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The Drosophila Prosecretory Transcription Factor
dimmed Is Dynamically Regulated in Adult
Enteroendocrine Cells and Protects Against
Gram-Negative Infection
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ABSTRACT The endocrine system employs peptide hormone signals to translate environmental changes into
physiological responses. The diffuse endocrine system embedded in the gastrointestinal barrier epithelium is
one of the largest and most diverse endocrine tissues. Furthermore, it is the only endocrine tissue in direct
physical contact with the microbial environment of the gut lumen. However, it remains unclear how this
sensory epithelium responds to specific pathogenic challenges in a dynamic and regulated manner. We
demonstrate that the enteroendocrine cells of the adult Drosophila melanogaster midgut display a transient,
sensitive, and systemic induction of the prosecretory factor dimmed (dimm) in response to the Gram-negative
pathogen Pseudomonas entomophila (Pe). In enteroendocrine cells, dimm controls the levels of the targets
Phm, dcat-4, and the peptide hormone, Allatostatin A. Finally, we identify dimm as a host factor that protects
against Pe infection and controls the expression of antimicrobial peptides. We propose that dimm provides
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“gain” in enteroendocrine output during the adaptive response to episodic pathogen exposure.

The endocrine system mediates long-range peptide hormone signaling
to broadcast environmental changes to target tissues via the circulatory
system. Endocrine cells must therefore function as biological sensors
that detect physiochemical stimuli and translate them into changes in
peptide and amine signals. The diffuse enteroendocrine system of the
gastrointestinal (GI) tract is notable for both its size and the diversity of
its secretory products (Ahlman and Nilsson 2001; Rehfeld 2004).
Embedded within the barrier epithelium of the GI tract, enteroendo-
crine cells are situated uniquely with respect to the complex microbial
communities of the gut lumen. Secreted enteroendocrine peptide hor-
mones regulate local processes such as peristalsis and intestinal secre-
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tion, as well as long-range effects on metabolism, immune response, and
the nervous system (Néssel and Winther 2010; Helander and Fandriks
2012). Thus, enteroendocrine cells coordinate essential aspects of phys-
iological homeostasis at the barrier epithelium.

Studies in mammals have demonstrated the ability of enter-
oendocrine cells to respond to bacterial challenge with secretion of
peptides and changes in gene expression (reviewed in Furness et al.
2013). However, these studies were largely performed in vitro and
focused on isolated enteroendocrine cell types. Precisely how the dif-
fuse endocrine system responds to episodic challenge under physio-
logical conditions and the molecular mechanisms that coordinate this
adaptive endocrine response remain unknown.

The adult Drosophila gut is a useful model to investigate the func-
tion and regulation of the diffuse endocrine system. The population
of endocrine cells can be readily detected along the entire anterior-
posterior axis of the GI tract by the pan-enteroendocrine marker
Prospero (Micchelli and Perrimon 2006; Ohlstein and Spradling
2006). The Drosophila midgut, like its mammalian counterpart,
also expresses a diverse array of secretory peptide hormones that
exhibit regional and local diversity along the GI tract (Veenstra
2009; Veenstra and Ida 2014; Beehler-Evans and Micchelli 2015).
Many of these peptides are functionally conserved across species
(Nassel and Winther 2010; Veenstra 2011). Importantly, the effects of
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microbes on the gut epithelium can also be studied in Drosophila. For
example, Pseudomonas entomophila (Pe), a pathogenic Gram-negative
bacteria isolated from the GI tract of wild Drosophila, is a potent
stimulus promoting stem cell mediated regeneration of the adult mid-
gut epithelium (Vodovar et al. 2005; Buchon et al. 2009; Jiang et al.
2009; Strand and Micchelli 2011). Although Pe has been shown to
induce gene expression changes in some epithelial cell types, a response
of the enteroendocrine cell population has not yet been described.

dimm encodes a NeuroD-related basic helix-loop-helix transcrip-
tion factor that is expressed in a subpopulation of cells in the central
and peripheral nervous system during development (Hewes et al.
2003). In dimm mutants, the levels of secretory neuropeptides in the
central nervous system are diminished. Misexpression studies show
that Dimm functions as a “master” regulator capable of conferring two
essential properties of the regulated secretory pathway to cells that do
not ordinarily display them; the ability to produce large dense core
vesicles that store peptides and the enzymatic machinery necessary to
posttranslationally process pro-forms into biologically active signals
(Hamanaka et al. 2010). Consistent with this phenotype, genome-wide
characterization of Dimm binding sites has led to the identification
of a number of potential mediators of this process (Hadzic et al. 2015).

Here, we examine the adult Drosophila diffuse endocrine system
and characterize the regulation and function of the prosecretory tran-
scription factor dimm in response to pathogenic bacteria.

MATERIALS AND METHODS

Fly stocks and culturing

The following stocks were used: Wild-type: w18 and Canton-S; w;
pros-LacZ, ry / TM3 ry, Sb, Ser; w, UAS-dcr2; NPFGal4 / CyO;
tubGal80™S, UAS-GFP / TM6C; w; esgGald, UAS-GFP, tubGal80™s
(esg™); w, UAS-dcr2; tubGal4 / CyO; UAS-GFP, tubGal80™S /
TM6C (tub™); w, UAS-rpr, UAS-hid; y w; P[EPgy2] dimm?FY11636
(BL#21432); y w; dimm®e"* / CyO (Rev4, see Hewes et al. 2003); y v;
P[TRiP.JF02093]attP2 (BL#26976, designated “dimm™A”); P[KK112513]
VIE-260B (BL#v104028, designated “PhmR®NAi”) For additional in-
formation, see FlyBase (http:flybase.org).

Wild-type flies of the genotype w18 / Canton-S were analyzed in all
wild-type data with the exception of Figure 1H, where w'!’® and Canton-S
were analyzed individually. The strong hypomorphic genotype dimm?®e# /
dimmPY1463 was analyzed in all dimm loss of function experiments.

Mated female flies were analyzed in all experiments. Females were
collected the day of eclosion and aged 5 to 7 d before mock or Pe
treatment. Females were 3 d of age in Supporting Information, Figure
S1, C—E, where no mock or Pe treatments were administered. Flies
were maintained on standard food media [i.e., regular food (RF); Lee
and Micchelli 2013] and supplemented with yeast paste every 2—3 d in
all RF conditions. Flies were cultured at 25° and transferred to 29° at
the time of mock or Pe treatment and time points thereafter.

Antisera

Primary antibodies: Primary antibodies included mouse anti-
Allatostatin A (AstA) (1:20, DSHB); guinea pig anti-dCat-4 (CG13248)
(1:500), (Park et al. 2011); guinea pig anti-Dimm (1:250), (Allan et al.
2005); chicken anti-GFP (1:10,000, Abcam); rabbit anti-Phm (1:750),
(Kolhekar et al. 1997); mouse anti-Pros (1:100, DSHB); mouse anti-
BGal (1:100, DSHB); and rabbit anti-BGal (1:2,000, Cappel).

Secondary antibodies: Secondary antibodies used were goat anti-
chicken Alexa Fluor 488 (1:2,000; Molecular Probes); goat anti-mouse
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Alexa Fluor 488 (1:2,000; Molecular Probes); goat anti-mouse Alexa
Fluor 568 (1:2,000; Molecular Probes); goat anti-rabbit Alexa Fluor
568 (1:2,000; Molecular Probes); and goat anti-guinea pig Alexa Fluor
568 (1:2,000; Molecular Probes).

Histology

Isolation and whole-mount immunostaining of adult midguts was
performed as previously described in detail (Micchelli 2014). In sum-
mary, adult female flies were dissected in 1x phosphate-buffered saline
(PBS; Sigma-Aldrich). The midgut was removed and fixed in 0.5X
PBS, 4% electron microscopy-grade formaldehyde (Polysciences)
overnight at 4°. Samples were washed in 1x PBS, 0.1% Triton X-
100 (PBST) for a minimum of 2 hr, and then incubated in primary
antisera overnight. Samples were subsequently washed for 2 hr in
PBST, incubated in secondary antisera for 3 hr, and washed a mini-
mum of 2 hr in PBST. DAPI containing Vectashield mounting media
(Vector Laboratories) was used for mounting.

Bacterial infection
Flies were infected ad libitum with Pseudomonas entomophila (Pe).
Infected flies were fed on Tegosept-free food supplemented with
0.5mL of Pe. Pe bacterial culture was concentrated by centrifugation
and resuspended in 5% sucrose. ODgy, was measured and the con-
centrated Pe was subsequently diluted to the designated experimental
OD. Mock-infected flies were placed on Tegosept-free food supple-
mented with 0.5 mL of 5% sucrose. Flies were shifted to and main-
tained at 29° throughout the course of the experiment after mock or
Pe treatment. Exposure to mock or Pe food was 24 hr. Flies were
returned to RF after treatment. The number of Pe colony-forming
units per 0.5 mL of applied volume was estimated by counting the
colony-forming units from a serial dilution of OD 20 resuspended Pe
culture.

In lethality assays, adult female flies were collected in the first 24 hr
of eclosion and aged 5—7 d. Flies were cultured at 25° at the ratio of 3
males + 20 females per vial. Survival of males was not included in the
analysis. Flies were transferred to mock or Pe laced food of the des-
ignated OD and cultured at 29°. Flies were transferred to RF supple-
mented with yeast paste after 24h of Pe exposure. Lethality was
assayed daily for 8 d.

Imaging acquisition and quantification

Confocal images were collected using a Leica TCS SP5 microscope.
Photoshop CS (Adobe) and Image] (National Institutes of Health)
were used to process images for brightness and contrast. To analyze
the percent of Dimm™* midguts, samples were classified as positive
when they displayed >2 anti-Dimm™ cells in the superficial side of
the entire anterior-posterior length. Dimm®, Pros* values were
obtained by analyzing projected maximum micrographs collected at
40x magnification along the entire anterior-posterior axis of each gut
analyzed. Regional boundaries were defined by morphologic constric-
tions present in the medial portion. Image] software was used to
measure mean intensity values. Specifically, using Image]J, we defined
particle areas using the anti-Pros channel and then measured mean
intensity of the anti-Dimm channel in that area. Dimm levels were
normalized for each micrograph. Levels were normalized using the
following equation (R — B) / B, where R = mean intensity in the
particle area and B = mean intensity of a midgut region outside
particle areas. A similar method was used to collect AstA levels
(Figure 4P), with the exception that particle areas were defined man-
ually by tracing the AstA* cytoplasmic area.
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Figure 1 Adult enteroendocrine cells induce Dimm in response to the
bacterial pathogen Pseudomonas entomophila (Pe). Gastrointestinal epithelium
is shown under baseline and infected conditions. (A, B') Confocal micrographs
of the adult midgut epithelium stained for pros-LacZ and the peptide Allatos-
tatin A (AstA) (DAPI, blue; anti-AstA, red; anti-Bgal, green). (C, D’) Confocal
micrographs of the adult midgut epithelium stained for Prospero (Pros) and
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Quantitative polymerase chain reaction (qPCR) analysis
Tissue was collected from whole bodies (n = 10 females per treatment
per trial) and midguts (n = 20 females per treatment per trial) and was
collected and analyzed from two to three infection trials. Head, leg, and
wing tissue was excluded from whole body collection. Crop and
malpighian tubule tissue was excluded from midgut collection. Total
RNA was extracted using the RNeasy Mini Kit (QIAGEN) according
to the manufacturer’s instructions. On-column DNase digestion with
RNase-Free DNase set (QIAGEN) was performed to remove genomic
DNA contamination. The quality and quantity of RNA were assessed
using a NanoDrop 1000 Spectrophotometer (Thermo Scientific).
cDNA was synthesized using the High-Capacity cDNA Reverse Tran-
scription Kit according to the manufacturer’s protocol (Applied Bio-
systems). cDNA was subsequently treated with RNase H (New
England Biolabs) for 30 min at 37°. qPCR was performed using an
Applied Biosystems StepOnePlus System and SYBR Green PCR Master
Mix (Applied Biosystems). The 2744C method was used to analyze fold
change between mock and Pe treated samples (Livak and Schmittgen
2001). RpL32 was used as a calibrator and verified in our experiments as
a reliable standard unaffected by Pe treatment (Figure S3).

Primers

Primer sequences are listed in Table S1. The dimm primers generated
in this study were designed with the consideration that they span an
exon—exon junction and were validated by serial dilution of cDNA
and tested for melt curve specificity.

Statistical analyses and sample sizes

Graphs and statistical analyses were generated using Prism GraphPad
Software. Samples sizes below are listed as n = number of trials,
number of samples analyzed in total per treatment.

For survival analysis: Log-rank (Mantel-Cox) test was performed.
Figure 1G and Table S2: n = 4 trials, 80 females. Figure 5A and Table
S3: n = 4 trials, 80 females.

For percent expression analysis: One-way analysis of variance
(ANOVA) was performed, followed by Tukey’s multiple comparisons.
Percent Dimm™ midguts and Dimm™ cells (Figure 1, Figure 2, and Figure
3): n = 3—4 trials, 18—24 midguts. Percent Phm™ cells (Figure 4E): n = 3
trials, 18 midguts. Percent dCat-4* cells (Figure 4]): n = 2 trials, 12
midguts. Percent AstA* cells (Figure 40): n = 3 trials, 18 midguts.

For fluorescence intensity: Dimm (Figure 2B and Figure 3B): n = 1
trial, 3—4 midguts, 35—345 enteroendocrine cells. AstA (Figure 4P):
n = 1 trial, 3—4 midguts, 3—11 enteroendocrine cells.

Dimm after regular food (RF) (C, C') or treatment with Pe (D, D’), (DAPI,
blue; anti-Dimm, red; anti-Pros, green). Inset: representative cell from
a Pe exposed midgut expressing npf > GFP (anti-Dimm, red; anti-GFP,
green). (E, F') Confocal micrographs of adult midguts temperature
shifted to drive expression of GFP (E, E') or the proapoptotic genes
rprand hid (F,F') in esg™ expressing progenitor cells and subsequently
exposed to Pe (DAPI, blue; anti-Pros, red; anti-GFP, green; anti-Dimm,
white). Temperature shift to drive transgene expression was performed
3 d before exposure to Pe. RF controls are displayed in Figure S2.
Scale bars: 10 um (A), 50 wm (B, E), and 5 wm (D, inset). (G) Survival of
wild-type females after a 24-hr exposure to a range of Pe doses (n = 4
trials, 80 females). (H) Quantification of the percentage of Dimm*
midguts per infection trial, comparing control genotypes and dimm
mutants, Pe OD 5, 24 hr. Lines indicate mean values = SEM.
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Figure 2 Dimm is transiently induced
after Pseudomonas entomophila (Pe).
Time course of dimm induction. (A) Quan-
tification of the percentage of individuals
in a given trial that displayed at least two
positive anti-Dimm enteroendocrine cells
over time after Pe (n = 3 trials, 18 mid-
guts). (B) Quantification of fluorescence
of anti-Dimm staining in individual Pros*
cells over time. Each column represents
enteroendocrine cells from an individual
midgut (n = 3—4 midguts, 35—345 entero-
endocrine cells per midgut). Arbitrary units
(AU). (C) Quantitative polymerase chain
reaction analysis of dimm mRNA expres-
sion in midgut tissue over time (n = 2
trials, 40 midguts). Fold change repre-
sents Pe compared with mock using the
27AAC method. (D-D’’) Regional analysis
of the percentage of Dimm* enteroendo-
crine cells per midgut over time (n = 3
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For qPCR analysis: One-way ANOVA (Figure 2C and Figure 3C)
and unpaired ¢-test (Figures 5B and Figure S1) were performed. dimm
expression (Figure 2C): n = 2 trials, 40 midguts, (Figure 3C): n = 3 trials,
60 midguts, (Figure S1): n = 3 trials, 30 whole bodies. AMP expression
(Figures 5B and Figure S3): n = 3 trials, 30 whole bodies. upd3 expres-
sion (Figure S3): n = 3 trials, 60 midguts. The qPCR data presented in
Figure 3C was analyzed from samples that met a quality control crite-
rion for Pe infectivity. Specifically, a parallel survival assay group dis-
played significant lethality at 48h following Pe OD 20 exposure.

For mutant analysis: For mutant analysis (Figure S1), an unpaired
t-test was performed. Body mass: n = 3 trials, 70-90 females. Midgut
area: n = 2 trials, 14— 19 midguts. Prospero cell density: n = 2 trials, 16
midguts.

RESULTS

Mature enteroendocrine cells induce Dimm in response
to Pe infection
We hypothesized that cells of the diffuse endocrine system would
stain positively for Dimm protein, because dimm is a prosecretory
factor and enteroendocrine cells are secretory cells known to express
a variety of peptide hormones (Nassel and Winther 2010). The pan-
enteroendocrine marker Prospero (Pros) was used to visualize cells of
the diffuse endocrine system along the length of the adult midgut.
Pros* staining is readily detected in individual endocrine cells, as are
secretory neuropeptides, such as AstA, which is expressed in class I
enteroendocrine cells of the posterior midgut (Figure 1, A and B')
(Beehler-Evans and Micchelli 2015). To test whether Dimm is nor-
mally present in wild-type adult enteroendocrine cells under base-
line conditions, we examined the colocalization of anti-Dimm in
Pros* cells. Yet, Dimm protein was not detected in any cells of the
adult midgut under our experimental conditions (Figure 1, C and
C’), despite the fact that identical antiserum has been used to detect
Dimm in other tissues (Hewes et al. 2003; Park et al. 2008).

We next examined Dimm protein distribution in the gut after
exposure to the Gram-negative bacteria Pe. We first measured the

1520 | K. Beebe et al.

T ’
24
Time (h)

f—
36 12 and time of collection as indicated. Mean

values = SEM are plotted.

survival of wild-type flies after exposure to Pe ad libitum at differ-
ent culture densities (Figure 1G). We selected an intermediate
value of OD 5 as the experimental exposure, because it was asso-
ciated with high survival of wild-type flies during the first 48 hr
after exposure. We estimate that OD 5 contained 2.3 x 10 cells
applied per vial (Table S4). In contrast to mock-treated controls,
exposure to Pe at OD 5 was sufficient to induce anti-Dimm stain-
ing in Pros* cells (Figure 1, D and D’). Upon induction, Dimm
colocalized with nuclear DAPI, consistent with its characterized
role as a transcription factor (Hewes et al. 2003; Park et al. 2011;
Hadzic et al. 2015) and with markers of specific enteroendocrine
cell subtypes (Figure 1D’ inset). When two different wild-type
genotypes were used, Dimm induction was highly reproducible
across independent trials (Figure 1H). Furthermore, adult midguts
from dimm mutants did not display Dimm™ staining after exposure
to Pe, despite the presence and normal density of Pros* cells (Fig-
ure 1H and Figure S1). These results indicate that the immunore-
activity observed in wild-type enteroendocrine cells after bacterial
challenge reflects changes in Dimm protein.

Exposure to Pe can lead to rapid production of new epithelial cells
in the gut through a stem cell-mediated regenerative response (Jiang
et al. 2009). It is therefore possible that the increase in Dimm signal
reflects a part of the differentiation program of newly generated entero-
endocrine cells. Alternatively, Dimm induction after Pe exposure
could occur homeostatically in extant endocrine cells. To distinguish
these possibilities, we examined Dimm immunostaining in the con-
text of an adult midgut epithelium depleted of escargot (esg) express-
ing progenitor cells. We performed a conditional genetic ablation by
initiating transgene expression of proapoptotic genes in adult pro-
genitor cells (UAS-rpr, UAS-hid; esgGald, UAS-GFP; tubGal80%).
Ablation was confirmed by the absence of GFP* progenitor cells
and this manipulation alone was not associated with accumulation
of Dimm (Figure S2). After exposure to Pe, midguts depleted of esg*
cells were capable of robust Dimm induction in Pros* cells (Figure 1,
E—F'). Taken together, we conclude that Dimm protein is normally
low under baseline conditions, and is induced in mature enteroendo-
crine cells following exposure to Pe.
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Dimm induction in the diffuse endocrine system is
transient and systemic

To further characterize Dimm induction in enteroendocrine cells, we
performed a time course analysis ranging from 0 to 48 hr following
initial Pe exposure. Four parameters were measured: (1) the percent-
age of individuals within an experimental group that displayed
Dimm* staining (percent Dimm®* midguts); (2) the percentage of
Dimm* endocrine cells per midgut (percent Dimm?*, Pros*); (3) the
anti-Dimm fluorescence intensity of individual enteroendocrine cells
within a midgut; and (4) the fold induction of dimm mRNA measured
by qPCR (Figure 2). Individuals displayed detectable Dimm™* cells
between 3 and 24 hr after initial Pe exposure, with the percentage
of positive midguts highest at 12 and 24 hr (Figure 2A). Dimm* cells
were not detectable in midguts from the 48-hr time point. Analysis of
the percentage of Dimm®*, Pros* cells within midguts revealed that
a majority of Pros* cells become Dimm™* after Pe treatment (Figure 2,
D and D'’). We independently examined data collected from the
anterior, middle, and posterior midgut regions to identify any poten-
tial differences in either the timing or extent of Dimm induction.
Regions did not significantly differ from each other within time
points, with the exception of the 12-hr time point when the middle
region was significantly higher than the posterior region (**ANOVA,
F = 6.503). Consistent with this statistical result, we noted a general
trend that the posterior midgut displayed lower percent Dimm™ values
and that endocrine cells in the anterior region most proximal to the
middle midgut were most consistently bright and of high percent
induction. Fluorescence intensity of anti-Dimm staining in individual
Pros* cells was consistent with percent cell induction and showed
higher values at the 12- and 24-hr time points (Figure 2B). Finally,
to determine whether dimm is transcriptionally induced after Pe ex-
posure, we compared dimm mRNA levels between mock- and Pe-
treated flies by qPCR (Figure 2C). An increase in dimm transcript
was detected at the 12- and 24-hr time points but not at 6- or 48-hr.
Transcriptional induction was likewise reduced in dimm mutants
(Figure S1). Taken together, we conclude that dimm is induced at
the transcriptional and protein levels measured, and exhibit a similar
time course showing highest values 12 and 24 hr after Pe exposure.
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Figure 3 Dimm induction is sensitive to
the dose of Pseudomonas entomophila
(Pe). Dose response of dimm induction.
(A) Quantification of the percentage of
individuals in a given trial that displayed
at least two positive anti-Dimm enteroen-
docrine cells over varying doses of Pe (n =
3 trials, 18 midguts). (B) Quantification of
fluorescence of anti-Dimm staining in in-
dividual Pros* cells over Pe dose. Each
column represents enteroendocrine cells

Nt ! = from an individual midgut (n = 3—4 mid-
Dose Pe .

guts, 70—330 enteroendocrine cells per

POSTERIOR midgut). (C) Quantitative polymerase

chain reaction analysis of dimm mRNA ex-
pression in midgut tissue over Pe dose
(n = 3 trials, 60 midguts). Fold change rep-
resents Pe compared with mock using the
274AC method. (D-D’') Regional analysis
of the percentage of Dimm* enteroendo-
crine cells per midgut over Pe dose (n = 3
trials, 18 midguts). Time of collection was
24 hr after Pe and dose as indicated. Mean
values = SEM are plotted.

0

0.001 1
Dose Pe

10

Dimm induction in enteroendocrine cells is sensitive to
low doses of Pe

We next asked whether Dimm induction varies with Pe dose. We ex-
posed flies to Pe ranging from OD 0.001 to OD 10 and quantified the
same set of parameters described previously (Figure 3). Although Pe
doses of OD 0.001 and OD 1 were associated with very low lethality
in wild-type flies (Figure 1G and Table S2), these doses were nevertheless
sufficient to induce Dimm* midguts at comparable frequency to OD 10
(Figure 3A). Similarly, Pe dose did not affect the percentage of Dimm™*
endocrine cells assayed in different regions of the midgut (Figure 3,
D—D""). Thus, the percentage of Dimm* enteroendocrine cells can reach
high values at sublethal doses of Pe. Fluorescence intensity of anti-Dimm
staining in individual Pros* cells also reached high values at the relatively
low dose of OD 0.001 (Figure 3B). Finally, examination of dimm mRNA
levels by qPCR revealed that increasing Pe dose correlated with increased
fold change in transcript (Figure 3C). Two transcripts previously char-
acterized to be responsive to Pe infection, unpaired 3 (upd3) and Dipter-
icin (Dpt) (Vodovar et al. 2005; Jiang et al. 2009), showed a similar trend,
suggesting that dose dependent transcriptional induction may be a general
aspect of the response to Pe (Figure S3). Taken together, we conclude that
independent measures of Dimm protein induction are sensitive to low
doses of Pe, and that dimm transcript induction is dose dependent.

Enteroendocrine cells express Dimm target genes in

a dimm-dependent manner

The biosynthetic enzyme peptidylglycine alpha-monooxygenase (Phin),
and dcat-4, which encodes a putative amino acid transporter, are direct
transcriptional targets of Dimm in the embryonic central nervous system
(Park et al. 2011). We therefore examined these targets in the diffuse
endocrine system by immunostaining (Figure 4). After mock treatment,
wild-type flies have detectable Phm in Pros* cells despite a lack of Dimm
staining in mock-treated flies (Figure 4A). Phm was also detectable in
wild-type endocrine cells after Pe exposure (Figure 4B). However, Phm
was not detectable in enteroendocrine cells of dimm mutants under
mock- or Pe-infected conditions, despite the presence of Pros* cells in
mutant midguts (Figure 4, C and D and Figure S, see the Materials and
Methods section for description of genotype used). To test whether Phm
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is increased in midguts exposed to Pe, we quantified the percentage of
Phm, Pros* cells after mock and Pe treatment. The percentage of Phm*,
Pros* cells was not significantly changed in response to Pe exposure
(Figure 4E). We conclude that dimm is necessary for detection of
Phm protein in adult midgut endocrine cells, and that Phm is detectable
at similar levels in endocrine cells independent of Pe exposure.
Analysis of dCat-4 revealed detectable dCat-4 in a portion of wild-
type Pros* cells after mock and Pe treatment (Figure 4, F and G). In
contrast to Phm, the percentage of dCat-4*, Pros* cells was signifi-
cantly increased as an effect of Pe (Figure 4]). dimm mutants produced
detectable levels of dCat-4 protein; however, the percentage of dCat-4*+
Pros* cells did not increase as significantly as an effect of Pe in the
absence of dimm (Figure 4, H, 1, and J). We conclude that dCat-4 is
a regulated target during the midgut response to Pe, and that dimm is
not absolutely necessary for dCat-4 expression, but is necessary for
dCat-4 induction in response to Pe. Taken together, we conclude that
two previously identified direct transcriptional targets also show dimm
dependent expression and induction in midgut endocrine cells.

dimm is required for increased levels of AstA hormone
after Pe infection

We hypothesized that Dimm induction in enteroendocrine cells could
help support changes in peptide hormone levels after Pe. To test this
possibility, we examined the protein AstA after mock and Pe treat-
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Figure 4 dimm target gene ex-
pression and peptide regulation
in enteroendocrine cells. Analysis
of dimm target genes. Insets
show representative cells in gray
scale to best permit comparison
between samples. (A—E) Phm
staining in wild-type and dimm
mutant midguts after mock or Pe
treatment. (DAPI, blue; anti-Phm,
red; anti-Pros, green). (F—J) dCat-
4 staining in wild-type and dimm
mutant midguts after mock or Pe

treatment. (DAPI, blue; anti-dCat-
P - B 4, red; anti-Pros, green). (K—P)
Allatostatin A (AstA) staining in
wild-type and dimm mutant
midguts after mock or Pe treat-
ment. (DAPI, blue; anti-AstA,
red). (E, J, and O) Percent positive
cells of indicated antibody. Black
bars, wild-type; gray bars, dimm
mutants. Bars indicate mean val-
E + . + ues = SEM (n = 2-3 trials,
12—18 midguts). (P) Quantifica-

Percent Phm +, Pros +
(4]
o
1

=

e P tion of mean fluorescence of

159 anti-AstA staining in the AstA*

i cell population after mock or Pe

40 B 2 ) treatment. Wild-type mock, black;

a 210 ': wild-type Pe, pink with black bor-

gso § 82 . der; dimm mutant mock, gray;

2 2 8% xH dimm mutant Pe, pink with gray

Ez S & . 2wt border, (n = 1 trial, 3—4 midguts,
3 g5 i np N i

E, A "i' o ';-llo 3—11 AstA* cells per mldgut). Pe

;': I dose was OD 5 and time of col-

. lection 24 hr in all experiments.

Scale bar: 50 pm.

ment. AstA was detectable in both wild-type and dimm mutants un-
der mock conditions (Figure 4, K and M). AstA also was detectable in
both genotypes after Pe exposure (Figure 4, L and N). We noted
a visual increase in the intensity of AstA staining in samples exposed
to Pe, and therefore quantified the percentage of AstA*, Pros* cells, as
well as the fluorescence intensity of AstA antibody staining in indi-
vidual cells (Figure 4, O and P). We observed that wild-type midguts
significantly increased the percentage and levels of AstA after expo-
sure to Pe. dimm mutants displayed a similar trend of AstA induction
in response to Pe, however both the percentage of AstA*, Pros* cells
and the fluorescence intensity of individual enteroendocrine cells were
less pronounced than that of wild-type flies. We conclude that AstA is
a regulated peptide during the midgut response to Pe and that dimm is
not absolutely necessary for AstA expression, but is necessary for
normal AstA induction in response to Pe exposure. We note that in
contrast to Phm and dcat-4, profiling studies in other tissues have not
identified peptide hormones as direct targets (Park et al. 2011; Hadzic
et al. 2015). Therefore, it remains unclear whether AstA is a direct
transcriptional target in the gut or whether this regulation is indirect.

dimm is a host factor that protects Drosophila against
Pe infection

To test the functional requirement for dimm, we first examined the
survival of dimm mutants after Pe challenge. Before treatment, dimm
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Figure 5 dimm is a host factor that protects against Pseudomonas
entomophila (Pe) infection. Survival and immune response of dimm
mutants after Gram-negative Pe infection. (A) Survival of wild-type
and dimm mutants after exposure to mock or Pe treatment. Flies were
exposed to Pe OD 10 for 24 hr (n = 4 trials, 80 females). (B) Quanti-
tative polymerase chain reaction analysis of mRNA in whole-body tis-
sue of a subset of antimicrobial peptides in wild-type and dimm
mutant genotypes, Pe OD 5, collected 24 hr after Pe (wild-type, black
bars; dimm mutant, gray bars). Fold change represents Pe compared
with mock using the 2744, method (n = 3 trials, 30 flies). Bars indicate
mean values = SEM.

mutants displayed reductions in mass and midgut area (Figure S1, C
and D). However, no significant effect on the density of Pros* cells
was detected (Figure S1E). After Pe exposure, survival of dimm
mutants was significantly decreased compared with wild-type controls
(Figure 5A and Table S3). Similar results were also observed following
conditional expression of RNAi targeting dimm or Phm (Figure S4).
To more specifically examine the involvement of dimm in the host
immune response, we next compared wild-type and dimm mutant
flies for their expression of a subset of antimicrobial peptides known
to be involved in the innate immune response to Pe (Vodovar et al.
2005). The AMPs Diptericin (Dpt), drosocin (dro), and Attacin A
(AttA) were highly induced in wild-type flies exposed to Pe (Figure
5B). However, dimm mutant flies displayed a significantly lower fold
change in response to Pe for each AMP measured. Taken together, we
conclude that dimm is a protective host factor that is necessary for the
induction of antimicrobial peptides following infection by the Gram-
negative pathogen Pe.

DISCUSSION

We used the Drosophila midgut to investigate how the diffuse endo-
crine system responds to pathogenic infection by a Gram-negative
bacterium. Our studies establish an important new link between path-
ogenic infection and the coordinated induction of a prosecretory pro-
gram in cells of the diffuse endocrine system. They also suggest
a molecular model explaining how changes in the lumenal environ-
ment might result in a dynamically altered organismal physiology
(Figure 6). Mature enteroendocrine cells respond to the pathogenic
bacterium Pe with induction of dimm, a prosecretory basic helix-loop-
helix transcription factor. This response shows a defined signature in
several variables, including time, dose and region of enteroendocrine
induction. In the diffuse endocrine system, dimm is necessary for
normal levels of the important peptide hormone AstA and an enzyme
necessary for the processing of peptide hormones more generally.
Thus, Dimm may function to provide “gain” in the adaptive response
of the diffuse endocrine system (Mills and Taghert 2012). Finally, we
show that dimm is an essential host factor that protects the organism
against pathogenic challenge and controls the induction of antimicro-
bial peptides. Future studies will determine the extent to which
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changes in the diffuse endocrine system directly regulate immune
function or whether these processes occur in parallel.
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