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Purpose: Adjuvant radiosurgery to the cavities of surgically resected brain metastases provides excellent
local tumor control while reducing the risk of deleterious cognitive decline associated with whole brain
radiotherapy. A subset of these patients, however, will develop disease recurrence following radio-
surgery. In this study, we sought to assess the predictive capability of radiomic-based models, as com-
pared with standard clinical features, in predicting local tumor control.
Methods: We performed a retrospective chart review of patients treated with adjuvant radiosurgery for
resected brain metastases at the ‘‘Institution” from 2009 to 2019. Shape, intensity and texture based
radiomics features of the cavities were extracted from the pre-radiosurgery treatment planning MRI
scans and trained using a gradient boosting technique with K-fold cross validation.
Results: In total, 71 cavities from 67 treated patients were included for analysis. The 6 and 12 month local
control estimates were 86% and 76%, respectively. The 6 and 12 month overall survival was 78% and 55%,
respectively. Thirty-six patients developed intracranial failures outside of the surgical cavity. The predic-
tive model for local control trained on imaging features from the whole cavity achieved an area-under-
the-curve (AUC) of 0.73 on the validation set versus an AUC of 0.40 for the clinical features.
Conclusions: Here we report a single institutional experience using radiomic-based predictive modeling
of local tumor control following adjuvant Gamma Knife radiosurgery for resected brain metastases. We
found the radiomics features to provide more robust predictive models of local control rates versus clin-
ical features alone. Such techniques could potentially prove useful in the clinical setting and warrant fur-
ther investigation.

� 2021 The Authors. Published by Elsevier B.V. on behalf of European Society for Radiotherapy and
Oncology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

Metastatic disease comprises the most common brain tumors in
adults and, by some estimates, affects nearly a quarter of all
patients with cancer [1]. Due to the historically perceived limited
efficacy of systemic therapy in crossing the blood–brain barrier,
surgery and radiotherapy have traditionally formed the backbone
of central nervous system (CNS) directed therapy for treatment
of brain metastases. Prior clinical work has demonstrated that
the addition of whole brain radiotherapy (WBRT) following surgery
improves CNS control and decreases the risk of neurologic death
[2]. The use of WBRT, however, is not without the risk of deleteri-
ous cognitive side effects [3]. With improved systemic disease con-
trol and survival observed with modern targeted therapies [4],
there has been a growing interest in minimizing such toxicity.
Recent trials comparing the use of WBRT versus stereotactic radio-
surgery (SRS) as adjuvant treatment for resected brain metastases
have demonstrated similar survival rates but generally better cog-
nitive function among the patients receiving SRS [5]. This has led to
a paradigm shift, establishing SRS as a less toxic standard of care
alternative to conventional WBRT following tumor resection.

A theoretical drawback for focal therapies such as SRS is the risk
of missing residual microscopic tumor, leading to subsequent local
disease relapse. With the anticipated increased utilization of post-
operative SRS following the publication of the NCCTG N107C/CEC3
trial, there is a pressing need to identify factors associated with risk
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of local recurrence in order to improve target delineation and to
guide treatment planning. Prior studies have suggested correla-
tions between the risk of local failure and a host of tumor, patient
and treatment related factors including tumor histology [6], preop-
erative tumor size [7,8], cavity volume [9], planning target volume
margin [10], time interval between surgery and radiotherapy
[11,12], prescribed dose [9,11,13] and plan conformality indices
[14]. In light of these previous reports, a recently published guide-
line for postoperative cavity SRS has attempted to standardize tar-
get volume contours by identifying high risk structures through
consensus expert opinion [15].

Much of the previous work examining the correlation between
imaging based features and local disease recurrence following cav-
ity directed SRS has focused predominantly on basic shape descrip-
tors such as cavity diameter or volume. The relatively recent
advent of high throughput feature extraction frommedical images,
known as radiomics, has enabled acquisition of a magnitude of
higher order elements from the image datasets. In this work, we
sought to investigate whether the use of these radiomics features
would better predict local control following cavity SRS as com-
pared with clinical features alone. To test this hypothesis, we con-
ducted a retrospective study in a population of patients who
received postoperative Gamma Knife SRS at the ‘‘Institution”.
2. Methods

2.1. Patients

Medical records were reviewed from patients who received
Gamma Knife SRS at the ‘‘Institution” from 2009 to 2019. Selection
criteria included the presence of one or more surgical cavities trea-
ted with Gamma Knife SRS and available imaging from the day of
the Gamma Knife procedure as well as at least one follow up that
included imaging. Patients were excluded if they received prior or
concurrent WBRT to avoid confounding variables when analyzing
local and distant intracranial control. Patients who received SRS
to additional intracranial metastases at the same Gamma Knife
session were included provided that the additional lesions were
not directly adjacent to the surgical cavity. This study was
approved by the ‘‘Institution’s” Institutional Review Board.

2.2. Treatment

All patients received SRS using the Gamma Knife 4C platform
(Elekta, Stockholm, Sweden) at the ‘‘Institution”, typically within
several weeks of surgery. Each patient had a contrast enhanced
T1-weighted MRI performed on the day of Gamma Knife using
either a 1.5 T or 3 T Siemens scanner (Erlange, Germany) with
1.0-mm isotropic voxels, TR/TE = 9.4/4.8 ms. The cavity was delin-
eated by the treating radiation oncologist and neurosurgeon and
included the cavity surface without an additional volumetric
expansion. Follow up imaging was typically performed 2 to
3 months after SRS with subsequent imaging intervals determined
at the discretion of the treating physician.

2.3. Feature extraction

The cavity contours and dose information were extracted from
the treatment planning system for each patient. The images and
volumes were visually assessed for accuracy and artifact. Contours
were checked and adjusted by a practicing radiation oncologist to
ensure uniformity of the contours and complete coverage of the
cavity (Fig. 1). Images were histogram matched to the mean image
of all patients to reduce the impact of overall signal level variations
between patient scans. The images and cavity regions-of-interest
28
data was then imported into an open source radiomics software
package (PyRadiomics) [16] for radiomics feature extraction. A
bin width of 18 was chosen to generate histogram bin counts
between 40 and 100, as recommended by Welch et al. [17]. A total
of 107 radiomics features were extracted for each cavity contour,
including 32 shape and first order features and 75 texture features.

The texture features used in the predictive modeling quantify
the second and higher order statistical distribution of voxel values
and fall into several categories. Grey-level co-occurrence features
(N = 24) are derived from the co-occurrence matrix that character-
izes the number of times a certain voxel value appears in the
region of interest. Grey-level size zone features (N = 16) character-
ize the presence of regions of identical voxel values within a region
of interest. Grey-level run length features (N = 16) are derived from
the run-length matrix that characterizes a region of interest by the
number of consecutive voxels of the same grey-level. Neighboring
grey-tone difference features (N = 5) describe the statistical distri-
bution relating a voxel value to the average voxel value of the sur-
rounding voxels. Finally, grey-level dependence matrix features
(N = 14) describe the dependence of individual voxel values on
the voxels around them as described in Sun et al. [18].

2.4. Local control and survival analysis

The primary endpoint was local control which was defined as
the absence of disease recurrence either within the surgical cavity
or the abutting brain parenchyma. Local recurrence was defined
based upon histologic confirmation or radiologic assessment by
an experienced neuroradiologist. Imaging changes that were inde-
terminate for tumor recurrence versus radiation necrosis were fol-
lowed on subsequent studies and, if there was unequivocal
evidence of progressive tumor, the date of the initial imaging
changes was used as the date of tumor recurrence (Fig. 1). Second-
ary endpoints included overall survival as measured from the time
of Gamma Knife SRS to death from any cause and distant intracra-
nial failure which was defined as recurrent intracranial disease in
brain sites outside of the treatment volume. Survival curves were
estimated using the Kaplan-Meier method. A P-value less than
0.05 was considered statistically significant.

2.5. Predictive modeling

Two predictive models, using the binary local control variable
as target, were trained using patient data: 1) a model using clinical
factors extracted from patient charts and the treatment planning
system, and 2) a model using radiomics features derived from
patient imaging. Feature selection and model training steps in
the predictive modeling pipeline were performed in Python using
the scikit-learn package [19]. To prevent data leakage and to esti-
mate the generalization error, K-Fold cross validation with K = 5
was used. In K-fold cross validation, the data is randomly split with
balanced class stratification into a training and validation set K
times. Cross-validation is well known to estimate the error rate
of a predictor [20]. Features are normalized, selected, and the
model is trained on each of the training sets and then tested on
the validation set. This process is repeated for each of the folds.
Model performance is generalized by averaging the performance
statistics calculated on each of the folds.

To reduce the dimensionality of the data to limit model overfit-
ting, feature selection was performed by recursive feature elimina-
tion on a logistic regression model using local control as the target
variable. This algorithm considers sets of features trained on a
logistic regression model, ranks the contributions of individual fea-
tures, and repeats with only the strongest performing features. The
total number of features that were selected in this way for inclu-
sion in the predictive model were tuned within the cross-



Fig. 1. MRI images in the same patient: (a) Pre-resection contrast-enhanced T1 MRI of the metastasis, (b) Treatment planning contrast enhanced T1 MRI of the cavity
including the contour used for radiomics feature extraction, (c) Follow-up contrast enhanced T1 MRI of recurrent disease following resection and adjuvant SRS.
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validation scheme to balance model complexity and performance
on the validation set [21].

A gradient boosting classifier was trained using the features
selected by the recursive feature elimination algorithm. Ensemble
classification methods such as gradient boosting classifiers are
often employed in small datasets and in datasets with class imbal-
ances because they combine the performance of several weak clas-
sifiers and resist overfitting [22]. To limit overfitting, decision trees
were limited to a single decision node (stumps). Accuracy, sensitiv-
ity, specificity, F1 scores, and receiver-operating-characteristic
(ROC) curves were calculated for the model.

The gradient boosting classifier trained with radiomics features
was used to predict the class probabilities for each patient. The R
package ‘‘cutpointr” was used to find the ideal cutpoint in the dis-
tribution of class probabilities between the groups of ‘‘low” and
‘‘high” risk of local recurrence based on the sum of sensitivity
and specificity of the cutpoint on the outcome of local recurrence
[23]. Survival curves for these two groups were plotted using the
Kaplan-Meier method and tested for significance with the log-
rank test. Feature extraction and predictive modeling source code
can be found on the project’s GitHub repository.
Table 1
Clinical characteristics.

Variable Number of Patients

Sex (female/male) 37/30
Age – Median (Range) 60 (27–83)

Histology
NSCLC 15
Melanoma 18
Breast Carcinoma 13
Renal Carcinoma 8
Other* 17

Median (range)
Time to SRS (Days) 24 (6–55)
Prescription Dose (Gy) 18 (15–22)
Conformity Index 1.6 (1.2–3.5)
Gradient Index 2.8 (2.0–3.9)
Cavity Volume (cc) 6.2 (0.2–31.6)
Cavity Diameter (cm) 3.7 (1.2–6.3)
Follow-up duration (days) 478 (13–2523)

*Other included: Bladder (1), Colorectal (3), Endometrial
(2), Esophageal (2), Head & Neck (2), Gastric (1), Ovarian
(2), SCLC (2), Sebaceous Cell (2).
3. Results

A total of 71 treated cavities from 67 patients were identified
and included in the current study. The majority (N = 68) of the
acquired scans were performed at 1.5 T. Four patients received
treatment for more than one cavity with SRS. Three of the four
patients had simultaneous surgical resection of two metastases
and underwent treatment with SRS to both cavities at the same
session. The remaining patient had SRS delivered to a single cavity
and approximately 2 years later developed a distant intracranial
metastasis which was resected and followed by SRS.

The most common primary tumor was melanoma (n = 18) fol-
lowed by non-small cell lung (n = 15), breast (n = 13) and renal cell
(n = 8) carcinomas. The remaining patients included those with
colorectal (n = 3), ovarian (n = 2), small cell lung cancer (n = 2),
sebaceous (n = 2), endometrial (n = 2), head and neck (n = 2),
esophageal (n = 1), gastric (n = 1), and bladder (n = 1) primary
histologies. All patients had received single fraction SRS to the
resection cavity at a median of 24 days following surgery. The
median prescribed dose was 18 Gy delivered to the 50% isodose
line. The median conformity index was 1.6 with a median gradient
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index of 2.8. The median maximum cavity diameter was 3.7 cm
with a median volume of 6.2 cc. The median follow-up was
478 days following SRS. Patient, tumor, and treatment characteris-
tics are summarized in Table 1.

Rates for 6 and 12 month overall survival following SRS were
78% and 55%, respectively. We observed eighteen local failures
with a median time to failure of 183 days (range: 39–1055). The
6 and 12 month local control estimates were 86% and 76%, respec-
tively (Fig. 2a). A total of 36 patients developed distant intracranial
failures beyond the surgical cavity (Fig. 2b). The patients who
developed a local recurrence were also more likely to develop dis-
tant intracranial failure (78%, n = 14/18) compared to those with
controlled cavities (42%, n = 22/53) (p = 0.006).

Of the radiomics features extracted from the whole cavity con-
tours, six were selected by the logistic regression recursive feature
elimination process. These six radiomics features and all seven
clinical features included in the predictive model were listed in
Table 2.

The gradient boosting classifier trained on the clinical features
to predict local control had an average accuracy of 0.54 and an
average class-weighted F1 score of 0.51. The average area-under-
the-curve (AUC) of this model was 0.40. The classifier trained on



Fig. 2. Kaplan-Meier plots for a) local progression-free survival for the entire cohort, b) intracranial progression-free survival for the cohort.
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the radiomics features extracted from whole-cavity contours had
an average accuracy of 0.76 on the validation sets. The average
AUC of the classifier was 0.73, and the average class-weighted F1
score was 0.72. The ROC curves are shown in Fig. 3.

The survival curves for the ‘‘low” and ‘‘high” risk of local recur-
rence groups (Fig. 4) generated from the class probabilities pre-
dicted by the radiomics-based model demonstrate separation
where patients in the ‘‘high” risk group showing relatively poorer
30
freedom from local recurrence times. However these do not rise
to the level of significance (p = 0.06).

4. Discussion

We conducted a retrospective study to evaluate outcomes in
patients receiving adjuvant SRS to the surgical cavity for resected
metastatic CNS disease and to evaluate clinical and radiomics fea-



Table 2
Variable selection.

Clinical Features Radiomics Features

Time to SRS
(days)

Grey-Level Dependence Matrix: Large Dependence High
Gray-Level Emphasis

Primary Tumor
Organ

Grey-Level Run Length Matrix: Long Run High Gray-Level
Emphasis

Dose (Gy) Shape: Maximum 3D Diameter
Age (years) First Order: Uniformity
Conformity

Index
Grey-Level Size Zone Matrix: Large Area High Gray-Level
Emphasis

Cavity Volume Neighboring Grey-Tone Difference Matrix: Strength
Gradient Index
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tures for their predictive value. Prior work has demonstrated
mixed correlation of clinical features such as cavity diameter or
volume with local control [7,9,12,14,23,24]. These previous stud-
ies, however, have not evaluated additional image features and
their predictive capability on local tumor control.

The area is felt to be at highest risk of harboring microscopic
residual disease following resection in the wall of the cavity and
the immediate surrounding brain parenchyma. We hypothesized
that the cavity texture characteristics, rather than the standard ref-
erence cavity diameter or volume, would be a more robust predic-
tor of local tumor recurrence. Our radiomics based model
demonstrated marked improvement in predictive capabilities over
the model trained with clinical features alone.

In comparison to other studies, the target delineation for the
patients examined in this study consisted of the cavity wall with-
out additional volumetric expansions. This led to smaller target
volumes than utilized in either the N107C trial or the volumes pro-
posed by Soliman et al. [5,15]. Nevertheless, we observed 12 month
local control and overall survival rates of 76% and 55%, respec-
tively, which compare favorably with previous trials and other ret-
rospective series derived from similar patient populations [10–12].
In light of these numbers, our study supports the body of literature
demonstrating the efficacy of SRS alone without WBRT in this
patient population. We did observe a significantly higher risk of
distant failure among patients who also developed local recur-
rences although this finding could potentially be attributed to a
sign of more aggressive disease as opposed to a causal relationship.

A potential limitation of our current study is the relatively small
number of local failures during the follow up interval. This limita-
tion primarily manifests itself as an increase in model volatility.
Fig. 3. ROC curves for the models generated using the radiom
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This may also explain the lack of a statistically significant differ-
ence in our identified high and low risk patient populations using
our radiomics model (Fig. 4).

Another potential limitation is the variability in MRI acquisition
between patients. A large proportion of the acquired images were
obtained at a 1.5 T field strength. While we cannot completely dis-
regard the possible impact of field strength on our selected radio-
mics features, other groups have previously shown that radiomics
features are robust to such alterations [24]. Furthermore, while
field strength varied among our selected patients, the resolution
of the images was uniform within the cohort with 1 mm isotropic
voxel sizes, thus limiting variances in imaging acquisition as a
potential confounding factor. Finally, the histogram matching we
performed helped to eliminate the overall signal level variations
related to field strength signal-to-noise ratio differences.
5. Conclusion

In conclusion, our radiomics features-based model demon-
strated performance gains over clinical features alone for predict-
ing local recurrence following adjuvant radiosurgery to resected
brain metastases in this single institutional cohort. Additionally,
our study supports the findings from several other groups demon-
strating a lack of a strong interaction between the cavity size and
the risk of subsequent local failure following adjuvant SRS. Identi-
fying patients at risk of developing local recurrence remains a chal-
lenge, and the utilization of radiomics features to improve
recurrence prediction should be validated in a large prospective
cohort to fully assess the robustness of these novel models.
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Fig. 4. Kaplan-Meier curves for the ‘‘low” and ‘‘high” risk of local recurrence groups as predicted by the gradient boosting classifier and delineated by cutpoint analysis.
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