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Numb is an intracellular protein with multiple functions. The two prevalent isoforms,

Numb p66 and Numb p72, are regulators of differentiation and proliferation in neuronal

development. Additionally, Numb functions as cell fate determinant of stem cells and

cancer stem cells and its abnormal expression has been described in several types

of cancer. Involvement of deregulated Numb expression has been described in the

malignant childhood brain tumor medulloblastoma, while Numb isoforms in these tumors

and in cancer stem-like cells derived from them, have not been studied to date. Here we

show that medulloblastoma stem-like cells and cerebellar neuronal stem cells (NSCs)

express Numb p66 where its expression tampers stemness features. Furthermore,

medulloblastoma samples evaluated in this study express decreased levels of Numb

p66 while overexpressed Numb p72 compared with normal tissues. Our results uncover

different roles for the two major Numb isoforms examined in medulloblastoma and a

critical role for Numb p66 in regulating stem-like cells and NSCs maintenance.

Keywords: medulloblastoma, numb, NUMB isoforms, cancer stem cells, neural stem cells, sonic hedgehog

signaling

INTRODUCTION

Medulloblastoma (MB) arises in the cerebellum and is the most common malignant pediatric
brain tumor (1, 2), originating from both granule cell progenitor (GCPs) and neural stem cells
(3). Human medulloblastoma is divided in at least 4 molecular subgroups (WNT, SHH, Group 3,
and Group 4) which are characterized by different patterns of gene expression, genetic aberrations,
and clinical outcomes (4). SHH MBs account for roughly 27% of tumors and are characterized
by aberrant activation of the Sonic hedgehog (Shh) pathway. This aberrant activation is mostly
achieved by genetic loss of negative regulators (i.e., Ptch) or amplification of positive regulators
(i.e., Gli2) (4–6).
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Cancer subpopulations with stemness features (stem-like cells,
SLCs) are considered the ultimate reservoir of cancer cells and
have been isolated and characterized in several solid tumors,
including brain tumors (7). In our previous studies we isolated
and characterized cerebellar NSCs and SLCs of human and
murine origin and we showed that Shh is a major driver of
stemness in this context, through the transcriptional activity
of the transcription factor Gli1 and the post-transcriptional
regulation of Gli1 activity (8–12).

Numb is an adaptor protein, evolutionary conserved from flies
to mammals, (13), which is involved in many cellular processes
(14), and is able to behave as a cell fate determinant, being
responsible for daughter cell polarization in asymmetric division
(14–16). Numb has been described in cortical ventricular zone
cells (17) and neural crest lineages (18), where it segregates
preferentially in neural daughter cell during asymmetric division
(16). Mammalian Numb is transcribed in four isoforms,
namely p65, p66, p71, and p72, produced by alternative
splicing (19), of which the p66 and p72 have been the
main focus of research. Several studies described the role of
Numb in stem cells compartment’s maintenance, acting as
intrinsic determinant through the interaction with signaling
pathways such as Notch, p53 and Shh (20–23). To this
regard, Numb was shown to control Gli1 function by inducing
Gli1 ubiquitination and degradation (23, 24). Interestingly,
Numb is abnormally expressed in many cancer types (25–
29), and has been demonstrated to play a role in cancer
stem cell subpopulation of colorectal cancer (30) and gliomas
(31).

The role of Numb as fate determinant in different types of
stem cells, the important role of Shh in the maintenance of NSCs
andMB SLCs and the molecular relationship between Numb and
Gli prompted us to investigate the role of Numb in the mouse
cerebellar neural stem cells (NSCs) as well as in medulloblastoma
stem-like cells (MB-SLCs). Moreover, we aimed to investigate the
expression of Numb isoforms in MB subgroups, since previous
studies were conducted before the definition of the molecular
subgroups and also the differential expression of Numb isoforms
was not explored (23).

MATERIALS AND METHODS

Cell Cultures
Stem Cells. Cerebellar NSCs were obtained from cerebella of
postnatal 4-day-old wild-type black 6 /C56 (C57BL/6) mice
(Charles River). NSCs were derived as previously described (12).

Mouse Medulloblastoma stem-like cells (mMB-SLCs) were
derived from spontaneous tumors arisen in Ptc+/– mice, as
previously described (9, 32).

Human Medulloblastoma stem-like cells (hMB-SLCs) were
derived from primary human MB during surgical resection
as previously described (9). hMB-SLCs were immunostained

Abbreviations: MB, Medulloblastoma; Shh, Sonic Hedgehog; NSC, Neural Stem

Cells; SLC, Stem-like cells; LvNumb, Lentivirus Numb; hMB-SLC, Human

Medulloblastoma stem-like cells; MB-SLC, Murine Medulloblastoma stem-like

cells.

with APC-conjugated anti-CD133 (Miltenyi Biotec) according
to manufacturer’s protocol and sorted using a FACSAriaIII (BD
Biosciences) prior to experiments (32).

NSCs and MB-SLCs were cultured in Selective medium
(SM) for stem cells enrichment, containing DMEM/F12 (Gibco)
supplemented with 0.6% glucose, 25 mg/ml insulin, 60 mg/ml
N-acetyl-L-cysteine, 2 mg/ml heparin, 20 ng/ml EGF, 20 ng/ml
bFGF (Peprotech, Rocky Hill, NJ), 1X penicillin-streptomycin,
and B27 supplement without vitamin A (Gibco).

For neurosphere/oncosphere forming assay NSCs and MB-
SLCs were disaggregated to single cell and plated at clonal density
(1–2 cells/mm2) into 96-well plates, in selective medium. After
10–14 days, the number of neurospheres or oncospheres was
divided by the number of cells plated to determine the percentage
of neurosphere forming cells and oncosphere forming cells,
respectively.

To induce differentiation, NSCs were disaggregated and
plated on poly-lysine coated dishes in differentiation medium
containing platelet-derived growth factor (PDGF; 10 ng/ml)
(Sigma, P3076), for 48 h (9).

Animal experiments were approved by local ethic authorities
and conducted in accordance with Italian Governing Law (D.lgs
26/2014; Prot. no. 03/2013).

P19 were purchased from ATCC and maintained in
Alpha Minimum Essential Medium with ribonucleosides and
deoxyribonucleosides supplemented with 7.5% bovine calf
serum, 2.5% fetal bovine serum, 2mM l-glutamine, 100 U/ml
penicillin, and 100µg/ml streptomycin (Thermo scientific).

Treatments
Transduced NSCs were treated with a Smoothened antagonist
cyclopamine-KAAD, (Calbiochem), at the 1µM, and with Smo-
agonist SAG (200 nM, Alexis), for 48 h. For differentiation
experiment, cells were treated with platelet derived growth factor
(PDGF, Sigma-Aldrich) for 48 h.

Immunofluorescence
To detect Gli1 and Numb, neurospheres were blandly
disaggregated and plated on poly-lysine-coated Lab-Tek
chamber slides (cover slips) for 2 h. Cells were fixed with 4%
paraformaldehyde for 20min at room temperature, incubated in
blocking solution (5% normal goat serum, 1% BSA, 0.1% Triton
X-100) and stained overnight with primary antibodies diluted
in blocking solution and for 2 h with secondary antibodies.
Primary antibodies were mouse anti-Gli1 and rabbit anti-Numb
(Cell Signaling Technology Inc). 594- or 488-conjugated anti-
mouse and anti- rabbit secondary antibodies were purchased
from Molecular Probes (Invitrogen, Eugene, OR). Nuclei were
counterstained with Hoechst reagent. Cover slips were mounted
with fluorescence mounting medium (Dako, Carpinteria, CA).
Images were acquired with Carl Zeiss microscope (Axio Observer
Z1) and AxioVision Digital Image Processing Software.

Lentiviral Transduction
Neurospheres were transduced with pGreenZeo Lentiviral
Reporter Vectors containing specific promoters for NANOG
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(Nanog-GFP) or CMV (Zeo-GFP) (9) and infected cells were
selected with Zeocin (Thermo Fisher) treatment.

Numb p66 lentiviral infection was performed using a
lentiviral vector pRRL–CPPT–CMV–PGK–GFP–WPRE
(TWEEN) containing Numb p66 coding sequence (23).
NSCs and MB-SLCs were infected for 48 h prior to analyses.

Knockdown Experiments
Silencing of endogenous Numb was performed using ON-
TARGET plus Human NUMB siRNA (L-015902-00-0005)
for hMB-SLCs and ON-TARGET plus Mouse Numb siRNA
(L-046935-01-0005) for NSCs and mMB-SLCs. Dharmacon.
Hiperfect reagent (Qiagen) was used for siRNA transfections
according to manual instructions. After 72 h, cells were harvested
and subjected to mRNA expression analysis.

RNA Extraction and Gene Expression
Analysis
Total RNA was isolated from cells and human tissue using
Trireagent (Ambion) and reverse transcribed in cDNA as
previously described (12). cDNA was used for quantitative RT-
PCR (qRT-PCR) analysis using ViiA TM 7 Real-Time PCR System
and SensiFASTTM Probe Lo-ROX (Bioline).

For each mRNA analysis 10 ng of cDNA were used. We
selected best coverage TaqMan gene expression assay from
Applied Biosystems and used according to the manufacturer’s
instructions. To analyze Numb isoforms, the following assay IDs
were used: murine Numb p66 Mm01302754_m1; murine Numb
p72 Mm01304901_m1, human Numb p66 Hs01105435_m1;
human Numb p72 Hs01105426_m1.

mRNA quantification was expressed in arbitrary units and
each amplification reaction was performed in triplicate. All
Results were evaluated using the 2-11CT method and values
were normalized to three endogenous controls: ß-actin, ß2-
microglobulin, and Gapdh.

Western Blot Assay
Western blot was performed as previously described (33).
Cellular pellets were lysed using lysis buffer: Tris-HCl pH 7.6
50mM, deoxycholic acid sodium salt 0.5%, NaCl 140mM, NP40
1%, EDTA 5mM, NaF 100mM, sodium pyrophosphate 2mM,
and protease inhibitors. Cellular lysates were separated on 8%
acrylamide gel and western blot analysis was performed using
standard procedures. Membranes were incubated overnight with
the following antibodies: anti-Numb (ab4147; Abcam), anti-
mouse Nanog (Cosmo Bio Co, Japan), anti-GAPDH (ab8245;
Abcam), anti-Actin I-19 (sc-1616; Santa Cruz Biotechnology),
anti-mouse Gli1 (#2643; Cell signaling), anti-NeuN (MAB377
Millipore), anti-βIII-tubulin (MAB 1637 Millipore). HRP-
conjugated secondary antibodies (Santa Cruz Biotechnology)
were applied on membranes and signals were visualized by
enhanced chemiluminescence (ECL Advansta). Densitometry
was performed using ImageJ software and protein levels were
normalized to the respective loading control. Error bars represent
mean± standard deviation of at least three experiments.

Human MB Samples and Controls
Surgical specimens of primary MBs were originated from a
cohort of patients included in the present study, enrolled with
Institutional Review Board approval, as previously described
(34). Molecular subgroup classification was performed as
described in (34). Number of MBs analyzed for each molecular
subgroup: WNT n: 10; SHH n: 25; G3 n: 25; G4 n: 19.

Correlation analysis between the isoforms wasmeasured using
GraphPad Prism 6 software (La Jolla, CA, USA).

Commercial non-neoplastic cerebellum was purchased from
Bio-chain Institute (n = 4: R1234039-50, Total RNA-Human
Brain cerebellum Adult; n = 4: R1244041-50 and R1244040-50,
Total RNA-Human Brain cerebellum Fetal).

RESULTS

Numb has a Pro-Differentiation Role in
Cerebellar Neural Stem Cell (NSCs)
Involvement of Numb in cell determination and differentiation
and in cortical neurogenesis has already been described (35),
while the role of Numb in cerebellar neural stem cell (NSCs)
differentiation has not been studied to date. First of all, we
evaluated Numb protein expression in NSCs with respect
to starting population (Figure 1A). NSCs were identified as
the neurosphere forming cells after at least 30 days in
selective medium (SM), and were compared to both the bulk
cell population and to cerebellar cells after 5 days in SM.
Notably, Numb protein level was lower at day 5 in SM with
respect to both bulk population and NSCs, probably due
to a selection of stem cells in medium, and its expression
increased at day 30, when NSC culture was established
(Figure 1A). Since only one band was revealed by western
blot analysis, we compared Numb protein expression pattern
of NSCs with the protein expression in murine embryonal
carcinoma P19 cells after differentiation stimuli. P19 cells
represent a model of neuronal differentiation which express
both Numb p66 and Numb p72 isoforms (19). Interestingly,
NSCs expressed high levels of the Numb p66 isoform while
Numb p72 was not detectable (Supplementary Figure 1). To
investigate the distribution of Numb positive cells in the
heterogeneous population of neurosphere culture, we performed
immunofluorescence staining of Numb and Gli1 (Figure 1B),
a stemness marker in the context of cerebellar NSCs (9).
Interestingly, Numb is expressed in both Gli1 positive and Gli1
negative cells.

To further investigate whether Numb was associated with
stemness features in the neurosphere population, we sorted cells
according to their expression of the stemness factor Nanog (9),
and we observed that Nanog positive cells expressed significantly
lower levels of Numb p66, with respect to control (Figure 1C).

In order to explore the role of Numb in influencing the balance
between stemness and neural differentiation, we evaluated Numb
p66 protein level with western blot analysis, in NSCs before
and after in vitro differentiation (Figure 1D). Numb p66 protein
level was increased in NSCs after differentiation stimuli such
as platelet-derived growth factor (PDGF), together with an
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FIGURE 1 | Numb expression in NSCs. (A) Representative Western Blot (WB) (up) and densitometric analysis (bottom) of endogenous Numb isoforms (p66 and p72)

in NSCs grown in selective medium for 5 or 30 days, compared to bulk cells (T0). Actin was used as loading control. P-values *p < 0.05. (B) Representative images of

immunofluorescence staining of NSCs for Numb (green) and Gli1 (red); nuclei are counterstained with Hoechst (blue). Scale bar: 10µm for all panels. (C) qRT-PCR

analysis showed mRNA expression of Numb p66, evaluated in NSCs infected with lentivirus carrying Nanog-GFP or Zeo-GFP as control and sorted for GFP. Data

represent means ± SD from three independent experiments. P-values *p < 0.05. (D) Representative Western Blot (WB) (left) and densitometric analysis (right) of

NSCs before and after in vitro differentiation for 48 h (PDGF); p66, Rbfox3/NeuN, Nanog were evaluated. Actin was used as loading control. P-values *p < 0.05. (A–D)

Data are means ± SD from three independent experiments. Full-length images are presented in Supplementary Figures.

enhanced expression of differentiation markers (Rbfox3/NeuN)
and a reduced expression of Nanog stemness marker.

We next proceeded to investigate the role of Numb p66 in
NSCs by modulating its expression. We performed lentiviral
infection of NSCs with a virus encoding the ORF of Numb
p66 (LvNumb) and evaluated the effects after 48 h. LvNumb-
transduced NSC cells showed a differentiated phenotype
with adherent morphology (Figure 2A, left), up-regulation of
differentiation neural markers (Rbfox3/NeuN and βIII-tubulin)
and down-regulation of the stemness markers Nanog and Gli1
(Figure 2A, right). Thus, our data support the role for Numb in
promoting the “differentiated phenotype” of NSCs.

To deepen our understanding of the relationship between
Numb p66 expression, stemness features and Shh signaling,
we evaluated the expression of relevant markers in LvNumb-
transduced NSCs. In detail, we observed a strong reduction,
at transcription level, of both key components in the Shh
pathway (Gli1, Gli2) and the stemnessmarkers Prom1 andNanog
compared with control cells (Figure 2B). Consistently with
mRNA level data of stemnessmarkers, Numb overexpression also
impaired the ability of NSCs to form secondary neurospheres,

i.e., their clonogenicity (Figure 2C) and Numb transduced
NSCs formed smaller neurospheres. We previously showed
that the modulation of the Shh signaling in NSCs is able to
significantly enhance or impair clonogenicity (9). Interestingly,
after modulation of the Shh signaling in LvNumb-transduced
NSCs, we did not observe any significant variation of self-
renewal, suggesting that Numb overexpression could counteract
this pathway (Figure 2C, right).

In order to further investigate the role of Numb p66 in NSCs,
we performed silencing of Numb (siNumb) and observed an
upregulation of Nanog and Gli1 (Figure 2D). Altogether, these
data support a role for Numb p66 inNSCswhere it induces neural
differentiation and controls stemness by negatively regulating the
Shh signaling.

NUMB p66 Controls Self-Renewal of SHH
MB Stem-Like Cells
To investigate the role of NUMB in cancer stem-like cells (SLCs)
from SHHMB, we performed the following set of experiments in
SLCs derived from a human SHH MB, referred to as hMB-SLCs,
as previously described (32). First of all, we sorted hMB-SLCs for
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FIGURE 2 | Numb antagonizes stemness and promotes differentiation of cerebellar NSCs. (A) (Left) Representative bright-field images of neurospheres after

overexpression of p66 (or Ctrl). Scale bar: 100µm. Representative western blot images (center) and densitometric analysis (right) of analysis of p66, stemness, and/or

Hedgehog markers Nanog and Gli1 and differentiation markers Rbfox3/NeuN and βIII-tubulin (βIII-tub), in NSCs after overexpression of p66 vs. Ctrl. Actin was used as

loading control. P-values *p < 0.05. (B) mRNA expression levels of Numb p66 and stemness and/or Hedgehog markers (Gli1, Gli2, Prom1, and Nanog), in NSCs after

overexpression of p66. Dashed bars represent control cells (Ctrl). Data are means ± SD from three independent experiments. P-values *p < 0.05; **p < 0.01.

(C) (Left) LvNumb-transduced NSCs were plated for clonogenic assay as described in Material and Methods. Upper panels show brightfield images of secondary

neurospheres, lower panels show GFP of transduced cells. Scale bar: 100µm. (Right) Neurosphere-formation capacity of LvNumb-transduced NSCs and treated with

cyclopamine-KAAD (KAAD) to suppress endogenous Hedgehog signaling or with Smo-agonist (SAG). Data are means ± SD from three independent experiments.

*P-values (vs. NT), *p < 0.05. §P-value (vs. LvCtrl), §p < 0.05. (D) Representative Western Blot (WB) (left) and densitometric analysis (right) of NSCs before and after

in vitro differentiation for 48 h (PDGF); p66, Rbfox3/NeuN, Nanog were evaluated. Actin was used as loading control. P-values *p < 0.05. GAPDH was used as

loading control. (A–D) Data are means ± SD from three independent experiments. Full-length images are presented in Supplementary Figures.

the stemness marker CD133 (32), and analyzed the expression
profile of CD133 positive (CD133+) and negative (CD133-) cells.

As shown in Figure 3A, expression level of NUMB p66
was significantly lower in CD133+ cells, with respect to
CD133– ones, while NUMB p72 showed a positive trend in
CD133 positive cells, without reaching statistical significance.
Interestingly, mRNA levels of NUMB p66 resulted higher than
NUMB p72 in CD133+ hMB-SLCs (Supplementary Figure 1B),
in accordance with protein data. We also investigated
markers of the Shh pathway (GLI1, CYCLIN D1, HIP1),
that we previously showed to drive stemness in cerebellar

NSCs and SHH MB SLCs (9). Shh pathway resulted more
active in CD133+ (Figure 3A). These data suggest that
NUMB p66 was associated with a reduced state of stemness
hMB-SLCs.

We then proceeded to evaluate the role of NUMB in
hMB-SLCs in vitro. As shown in Supplementary Figure 1A,
hMB-SLCs express high protein levels of NUMB p66 isoform.
To explore the role of NUMB p66 in hMB-SLCs, we
performed lentivirus-mediated overexpression of NUMB p66
(Figure 3B, left). We then evaluated the clonogenicity of
LvNumb-transduced hMB-SLCs cells, a significant decrease of
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FIGURE 3 | Modulation of NUMB in hMB-SLCs. (A) qRT-PCR analysis showed mRNA expression of NUMB isoforms, p66, and p72, and of Hedgehog markers (GLI1,

CCND1, HIP1) evaluated in hMB-SLCs CD133+ vs. CD133−. Data represent means ± SD from 3 independent experiments. P-values *p < 0.05. (B) Representative

western blot images (left) and densitometric analysis (center) of p66 in hMB-SLCs, after overexpression of p66 vs. Ctrl. ACTIN was used as loading control. (Right)

Oncospheres-formation capacity of LvNumb-transduced hMB-SLCs vs. LvCtrl. P-values *p < 0.05. (C) Representative images of western blot (left) and densitometric

analysis (right) analysis of p66, NANOG, and GLI1, in hMB-SLCs transfected with siRNA against NUMB (siNUMB) or non-targeting siRNA controls (siCTRL). ACTIN

was used as loading control. P-values *p < 0.05. (D) Oncospheres-formation capacity of siNUMB hMB-SLCs vs. siCTRL. P-values vs. siCTRL. Data represent means

± SD from three independent experiments. P-values *p < 0.05. (B–C) Data are means ± SD from three independent experiments. Full-length images are presented in

Supplementary Figures.

the oncospheres’ forming capability was observed in hMB-
SLCs overexpressing NUMB vs. control cells (Figure 3B,
right).

To further understand the role of p66 in regulating
stemness in MB-SLCs, we depleted the expression of
NUMB using small interfering RNA (siNUMB) in hMB-
SLCs. As shown in Figure 2C, following NUMB silencing,
hMB-SLCs showed an increase of GLI1 protein level
respect to control siRNA-transfected cells. Moreover,
siNUMB hMB-SLCs showed an increase of NANOG
stemness marker (Figure 3C) and oncosphere-forming
ability (Figure 3D). These results suggest that NUMB
may have a role in negatively regulating stemness features
in hMB-SLCs. Additionally, we performed silencing of
Numb in stem like cells isolated from murine SHH MB
spontaneously arisen in Ptch +/− mice (9, 32). Numb

silencing caused an increase in Gli1 and Nanog protein levels
(Supplementary Figure 2A) and enhanced clonogenicity
(Supplementary Figure 2B).

Our evidence show that NUMB plays a critical role in
influencing MB-SLCs behavior, blocking the Sonic Hedgehog
signaling and stemness features.

Numb Alternative Splicing in
Medulloblastoma
We then investigated NUMB expression in a cohort of MB using
the MB dataset provided by Cavalli (Tumor Medulloblastoma–
Cavalli−763 -rma_sketch—hugene11t) in the R2 platform (36).
MB samples were divided into molecular subgroups and
according to total NUMB expression level (low or high). As
shown in Supplementary Figure 3, low expression of NUMBwas
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FIGURE 4 | NUMB isoforms expression in human MB samples. (A) qRT-PCR analysis showed NUMB isoforms [p66 (left) and p72 (right)] mRNA expression for

molecular subgroups of primary MBs (WNT n: 10; SHH n: 25; G3 n: 25; G4 n: 19), adult normal cerebellum (Adult cereb) and fetal normal cerebellum (Fetal cereb).

*P-value vs. Adult cereb, *p < 0.05; **p < 0.01; ****p < 0.0001. ◦ = P vs. Fetal cereb, ◦p < 0.05. §P-value vs. SHH MBs, §p < 0.05; §§p < 0.01. (B) Pearson’s

correlation test of p66 vs. p72, in human MB subgroups, to evaluate the link between the expression of NUMB isoforms (r = correlation coefficient; p < 0.05

significance).

associated with shorter overall survival (OS) in SHH and G3
subgroups.

Unfortunately, in the publicly available datasets the present
probes do not discriminate the different isoforms of NUMB.

The expression level of NUMB 66 (p66) [Isoform 2, identifier:
P49757-2] and NUMB 72 (p72) [Isoform 1, identifier: P49757-
1] was evaluated in a cohort of human MB patients’ samples
characterized and divided in molecular subgroups.

The transcript level of p66 resulted significantly reduced
only in SHH subgroup, whereas the p72 mRNA level was
significantly up-regulated in all tumor molecular subgroups, as
shown in Figure 4A, compared with normal adult cerebellar
tissue (control). Interestingly, the up-regulation of p72 was
stronger and more significant in G3, G4, and WNT with respect
to SHH, although not reaching statistical significance in the
comparison among subgroups. Furthermore, the expression of
Numb p66 transcript was significantly higher in non-SHH
tumors with respect to SHH. We also investigated the mRNA
expression of NUMB isoforms in normal fetal cerebellum.
With respect to adult tissues, fetal cerebellum showed a trend

toward down-regulation of p66 and a trend of up-regulation
of p72, even though it didn’t reach statistical significance
(Figure 4A). NUMB p66 expression in MBs failed to show
statistical significance in the comparison with fetal cerebellum,
and NUMB p72 resulted statistically up-regulated only in G4
MBs and WNT MBs. These data support previous findings
that showed that SHH MB derive from of proliferating granule
cell progenitors in the external granular layer (EGL) (37),
that physiologically dissipates during the first year of postnatal
life (38).

Next, we performed a correlation analysis of the expression
level of the two isoforms analyzed that indicated significant
positive correlation (p < 0.05) in SHH, G3, and G4 subgroups.
WNT subgroup showed a trend toward positive correlation but
didn’t reach the statistical significance, possibly due to the small
number of samples included in the study, with respect to other
subgroups (Figure 4B).

Together, these data suggest a different role of NUMB
p66 and p72 isoforms in human MB samples. Interestingly,
we demonstrated a decreased expression of p66 only
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in the SHH subset, suggesting that different isoforms
may exert divergent functions in the different MB
subgroups.

DISCUSSION

In this study we investigated for the first time, the expression
of the two main NUMB isoforms p66 and p72 in a wide MB
cohort, finding that different NUMB isoforms were differentially
expressed among subgroups.

Indeed, NUMB p66 and p72 have been shown to have
different/opposite roles regulating cellular functions. In murine
embryonic carcinoma cells, it is described that p66 isoform is
involved in differentiation but not in proliferation, whereas p72
has a role in proliferation but not in differentiation (39). This
difference in the role of each isoform could explain the different
functions described for NUMB in different types of cancer.

Specifically, NUMB has been described as an oncosuppressor
in breast cancer (29), esophageal squamous cell carcinoma (27)
and mesothelioma (40), but evidence showed also a role for
NUMB as an oncogene in hepatocellular carcinoma (41), in
astrocytomas (42) in cervical squamous carcinoma cells (43), and
in endometrial cancer (44).

These different roles could reflect the different isoforms’
expression in our cohort of human MB samples. Indeed,
regardless of the molecular subgroup, NUMB p72 is up-
regulated. The expression of this isoform could have a role in
accelerating cell proliferation and promoting EMT features in
MB as suggested by studies in other context (41, 45).

Interestingly, we found that NUMB p66 was significantly
down-regulated in SHHMB only. Numb p66 is expressed during
development and in adult brain (39, 46), and in murine P19
embryonic carcinoma cell line, p66 is reported to promote neural
differentiation (39). Numb p66 was also shown to be down-
regulated in murine models of SHH MB and to control Shh
pathway activation through the regulation of Gli1 function, via its
ubiquitination and proteasome dependent degradation (23, 24).
Thus, our results strongly suggest that low levels of NUMB p66
in SHH MB contribute to Shh pathway deregulation keeping
cancer cells in an undifferentiated state and enhancing their
cancer stemness features. Altogether these results point out to
different roles for NUMB isoforms in the MB subgroups possibly
reflecting the diverse cell signaling pathways governing them.
We believe that the dual role of NUMB as oncosuppressor or
oncogene might be ascribed to the different isoform expressed,
a topic that has not been fully investigated in the cited literature.

NUMB isoforms differential expression is controlled by
alternative splicing. Of note, RBFOX3 a member of RNA-
binding Fox (Rbfox) family, is one of the most important
regulators of NUMB alternative splicing in neuronal lineages
(47). RBFOX3/NEUN is expressed in neurons (47, 48) and

during spinal neuronal development, RBFOX3/NEUN regulates
neuronal differentiation promoting the alternative splicing of
NUMB mRNA, from the isoform p72 to p66 (47). Interestingly,
we found up-regulated RBFOX3/NEUN both after in vitro
differentiation of NSCs (Figure 1D) and after Numb p66
over-expression (Figure 2A), suggesting that there could be a
regulatory feedback between Numb p66 and RBFOX3/NEUN.
As shown in Figure 1D, RBFOX3/NEUN is up-regulated during
differentiation of NSCs along with Numb. Moreover, SHH MB
shows the highest expression of RBFOX3/NEUN compared to
the other molecular subgroups (Supplementary Figure 4). These
evidence suggest that RBFOX3/NEUN could be responsible for
NUMB alternative splicing in SHH MB context, leading to
isoforms shift from p72 to p66.

Notably, we identified expression of Numb p66 also in
NSCs and in MB-SLCs, as a common feature of “stem cell
phenotype.” We have previously demonstrated that these cellular
models are characterized by Hedgehog pathway activation (9,
49). Numb p66 expression inversely correlates with stem cells
features: indeed, NSCs and SHHMB-SLCs show high clonogenic
potential when Numb is silenced (Figures 2C, 3C), where it
cannot antagonize survival pathways, such asHedgehog signaling
(23). We demonstrated the role of the Numb p66 isoform in
promoting neural differentiation, antagonizing the expression of
stemness/Shh markers and inhibiting self-renewal of stem cells.

In conclusion, in this study we demonstrated for the first
time the expression of Numb isoforms in Medulloblastoma,
highlighting possible different roles for each isoform in MB
subgroups, that we believe are worthy of further investigation in
follow up studies. Moreover, we described the suppressive role of
Numb p66 on stemness features of cerebellar NSC and of SHH
MB-SLCs.
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