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Abstract: The contact behavior of a hemisphere pressed by a rigid plane is of great significance to the
study of friction, wear, and conduction between two rough surfaces. A flattening contact behavior
of an elastic–perfectly plastic hemisphere pressed by a rigid flat is researched by using the finite
element method in this paper. This behavior, influenced by different elastic moduli, Poisson’s ratios,
and yield strengths, is compared and analyzed in a large range of interference values, which have
not been considered by previous models. The boundaries of purely elastic, elastic–plastic, and fully
plastic deformation regions are given according to the interference, maximum mean contact pressure,
Poisson’s ratio, and elastic modulus to yield strength ratio. Then, a new elastic–plastic constitutive
model is proposed to predict the contact area and load in the elastic–plastic range. Compared with
previous models and experiments, the rationality of the present model is verified. The study can be
applied directly to the contact between a single sphere and a plane. In addition, the sphere contact
can also be used to simulate the contact of single asperity on rough surfaces, so the present proposed
model can be used to further study the contact characteristics of rough surfaces.

Keywords: flattening contact behavior; elastic–plastic range; elastic–plastic constitutive model; finite
element method

1. Introduction

The elastic–plastic contact behavior between hemisphere and rigid plane is one of the
fundamental problems in particle mechanics [1,2], contact mechanics [3–9], and biome-
chanics [10]. Mechanical surfaces are microscopically rough. Contact between two rough
surfaces can be equivalent to contact between a hemisphere and a rigid flat [11–13]. The
study of elastic–plastic contact behavior between hemisphere and a rigid flat is of great
significance to the analysis of electrical contact [14–17], friction [18,19], and wear [20,21]
between two rough surfaces.

The early contact model only predicted the elastic contact behavior between the
hemisphere and the rigid flat. Greenwood and Williamson (GW model) [22] analyzed
the pure elastic contact behavior between hemisphere and rigid flat. With the increase
of interference, the hemispheres yield, and the contact state changes from pure elastic
to elastic–plastic. Based on the Hertz solution [23], the GW model presented the critical
normal interference (ωc), critical contact load (Fc), and critical contact area (Ac) formulas for
the initial yield of the hemisphere. However, the Poisson’s ratio (ν) effect is ignored in their
predicted formulas for these critical contact parameters. Later, Lin and Lin (LL model) [24]
and Chang et al. (CEB model) [25,26] improved the GW model and further considered the
effect of different ν on these critical contact parameters. In the elastic–plastic contact stage,
the contact behavior is highly nonlinear due to the existence of plasticity. Some scholars
have predicted the elastic–plastic contact behavior between hemispheres and rigid planes
through experiments [27,28]. However, the experimental results only apply to specific
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materials. Because the finite element method (FEM) can accurately simulate the contact
process between hemisphere and rigid flat of different materials, some researchers have
analyzed on the elastic–plastic contact behavior between hemisphere and rigid flat based
on the FEM [29–33].

Kogut and Etsion (KE Model) [31] analyzed the effect of the ratio of the elastic modulus
to yield strength (E/Y) on the elastic–plastic contact behavior in the range of 100 to 1000
based on FEM. They demonstrated that when the dimensionless mean contact pressure
(p/Y) reaches its maximum, the contact state changes from elastic–plastic to fully plastic,
with the corresponding dimensionless interference (ω/ωc) as a constant value equal to 110.
Based on the analysis results, they presented the empirical relationship between the p/Y
ratio, dimensionless contact load (F/Fc), dimensionless contact area (A/Ac), and ω/ωc within
ω/ωc = 110. By analyzing the hemisphere and rigid plane contact under different Y based
on the FEM, Jackson and Green (JG model) [32,33] proposed that the maximum value of p/Y
was not the constant value equal to 2.8, which had been predicted by Tabor [34] for different
Y. Based on the results, they presented a new model for predicting the elastic–plastic contact
parameters. They defined the initial range of elastic–plastic; however, the termination range
of elastic–plastic is not clear in their research. Quicksall et al. [35] used FEM to study the
elastic–plastic contact behavior of malleable cast iron, aluminum, titanium, copper, and
bronze hemispheres with rigid planes. The results were compared with the predicted by
the KE and JG models. They showed that the prediction accuracy of the JG model is higher
than that of the KE model, but the formula of the JG model is more complex than that of
the KE model.

Elastic–plastic is a complex nonlinear behavior. For the large ω/ωc values and dif-
ferent materials, the previous results of fitting may not be accurate enough for small
interference or specific materials. Based on the KE and JG models, many scholars ana-
lyzed the effect of material properties and contact properties on hemispheric elastic–plastic
contact behavior [36–39]. Brizmer et al. (BK model) [37] analyzed the effect of material
properties and contact conditions at the end of elastic deformation in spherical contact.
They found that the initial yield of plastic materials always occurred at a point on the axis
of symmetry of the hemisphere, while the brittle failure always occurred at the hemisphere
contact surface. Shankar and Mayuram (SM model) [38] analyzed the contact behavior
between hemisphere and rigid flat under different Y and compared the results with those
predicted by KE and JG models. They found that when E/Y is 79.4, the prediction accuracy
of previous KE and JG models is poor. Therefore, they improved the JG and KE models
and proposed a new hemispheric contact model. Then, they further considered the effect
of the tangential modulus (Et) on hemispheric contact behavior [39]. Malayalamurti and
Marappan (MM model) [40] analyzed the influence of different hemispherical radii (R) and
Y on hemispherical elastic–plastic contact behavior. Based on the analysis results, they
proposed an empirical relationship between F/Fc, A/Ac, and ω/ωc. Sahoo and Chatterjee
(SC Model) [41,42] used FEM to analyze the elastic–plastic contact behavior between a
sphere and a rigid flat under different E, Et, and R. They observed that the hemispheric
elastic–plastic contact behavior is similar at different R. They demonstrated that when Et
is small, the result is similar to these predicted of the KE model. With the increase of Et,
the prediction accuracy of the KE model becomes worse. However, they do not provide a
prediction formula. Under different Y and ν, Megalingam and Mayuram (MM model [43])
analyzed the elastic–plastic contact behavior between hemisphere and rigid flat. Then,
the effect of Et on the elastic–plastic contact behavior was further considered [44]. They
showed that Y and Et have a greater effect on hemispheric elastic–plastic contact behavior
than ν. They also presented a formula for calculating F/Fc and A/Ac in the elastic–plastic
range. Recently, Gheadnia et al. [45–47] analyzed elastic–plastic contact behavior between
the deformable hemisphere and the flat using FEM by controlling the yield strength ratio
between hemisphere and flat (Y1/Y2). They demonstrated that the elastic–plastic contact
behavior is related to the Y1/Y2 ratio.
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Due to the complexity of elastic–plastic problems, there is still no closed solution.
Although some hemispheric contact models exist, there is still a lack of a model to compare
and analyze hemispheric elastic–plastic contact behavior over different E, ν, Y, and large
ω/ωc values. In this paper, the elastic–plastic contact behavior of the hemisphere pressed
by the rigid flat by E, ν, and Y was analyzed based on FEM. According to ω/ωc, maximum
p/Y, ν, and E/Y, the boundaries of elastic, elastic–plastic, and fully plastic deformation
regimes were given. A new elastic–plastic constitutive model was proposed to predict
the A/Ac and F/Fc in the elastic–plastic range. Compared with the results predicted by
previous models and experiments, the rationality of the present model is verified. In
Section 2, the critical contact parameters for the initial yield of hemispheres are analyzed.
The FE model is presented in Section 3. In Section 4, the empirical formula of hemispheric
elastic–plastic contact is demonstrated by curve fitting, and the results are compared with
previous models. The conclusions are presented in the last section.

2. Critical Formula

A flattening model of a deformable hemisphere pressed by a rigid flat before and after
loading is shown in Figure 1. A uniform downward load (F) is applied to the top of the
hemispheres to simulate loading. At a small interference (ω), the contact state is purely
elastic. With an increase of interference, the initial yield occurs at the contact subsurface
depth z of the hemisphere, marking the end of purely elastic deformation or the inception
of elastic–plastic deformation.
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Figure 1. A flattening model before (dashed line) and after (solid line) loading.

The interference (ω) at the initial yield is called the critical interference, ωc, which is
calculated according to the formula provided by Johnson [3] and given by
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where E is the equivalent elastic modulus and R is the equivalent radius. ν1, ν2, and E1, E2
are the Poisson’s ratios and elastic moduli of the two materials in contact, respectively. R1
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and R2 are the radii of the contact pairs. p0 is maximum Hertzian pressure, which is listed
in Table 1.

Table 1. Summary of maximum contact pressure (p0).

Models p0 K or H Yield Strength Coefficient (C)

GW model p0 = 0.6H
or p0 = CY H = 2.8Y 1.68

CEB model p0 = KH
or p0 = CY

K = 0.41ν + 0.454
H = 2.8Y 1.148ν + 1.2712

Green model p0 = CY - 0.54373ν2 + 0.8782ν + 1.30075

JG model p0 = CY - 1.295 exp(0.736ν)

LL model p0 = KH
or p0 = CY

K = 0.1943ν2 + 0.3141ν + 0.4645
H = 2.8Y 0.54404ν2 + 0.87948ν + 1.3006

BK model p0 = CY - 1.256ν + 1.234

As shown in Table 1, p0 is related to material hardness (H), where H is equal to
2.8 Y predicted by Tabor [34] in the GW model [22], CEB model [26], and LL model [24].
However, this relationship between H and Y, recently pointed out by the JG model [33]
and SM model [38], was not the constant value equal to 2.8. In the Green model [32], BK
model [37], and JG model, p0 is predicted by using the von Mises yield criterion and the
stress field of Johnson, which seems more reasonable than the GW model, CEB model, and
LL model. The yield strength coefficient (C) is a function of Poisson’s ratio (ν). It is shown
in Figure 2. The critical results of all models are the same at ν = 0.35. For the common
materials (0.2 ≤ ν ≤ 0.45), except for the GW model, the critical interference of the JG
model, CEB model, Green model, LL model, and BK model are similar.
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Considering the above discussion and the meaning of p0, the critical interference is
chosen in this study by the JG model and given by
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The contact state is purely elastic before the initial yielding of the hemispherical contact
(ω < ωc). The contact load (Fe) and the contact area (Ae) can be expressed as

Fe =
4
3

ER
1
2 ω

3
2 , (5)

Ae = πRω. (6)

when the interference equals the critical interference (ω = ωc), their critical values can be
expressed as

Fc =
4
3

ER
1
2 ωc

3
2 , (7)

Ac = πRωc. (8)

These critical values predict the particular contact parameters at the inception of
elastic–plastic deformation. Therefore, they are selected to nondimensionalize the results
in all models.

3. Finite Element Model

The finite element model presently used in this paper is similar to the finite element
model described by the JG model [33], SM model [38,39], and SC model [41]. The commer-
cial program ANSYS18.2-Workbench was used for modeling and analyzing the contact
behavior of a deformable hemisphere pressed by a rigid flat. Due to its axial symmetry, a
2-D model was selected. The hemisphere was modeled by a quarter of a circle (R = 1 mm),
while a half-space represented the rigid flat surface. The boundary load was applied, as
shown in Figure 3. The nodes of a half-space were fixed in all directions to model the rigid
flat. The nodes on the symmetry axis of the hemisphere were fixed in the radial direction to
model a half-sphere. The tangent modulus and the friction coefficient were assumed as
zero within ANSYS. The von Mises yield criterion was used to define material yield. The
present analysis covers a wide range of material properties [48]. As shown in Tables 2 and 3,
the analyzed material properties were divided into two groups. Specifically, the property
ranges of the 79.4 ≤ E/Y ≤ 800 and 0.2 ≤ ν ≤ 0.45 were considered. The half-sphere
and half-space by PLANE 183 triangle elements were discretized in such a way that there
were many elements near the contact edge, as shown in Figure 3. The mesh far from the
contact edge became coarser to improve computing speed. The half-sphere and half-space
total number of elements was 37,391 and 15,028, respectively. Additionally, their total
number of nodes were 75,662, and 33,164, respectively. For the half-sphere, the JG model
used a constant mesh of 11,101 elements, the KE model used a maximum of 2944 nodes
in total, and the SM model used 9933 elements in total for their analysis. By comparison,
the present model mesh was better. There are 2696 two-dimensional three-node surface
contact elements, designated as CONTA172 and TARGE169 in ANSYS, to detect the contact
behavior of a deformable hemisphere pressed by a rigid flat. The uniform displacement was
applied to the bottom section of the hemisphere, and then the contact force was obtained by
extracting the reaction force of the node at its bottom. The contact area was calculated by
the contact radius, which was obtained by finding the contacting edge. The results compare
well with the Hertz elastic solution at ω ≤ ωc. The error between them is less than 2%.
In addition, to ensure mesh convergence, the mesh density was iterated twice until the
result of each iteration changed by no more than 1%. Due to the material and geometric
nonlinearity, the Augmented Lagrange algorithm was adopted, and a large deflection was
activated. Additionally, multi-step loading was used to guarantee the solution convergence.
The maximum number of substeps in the calculation for very large interference was 15,000.
In order to obtain a generalized model, all contact parameters were in dimensionless form,
i.e., F/Fc, ω/ωc, p/Y, and A/Ac.
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Table 2. Material properties in the first group.

No.1 E (GPa) Y (GPa) E/Y ω/ωc R (mm) ν

1 45 0.25 180

500 1 0.2, 0.3, 0.4, 0.45
2 70 0.25 280
3 100 0.25 400
4 150 0.25 600
5 200 0.25 800

Table 3. Material properties in the second group.

No.2 E (GPa) Y (GPa) E/Y ω/ωc R (mm) ν

1 200 2.52 79.4

500 1 0.2, 0.3, 0.4, 0.45

2 200 2 100
3 200 1.5 133.3
4 200 1.25 160
5 200 1 200
6 200 0.56 356.6
7 200 0.35 571.4
8 200 0.25 800

4. Results and Discussion
4.1. Contact Load

The effects of E and ν shown in Table 2 on F/Fc as a function of ω/ωc were analyzed.
Here Y was a constant value equal to 0.25 GPa, while ν were 0.2, 0.3, 0.4, and 0.45. With
E ranging from 45 to 200 GPa, corresponding the E/Y ratios ranging from 180 to 800,
respectively. Here only the results of ν = 0.2 and 0.45 for E/Y = 180, 280, 400, 600, and
800 were selected and plotted in Figure 4. F/Fc increases with an increasing ω/ωc. For
1< ω/ωc ≤ 110, the results indicate the similarity with the KE model, F/Fc is independent
of E and ν of the material. For 110 < ω/ωc ≤ 500, F/Fc decreased with a decreasing E.
Moreover, it is clear from Figure 4 that the SM model underestimates F/Fc. The reason of
this discrepancy is that it is valid only for the E/Y ratio of 79.4. It is clear from Figure 5
that with the increase of ω/ωc, the present result is lower than F/Fc predicted by the SC
model. This may be the SC model analyzed the effect of strain hardening of materials on the
elastic–plastic contact behavior, while the strain hardening effect is ignored in the present
work. As ω/ωc increases, as shown in Figure 4, F/Fc is also affected by ν. Additionally, for
the fixed E/Y, the lower the ν, the higher F/Fc is.
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The effects of Y and ν shown in Table 3 on F/Fc as a function of ω/ωc are analyzed.
Here E is a constant value equal to 200 GPa, while ν ranges from 0.2 to 0.45. With Y ranging
from 1.25 to 0.25 GPa, corresponding to the E/Y ratios ranging from 160 to 800, which are
all greater than 133.3, respectively. Here only the results of ν = 0.2 and 0.45 for E/Y = 160,
200, 356.6, 571.4, and 800 are selected and plotted in Figure 5. In the present interference
domain, the SM model distinctly underestimates F/Fc. For 1< ω/ωc ≤ 110, the results
indicate that the similarity with the KE model, F/Fc is independent of the Y and ν of the
material. For 110 < ω/ωc ≤ 500, the present results show that the value of F/Fc decreases
with an increasing Y. In addition, as ω/ωc increases for the material with a lower ν, the
higher the F/Fc is for the fixed E/Y. In this work, the curve fitting of simulation data is
carried out. For 133.3 < E/Y ≤ 800, 0.2 ≤ ν ≤ 0.45, and 1 < ω/ωc ≤ 500, the empirical
expressions of F/Fc as a function of ω/ωc is presented in this paper as follows:

1 ≤ ω

ωc
≤ 10; F

Fc
=
(

ω
ωc

)m
, (9)

10 ≤ ω

ωc
≤ 500; F

Fc
= n

(
ω
ωc

)q
. (10)

where m, n, and q are shown in Table 4.
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Table 4. Parameters in Equations (9) and (10).

E/Y m n q

133.3 < E/Y < 200 1.756 − (1.5 × 10−4) (E/Y) − 0.1ν 5.51 0.982 − (1 × 10−4) (E/Y) − 0.1ν
200 ≤ E/Y ≤ 800 1.610 + (2.0 × 10−5) (E/Y) − 0.1ν 3.52 1.094 − (2 × 10−5) (E/Y) − 0.1ν

When E/Y is less than 133.3, F/Fc as a function of ω/ωc for different Y and ν values is
plotted in Figure 6. As shown in Table 3, E is 200 GPa, with ν = 0.2, 0.3, 0.4, and 0.45. With
Y ranging from 2.52 to 1.5 GPa, corresponding to the E/Y ratio ranging from 79.4 to and
133.3, respectively.
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The results of ν = 0.2, 0.3, 0.4, and 0.45 for E/Y = 100 and 133.3 are selected and plotted
in Figure 6a. F/Fc increases with an increasing ω/ωc. For 1 < ω/ωc ≤ 110, the present
trend is like the KE model for all models. However, F/Fc is overestimated by the KE
model for higher Y values and the interference near 110ωc. For 110 < ω/ωc ≤ 500, the
present prediction results differ significantly from those of the JG model and MM model.
Additionally, as ω/ωc increases, the lower the E/Y, the higher the deviation. At the value
of ω/ωc equals 500, F/Fc deviation between present work and JG model is 15.82% when
the E/Y ratio is 133.3 and 46.4% when the E/Y ratio is 100. In the present interference
domain, MM model underestimates F/Fc.

The results of ν = 0.2, 0.3, 0.4, and 0.45 for E/Y = 79.4 are selected and plotted
in Figure 6b. For 1 < ω/ωc ≤ 110, the present trend is similar to the KE model. For
110 < ω/ωc ≤ 500, the JG model overestimates F/Fc in the present interference domain. At
the value of ω/ωc equals 500, F/Fc deviation between the present work and the JG model is
49.8% at the E/Y of 79.4. The obtained result is only similar to the SM model, which is valid
only when the E/Y ratio is 79.4 and ν is 0.3. However, in present work, ν = 0.2, 0.3, 0.4, and
0.45 are further considered when the E/Y ratio is 79.4. It can be seen that F/Fc is affected
by ν and that the lower the ν, the higher the F/Fc is with the increased ω/ωc. In this work,
the curve fitting of simulation data is carried out. For 79.4 ≤ E/Y ≤ 133.3, 0.2 ≤ ν ≤ 0.45,
and 1 < ω/ωc ≤ 500, the empirical expressions of F/Fc as a function of ω/ωc are presented
in this paper as follows:

79.4 ≤ E
Y

≤ 133.3, F
Fc

= m
(

ω
ωc

)n
. (11)

where m and n are shown in Table 5.
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Table 5. Parameters in Equation (11).

1 < ω/ωc ≤ 5 5 < ω/ωc ≤ 90 90 < ω/ωc ≤ 5.4 (E/Y) 5.4 (E/Y) < ω/ωc ≤ 500

m 1.00 1.70 0.024 (E/Y) − 3ν + 7.3 0.65 (E/Y) − 30.5ν + 7.74
n 1.55 1.20 0.84 0.48

4.2. Contact Area

The effects of E and ν shown in Table 2 on A/Ac as a function of ω/ωc are analyzed.
Here Y is a constant value equal to 0.25 GPa, with ν ranging from 0.2 to 0.45. With E ranging
from 45 to 200 GPa, corresponding the E/Y ratios ranging from 180 to 800, respectively.
Here only the results of ν = 0.2, 0.3, 0.4, and 0.45 for E/Y = 180 and 800 are selected and
plotted in Figure 7. For 1 < ω/ωc ≤ 110, the results indicate the similarity with the KE
model, and A/Ac is independent of E and ν. For 110 < ω/ωc ≤ 500, A/Ac increases with an
increasing ω/ωc. In addition, the results show that E and ν have little effect on A/Ac. It is
clear from Figure 7 that the SM model underestimates A/Ac as ω/ωc increases, especially
for large interference. The reason of this discrepancy is that the SM model is valid only for
an E/Y ratio of 79.4. The present result is slightly higher than the A/Ac predicted by the SC
model with an increasing ω/ωc. The SC model analyzed the effect of tangential modulus
on the elastic–plastic contact behavior, while the strain hardening effect is ignored in the
present study. Compared with the predicted results of the SC model, it can be observed
that tangential modulus has a great effect on the elastic–plastic contact behavior. In view of
the shortcomings of present study, we will consider the effect of tangential modulus on
hemispheric elastic–plastic contact behavior under large interference in future work.
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The effects of Y and ν, as shown in Table 3, on A/Ac as a function of ω/ωc are analyzed.
Here E is 200 GPa, with ν ranging from 0.2 to 0.45. With Y ranging from 1.25 to 0.25 GPa,
corresponding the E/Y ratios ranging from 160 to 800, respectively. Here only the results
of ν = 0.2, 0.3, 0.4, and 0.45 for E/Y = 160 and 800 are selected and plotted in Figure 8.
A/Ac increases with an increasing ω/ωc. For 1 < ω/ωc ≤ 110, the results indicate the
similarity with the KE model, A/Ac is independent of Y and ν. For 110 < ω/ωc ≤ 500, Y
and ν have little effect on A/Ac. Since the SM model is only suitable for E/Y = 79.4, A/Ac
is underestimated in the present interference domain.
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In Figures 7 and 8, the effects of E, ν, and Y on A/Ac are comprehensively considered
under an E/Y greater than 133.3. The results show that the E/Y ratio affects A/Ac. As
the ω/ωc increases, the lower the E/Y, the higher the A/Ac is. ν has little effect on A/Ac.
In this work, the curve fitting of simulation data is carried out. For 133.3 < E/Y ≤ 800,
0.2 ≤ ν ≤ 0.45, and 1 < ω/ωc ≤ 500, the empirical expressions of A/Ac as a function of
ω/ωc is presented in this paper as follows:

133.3 ≤ E
Y

≤ 800; A
Ac

= m
(

ω
ωc

)n
. (12)

where m and n are shown in Table 6.

Table 6. Parameters in Equation (12).

1 < ω/ωc ≤ 10 10 < ω/ωc ≤ 500

m 1.02 1.3
n 1.171 − (2 × 10−5) (E/Y) 1.096 − (2 × 10−5) (E/Y)

When the ratio of E/Y is less than 133.3, A/Ac as a function of ω/ωc for different Y and
ν values is plotted in Figure 9. Here E is a constant value equal to 200 GPa, with ν ranging
from 0.2 to 0.45. With Y being 2.52, 2, and 1.5 GPa, corresponding the E/Y ratio is 79.4, 100,
and 133.3, respectively. ω/ωc ranges from 1 to 500. At small interferences, the dependence
of A/Ac on Y and ν is weak, which is similar to the prediction of KE model. However, with
an increasing ω/ωc, the influence of Y on A/Ac is strong. It is clear from Figure 9 that the
present A/Ac is consistent with that predicted by the SM model for E/Y = 79.4. However,
A/Ac is underestimated by the SM model when the E/Y is greater than 79.4. It can also
be seen that in the present ω/ωc domain, the JG model overestimates A/Ac. At a ω/ωc
value of 500, A/Ac deviation between the present work and JG model is 70.73% when E/Y
is 133.3 and 25.1% when E/Y is 79.4. When E/Y is greater than 133.3, the error of the JG
model is slightly less than that of other models compared with the present predicted results.
To overcome the drawbacks of previous models, the curve fitting of the simulation data is
carried out in this work. For 79.4 ≤ E/Y ≤ 133.3, 0.2 ≤ ν ≤ 0.45, and 1 < ω/ωc ≤ 500, the
empirical formulas for predicting the contact area are presented in this paper as follows:

79.4 ≤ E
Y ≤ 133.3,

A
Ac

= m
(

ω

ωc

)n
. (13)

where m and n are shown in Table 7.
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Table 7. Parameters in Equation (13).

1 < ω/ωc ≤ 5 5 < ω/ωc ≤ 90 90 < ω/ωc ≤ 5.4 (E/Y) 5.4 (E/Y) < ω/ωc ≤ 500

m 0.998 0.997 0.0073 (E/Y) + 2.13 0.0093 (E/Y) + 2.26
n 1.14 1.15 0.923 0.903

4.3. Contact Pressure

The effects of E and ν shown in Table 2 on p/Y as a function of ω/ωc are analyzed.
Here, Y is a constant value equal to 0.25 GPa, with ν ranging from 0.2 to 0.45. With
E ranging from 45 to 200 GPa, corresponding the E/Y ratios ranging from 180 to 800,
respectively. Here, only the results of ν = 0.2 and 0.45 for E/Y = 180, 400, and 800 are
selected and plotted in Figure 10. The KE model considered that p/Y reaching the peak
could be marked the contact state transition from the elastic–plastic to the fully plastic and
that the corresponding ω/ωc is a constant value equal to 110. Through this, the elastic–
plastic range (1 ≤ ω/ωc ≤ 110) is proposed by the KE model. However, this tendency is
not observed in the present work. It is obvious that ω/ωc corresponding to the peak value
of p/Y is not fixed but is dependent on E and ν in all cases. It is clear from Figure 10 that the
peak value of p/Y also increases with an increasing E. Additionally, the value of ν increases,
the peak value of p/Y also increases under constant E/Y. By comparison, the effects of ν are
less than that of E on the peak value of p/Y.
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After p/Y reaches its peak value, namely the fully plastic range, it is no longer affected
by ν, as shown in Figure 10. In the fully plastic range, p/Y decreases with an increasing
ω/ωc. Moreover, the results also show that this trend is more evident with the lower E
value, which is the same as the observational results of the SC model. Interestingly, the
results obtained show that before p/Y reaches its peak in all cases, namely the elastic–plastic
range, the higher ν, the higher p/Y is.

The effects of Y and ν, as shown in Table 3, on p/Y as a function of ω/ωc are analyzed.
Here E is a constant value equal to 200 GPa, with ν ranging from 0.2 to 0.45. With Y ranging
from 2.52 to 0.25 GPa, corresponding the E/Y ratios ranging from 79.4 to 800, respectively.
Here only the results of ν = 0.2 and 0.45 for E/Y = 79.4, 133.3, 200, 356.6, and 800 are selected
and plotted in Figure 11. In the elastic–plastic range, p/Y increases with an increasing ω/ωc.
Additionally, the higher ν, the higher p/Y is. p/Y decreases with an increasing ω/ωc in the
plastic range. The results show that this trend is more evident with the higher Y value.
Moreover, ν has no longer has an effect on p/Y in the fully plastic range.
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The present work has observed that in all cases, ω/ωc corresponding to the peak value
of p/Y is not limited to a specific value of 110 predicted by the KE model but depends
on Y and ν. It is clear from Figure 11 that the peak value of p/Y also increases when Y
decreases. Moreover, as ν increases, the peak value of p/Y also increases under constant
E/Y. By comparison, the effects of ν are less than Y for the peak value of p/Y.

4.4. Elastic–Plastic Range

Figure 12 shows the end of the elastic–plastic deformation (ω∗
p) as a function of E/Y. In

addition, comparisons with the KE model are also depicted. The KE model suggested that
p/Y reaches the peak and marks the transition from the elastic–plastic to the fully plastic
deformation regime, and the corresponding ω∗

p is the constant value equal to 110. The
method of using the maximum value of p/Y to find the end of the elastic–plastic deformation
regime can also be found in Kogut et al. [31,36]. The present results show that the value of
ω∗

p increases with an increasing of E/Y and is not the constant value equal to 110 predicted
by the KE model. For all of E/Y, the higher the value of ν, the lower value of ω∗

p. The
present results also show that the value of ω∗

p. is about 110 at E/Y = 200, which is consistent
with the predicted result of the KE model. Moreover, when the E/Y is less than 200, the KE
model overestimates the value of ω∗

p. Therefore, to estimate the value of ω∗
p and predict the

end of the elastic–plastic range, the empirical formula is proposed in this work as follows:
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ω∗
p =

[
4.631 × 10−4 −

(
8.8827 × 10−4

)
ν
](E

Y

)2
+ (0.18 + 0.59ν)

E
Y
− 143.53ν + 66.42. (14)
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Figure 12. ω∗
p as a function of E/Y.

As mentioned above, the corresponding ωc at the inception of the elastic–plastic
deformation regime can be determined by using Equation (4). Additionally, the corre-
sponding ω∗

p at the end of elastic–plastic deformation regime can be determined by using
Equation (14). Furthermore, to estimate the contact parameters of the elastic–plastic range,
the empirical formula is proposed in this work as follows:

F∗
ep = m

(
ω

ωc

)n
, (15)

A∗
ep = q

(
ω

ωc

)t
. (16)

where m, n, q, and t are shown in Table 8.

Table 8. Parameters in Equations (15) and (16).

m n q t

1 < ω/ωc ≤ 5 1 1.55 0.997 1.14
5 < ω/ωc ≤ ω∗

p 1.89 1.206 − 0.1ν 1.1 1.10

In order to more conveniently use the elastic–plastic constitutive relation presented in
this paper, a flowchart for predicting the contact parameters in the purely elastic, elastic–
plastic, and fully plastic ranges is shown in Figure 13. First, for the purely elastic con-
tact stage, the contact parameters are calculated according to Equations (5) and (6). Sec-
ondly, for the elastic–plastic range, the contact parameters are calculated according to
Equations (15) and (16). Additionally, and lastly, for large deformations, it includes the
elastic–plastic and fully plastic range. If 0.2 ≤ ν ≤ 0.45 and 79.4 ≤ E/Y ≤ 133.3, the contact
parameters are calculated according to Equations (11) and (13), otherwise according to the
Equations (9)–(12).
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4.5. Comparison with Experimental Results

To verify the rationality of the present model, the present predicted contact load and
area are compared with Ovcharenko et al. [28] and Jamari and Schipper [27] experimen-
tal data.

Jamari and Schipper [27] experimentally measured the relationship between the con-
tact parameters of the copper sphere and the SiC ceramic flat. In their experiment, the mate-
rial parameters of the copper sphere are E = 120 GPa, R = 1.5 mm, ν = 0.35, H = 1.2 GPa, and
E/Y = 280, respectively. As their material parameter is E/Y = 280, Jamari and Schipper’s ex-
perimental results were compared with the present prediction formula of the Equation (12)
and the results are shown in Figure 14. The present prediction results are in good agreement
with the experimental ones, which verifies the accuracy of the present work.
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Ovcharenko et al. [28] experimentally measured the relationship between the contact
load and the area of the stainless-steel and copper spheres in contact with the Sapphire
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flat. As shown in the Figure 15. the present predicted results are compared with the
Ovcharenko et al. experimental results for the copper and stainless-steel. Compared with
the Jamari and Schipper experimental study, Ovcharenko et al. only analyzed the contact
area under small loads through their experiments. It is clear from Figure 15 that the present
model is in good agreement with the experimental results and the error is less than 10%,
indicating that the proposed model has a high accuracy. This discrepancy may be due to the
fact that the SiC ceramic flat in the experiment is not as rigid as assumed in the theoretical
model, leading to some error between the experimental and theoretical results.
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5. Conclusions

A flattening contact behavior of an elastic–perfectly plastic hemisphere against a rigid
flat was researched by using FEM. The present analysis addresses the effects of Poisson’s
ratio, elastic modulus, and yield strength on the contact behavior. The main conclusions
can be drawn as follows:

(1) The present study considers a large range of dimensionless interference from 1 to 500.
A new elastic–plastic constitutive model is proposed to predict the contact area and
load based on the curve fitting the finite analyses results. Compared with previous
models and experiments, the rationality of the present model is verified.

(2) p/Y is mainly affected by the ν in the elastic–plastic range, and the higher the ν,
the higher p/Y. However, this influence disappears in the fully plastic range. The
maximum of p/Y is not a constant value for the different E, Y, and ν. The higher E/Y,
the higher the maximum of p/Y is. Moreover, the higher ν, the higher the maximum
value of p/Y is when E/Y is constant. However, the effects of ν are less than that
of E and Y for the maximum value of p/Y. In the plastic range, p/Y decreases with
increasing interference. Additionally, the lower E/Y, the more noticeable this trend is.

(3) The boundaries between the elastic, elastic–plastic, and fully plastic deformation
regimes are determined according to the interference, maximum mean contact pres-
sure, Poisson’s ratio, and the elastic modulus to yield strength ratio. When the
interference is small, the contact state is purely elastic, and the contact parameters
can be calculated according to the Hertz formula. When the interference increases,
the contact state changes from the purely elastic to the elastic–plastic. The present
work shows that the JG model can more reasonably determine the inception of elastic–
plastic deformation regime. The end of the elastic–plastic deformation regime is
defined according to the interference corresponding to the maximum contact pressure.
New dimensionless constitutive relationships are proposed to predict the contact
parameters in the elastic–plastic range.
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Nomenclature

a Contact radius
p Mean contact pressure
p0 Maximum Hertzian pressure
A Contact area
C Critical yield stress coefficient
E Equivalent elastic modulus
F Contact load
ω∗

p Critical interference value at the inception fully plastic
R The radius of asperity
Y Yield strength
ν Poisson’s ratio
ω Normal interference of asperity
Scripts
1 The value of asperity
2 The value of rigid flat
c Critical values at yielding inception
p Critical values at the end of the elastic–plastic range
* Dimensionless
e Elastic range
ep Elastic–plastic range
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