation.

Fig. 3 Receiver operating characteristic (ROC) curves of the PT-RO model (blue color), T-RO model (red color) and PT-E (yellow color) performed
in the validation cohort

Table 2 Evaluating the overfitting of the prediction models

Models AUC [95%CI] P

Training Set Validation Set

PT-RO 0.80 [0.72, 0.89] 0.79 [0.66, 0.92] 0.47

T-RO 0.82 [0.74, 0.90] 0.62 [0.46, 0.79] < 0.01

PT-E 0.64 [0.56, 0.72] 0.61 [0.47, 0.74] 0.11

AUC area under the curve, CI Confidence Interval, PT-RO peritumoral radiomics,
T-RO tumoral radiomics, PT-E peritumoral enhancement; P-value reflected the
differences between the training and validation cohorts, and P values of less
than 0.05 (two-sided) were considered statistically significant
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Clinical application
DCA for the two radiomics models and PT-E was
performed in the validation cohort (Fig. 5). The high-
est curve (representing the PT-RO model) at any
given threshold probability is the optimal
decision-making strategy to maximize the net benefit
compared with other models. Hence, the DCA
showed that the PT-RO model had the highest overall
net benefit compared with either the T-RO model or
PT-E. CfNRI and IDI were measured to quantify the
prediction accuracy of the radiomics models and
PT-E (Table 3). CfNRI was used to evaluate if the
radiomics models and PT-E addition led to a better
reclassification of patients. The cfNRI indicated that
the PT-RO model could correctly reclassify 47% of
ER cases and 32% of non-ER cases compared to the
T-RO model (P < 0.01), and the PT-RO model could
correctly reclassify 24% of ER patients and 41% of
non-ER cases compared to PT-E (P = 0.02). IDI indi-
cated that the PT-RO model could improve prediction
accuracy by 0.22 (P < 0.01) compared to the T-RO
model and 0.20 (P = 0.01) compared to PT-E.

Discussion
To the best of our knowledge, this is the first study to
develop a PT-RO model to predict the ER of HCC. The
performance of this model was validated in an independ-
ent validation cohort with respect to overfitting, predic-
tion accuracy, calibration and clinical application. The
PT-RO model was superior to the T-RO model and the
conventional imaging feature PT-E.
PT-E can reflect hemodynamic perfusion changes of

HCC with MVI [11], which is useful for predicting MVI
of HCC and the risk of ER. Our study found that PT-E
was a significant indicator of ER, which was similar to
previous reports [13, 14, 16, 30–32]. However, the pre-
diction accuracy was low; in our study, the AUC of PT-E
was only 0.61 (95% CI, 0.47 to 0.74). Compared with
conventional CT imaging features, radiomics features
capture more information objectively and quantitatively
at low cost and may help predict clinical outcomes [17].

In our study, AK software was used to extract the im-
aging features of peritumoral and intratumoral regions.
A total of 1044 features were extracted from every ROI,
and approximately 43% of the extracted features were
ICC ≥ 0.6. Then, based on the training cohort, this 43%
of the 1044 features was reduced to 6 potential predic-
tors using the LASSO regression model to build both
the PT-RO and the T-RO radiomics prediction models.
The PT-RO model demonstrated outstanding discrimin-
ation in both the training (AUC, 0.80; 95% CI, 0.72 to
0.89) and validation (AUC, 0.79; 95% CI, 0.66 to 0.92)
cohorts. The high AUC suggested that the PT-RO model
performed well in discriminating for ER. In addition, the
PT-RO model was compared with the T-RO model and
PT-E. In our study, the PT-RO model significantly im-
proved the accuracy of the preoperative model for pre-
dicting ER compared with the T-RO model and PT-E
(both P < 0.01). Moreover, compared with the T-RO
model and PT-E, the PT-RO model had a similar NPV,
but the PPV was significantly higher, which provided a
reference to make a closer follow-up plan for patients
who were predicted to be positive for ER.
Prior studies have reported CT-based radiomics

models for predicting the prognosis of HCC [21, 22].
Cozzi, et al. [21] developed a CT-based radiomics pre-
diction model that showed an accuracy of 80.0% in pre-
dicting overall survival in HCC patients (with a
maximum follow-up of 28 months). Zhou, et al. [22] de-
veloped a CT-based radiomics model that demonstrated
an AUC of 0.82 in predicting the early recurrence (≤1
year) of HCC. These two available studies were all based
on T-RO models. However, these two studies lacked
validation based on independent datasets, which may
lead to a risk of overfitting the analyses [18]. In our
study, the T-RO model demonstrated significant over-
fitting (AUC of 0.82 in the training cohort and 0.62
in the validation cohort, P < 0.01). This overfitting
may be associated with the great heterogeneity of the
whole tumor [33].
Our study used a peritumoral ROI delineated with a 2

cm expansion from the lesion, which was based on the
current standard for resectioning margins for HCC. A

Table 3 Evaluating the performance of the prediction models

Models AUC cfNRI IDI PPV NPV

AUC [95%CI] P cfNRI+ cfNRI- P IDI P PPV P NPV P

PT-RO 0.79 [0.66, 0.92] – – – – – – 0.93 – 0.64 –

T-RO 0.62 [0.46, 0.79] < 0.01 −0.47 −0.32 < 0.01 0.22 < 0.01 0.63 < 0.01 0.65 0.92

PT-E 0.61 [0.47, 0.74] < 0.01 −0.24 − 0.41 0.02 0.20 0.01 0.69 < 0.01 0.55 0.38

AUC area under the curve, CI Confidence Interval, cfNRI+: movement in predicted risks introduced by changes of models in ER cases. cfNRI-: movement in
predicted risks introduced by changes of models in non-ER cases. IDI Integrated Discrimination Improvement, PPV positive predictive value, NPV negative
predictive value; P values of less than 0.05 (two-sided) were considered statistically significant; PT-RO peritumoral radiomics, T-RO tumoral radiomics, PT-E
peritumoral enhancement
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randomized controlled trial reported that a margin aiming
at 2 cm could decrease the postoperative recurrence rate
and improve survival outcomes [34]. Radiomics features
extracted from a 2 cm peritumoral ROI were most likely
to provide important information for predicting ER.
The calibration curve of the predictive model demon-

strates good agreement between the predictive and ac-
tual probabilities when the P value is more than 0.05. In
our study, the calibration curve showed that the pre-
dicted effect of the PT-RO model had better agreement
with the actual HCC recurrence situation in the valid-
ation cohort than that of the T-RO models (U: P = 0.33
vs. U: P < 0.01). The calibration curve also showed that
the predicted effect of the PT-E model was in good
agreement with the actual HCC recurrence situation the
validation cohort (U: P = 0.45). Notably, DCA showed
that the PT-RO model adds more benefit to predicting
ER than the T-RO model and PT-E at any given thresh-
old probability.
Our study had several limitations. First, this was a

retrospective single-center study. Inevitably, some bias
may exist or have affected the analysis. Second, we used
internal validity rather than external validity, making it
difficult to generalize the outcomes to other institutions.
And our results of an Asian population may not be
generalizable for a Western population. Third, radiomics
features were extracted from the largest cross-sectional
area instead of the whole tumor, which may provide
more information. In our current study, the software we
used did not have the 3D feature extraction function at
the time of analysis. At present, the features based on a
single slice have shown a strong correlation with prog-
nosis. In addition, 2D features are easier to obtain, are
less labor intensive, have lower complexity and allow for
faster calculations. Fourth, the local recurrence rate after
tumor ablation is higher compared to the local recur-
rence rate after tumor resection, which might therefore
cause a potential bias. As the small sample size in our
study makes it difficult to perform subgroup analyses be-
tween patients undergoing tumor ablation and tumor re-
section, larger studies should be performed to enable
subgroup analyses. Therefore, although this study pro-
vided initial evidence that the PT-RO model can be use-
ful for predicting the ER of HCC, more prospective
studies should be performed to validate our results.

Fig. 4 Calibration curves of the PT-RO model (a), T-RO model (b)
and PT-E (c) performed in the validation cohort. The calibration
curves depict the calibration of the models in terms of agreement
between the predicted risks and the observed outcomes of HCC
early recurrence. The solid line represents the performance of the
models, and the dotted line represents an ideal model. The closer
solid line is to the dotted line, the better the calibration
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Conclusion
In conclusion, the present study indicates that a PT-RO
signature is a powerful preoperative predictor for the ER
of HCC and that the PT-RO model is better than the
T-RO model and PT-E. Such quantitative radiomics prog-
nostic models of HCC may potentially be useful for preci-
sion medicine and affect patient treatment strategies.

Additional file

Additional file 1: Detailed introduction of calibration curves and
decision curves, category-free Net Reclassification Index and integrated
discrimination improvement. (DOCX 20 kb)
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