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A B S T R A C T   

Detection of microstructural white matter injury in traumatic brain injury (TBI) requires specialised imaging 
methods, of which diffusion tensor imaging (DTI) has been extensively studied. Newer fibre alignment estimation 
methods, such as constrained spherical deconvolution (CSD), are better than DTI in resolving crossing fibres that 
are ubiquitous in the brain and may improve the ability to detect microstructural injuries. Furthermore, auto
matic tract segmentation has the potential to improve tractography reliability and accelerate workflow compared 
to the manual segmentation commonly used. In this study, we compared the results of deterministic DTI based 
tractography and manual tract segmentation with CSD based probabilistic tractography and automatic tract 
segmentation using TractSeg. 37 participants with a history of TBI (with Glasgow Coma Scale 13–15) and 
persistent symptoms, and 41 healthy controls underwent deterministic DTI-based tractography with manual tract 
segmentation and probabilistic CSD-based tractography with TractSeg automatic segmentation.Fractional 
anisotropy (FA) and mean diffusivity of corpus callosum and three bilateral association tracts were measured. FA 
and MD values derived from both tractography methods were generally moderately to strongly correlated. CSD 
with TractSeg differentiated the groups based on FA, while DTI did not. CSD and TractSeg-based tractography 
may be more sensitive in detecting microstructural changes associated with TBI than deterministic DTI trac
tography. Additionally, CSD with TractSeg was found to be applicable at lower b-value and number of diffusion- 
encoding gradients data than previously reported.   

1. Introduction 

Diffuse axonal injury (DAI) is a major contributor for morbidity in 
traumatic brain injury (TBI) of all severities (McGinn and Povlishock, 
2016). In contrast to focal lesions that characterise more severe injuries 
and are visible on routine imaging, diffuse, microstructural white matter 
injuries may be detected in vivo only by specialised magnetic resonance 
imaging (MRI) methods, such as diffusion tensor imaging (DTI) (Alex
ander et al., 2007; Brandstack et al., 2013). 

Diffusion changes typically associated with chronic TBI are 
decreased fractional anisotropy (FA) and increased mean diffusivity 
(MD), although this is not a universal pattern (Bazarian et al., 2007; 
Cubon et al., 2018; Mayer et al., 2010; Wilde et al., 2008). In acute to 
subacute TBI (roughly within 1 month), there is more variation as to 
whether decreased or increased FA and MD are reported (Bazarian et al., 
2007; Cubon et al., 2018; Mayer et al., 2010; Wilde et al., 2008). Time- 
course of secondary injury development may be very long, as pro
gressing DTI changes (Dinkel et al., 2014) and elevated levels of TBI 
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related blood biomarkers (especially neurofilament light) (Shahim et al., 
2020) have been detected even years after injury in prospective studies. 
Depending on injury stage, possible histological mechanisms of diffusion 
changes include damage to myelin or axon membranes, reduced number 
of axons, reduced axon coherence, oedema and recruitment of 
compensatory mechanisms or neuroplasticity (Borja et al., 2018; Lin 
et al., 2016; Lipton et al., 2012; Mayer et al., 2010). Decreased FA and 
increased MD have been observed in many white matter tracts, with the 
corpus callosum being the most commonly affected structure in patients 
with TBI (Hulkower et al., 2013; Hunter et al., 2019). This may be due in 
part to selection bias though, as many studies have used predetermined 
regions of interest (ROIs). Abnormalities in the superior and inferior 
longitudinal fasciculi have been equally common in whole brain ana
lyses, with many other structures also commonly affected (Hulkower 
et al., 2013). 

In clinical practice, microhaemorrhages detected on T2* or 
susceptibility-weighted imaging sequences have been considered the 
most important surrogate imaging biomarker for DAI (Useche and Ber
mudez, 2018). MRI-detected microhaemorrhages have been associated 
with FA loss and MD increase in DTI (Håberg et al., 2015; Rostowsky 
et al., 2018). However, microhaemorrhages are a sign of diffuse vascular 
injury, which seems to have only modest correlation with DAI 
(Andreasen et al., 2020; Haber et al., 2021; Niogi et al., 2008). White 
matter tractography is a method for quantifying microstructural white 
matter integrity more directly. 

The most widely used approach to tractography presently is DTI, 
which relies on diffusion tensors. Diffusion tensor estimates a single 
three-dimensional orientation for diffusion in a voxel. However, when 
voxels contain multiple fibre orientations, the method is less reliable 
(Basser et al., 2000; Basser and Pierpaoli, 1996). It has been estimated 
that the majority of white matter voxels contain multiple fibre orien
tations (Jeurissen et al., 2013). Constrained spherical deconvolution 
(CSD) (Jeurissen et al., 2011; Tournier et al., 2007) seeks to address the 
problem of multiple fibre orientations. In this approach, spherical 
deconvolution method is used to extract white matter fibre orientation 
distribution function (fODF). To date, there is evidence of CSD-based 
tractography correlating better than DTI with memory function in Alz
heimer’s disease (Reijmer et al., 2012) and motor function after stroke 
(Auriat et al., 2015), and depicting in more detail the relevant white 
matter tracts before glioma surgery (Becker et al., 2020; Mormina et al., 
2016). 

CSD is developed for single-shell high angular resolution diffusion 
imaging data (Tuch et al., 2002) with a b-value ideally at 2500–3000 s/ 
mm2 and 45 or more diffusion encoding gradient directions (Tournier 
et al., 2013), although today multi-shell based CSD estimations exist as 
well (Jeurissen et al., 2014; Tournier et al., 2007). However, good re
sults have been demonstrated with CSD at b = 1000 s/mm2 and 30 
diffusion encoding gradient directions, performing superior to DTI even 
at such data (Calamuneri et al., 2018). 

Although CSD addresses the problem of crossing fibres better than 
DTI, there is no unambiguous way to trace fibres through voxels with 
multiple fibre orientations (Maier-Hein et al., 2017). Commonly 
employed strategy is to apply expert anatomical knowledge to delineate 
tracts, by defining regions to be included or excluded (Rheault et al., 
2020). The disadvantage of this method is the high amount of work and 
operator dependency. Automatic segmentation methods have been 
developed to solve these problems. In this study, we used the openly 
available TractSeg automatic segmentation tool (Wasserthal et al., 
2018). TractSeg is based on a convolutional neural network and pre
trained on high-quality diffusion MRI data acquired for the Human 
Connectome Project. Segmentation in TractSeg is performed on fODF 
peaks without prior tractography. 72 fibre bundles can be segmented 
and probabilistic fibre tracking is performed within these bundles to 
generate bundle-specific tractograms (Wasserthal et al., 2019). TractSeg 
is robust in eliminating false positive fibres, which would otherwise be a 
problem with probabilistic CSD-based tractography (Maier-Hein et al., 

2017). Other semi-automated tools for tract segmentation exist, 
including AFQ/pyAFQ (Kruper et al., 2021; Yeatman et al., 2012), and 
WMA segmentation (Bullock et al., 2019). 

In this study, we compared the results of deterministic DTI based 
tractography and manual tract segmentation with CSD based probabi
listic tractography and automatic tract segmentation using TractSeg. 
The participant sample consisted of symptomatic patients with a history 
of TBI, initially defined as mild based on the GCS score, and healthy 
controls. CSD is superior to DTI in modelling complex fibre architectures 
and there are reports of its clinical superiority in non-TBI applications 
(see above). Therefore, we hypothesised that CSD- and TractSeg-based 
tractography would be superior to DTI-based tractography in detect
ing white matter microstructural alterations in TBI. We also examine the 
applicability of CSD-based analysis in combination with TractSeg in DWI 
data that were previously considered suboptimal or even incompatible 
with CSD. This may be of value, as many clinical imaging setups pres
ently do not correspond to what is considered ideal for these 
applications. 

2. Methods 

2.1. Participants 

Participants were 37 symptomatic patients with a history of TBI and 
41 age and sex matched healthy controls. Patients with TBI were 
recruited at the TBI outpatient department of Turku University Hospital 
during 2013–2016. Patients were considered for inclusion if following 
criteria were met: a) age 18–65 years during the injury and inclusion to 
the study, b) no neurological comorbidities besides possible migraine, c) 
no psychiatric comorbidities requiring treatment (a history of mild 
depression or anxiety disorder was permitted, if no medication or other 
treatment was presently required), d) a history of non-penetrating TBI 
with the lowest acutely documented Glasgow coma scale (GCS) score of 
13–15, d) MRI with DWI had been done according to the study protocol, 
e) besides possible microhaemorrhages, no evidence of trauma or other 
neurological disease in routine clinical MRI evaluation (e.g., no mass 
lesions), f) Glasgow outcome scale extended available, evaluated 6 
months after injury earliest by an experienced neurologist, and scored 
<8, indicating incomplete recovery, g) presence of residual symptoms 
clinically related to TBI. 

All patients had clinically obvious sequels from their TBI based on 
standard clinical evaluation. This was carefully assessed based on 
detailed history of the injury event and symptom evolution, neuropsy
chological evaluation, and absence of other possible causes for their 
symptoms. The clinical variables GCS, GOSE, post traumatic amnesia 
duration (PTA), and time from injury to imaging were extracted from the 
patient records. Controls were healthy 18–65-year-old volunteers with 
no history of TBI and otherwise fulfilling the same criteria. All partici
pants gave their written informed consent. The study was accepted by 
the Ethical Committee of the Hospital District of Southwest Finland and 
carried out in accordance with The Code of Ethics of the World Medical 
Association (Declaration of Helsinki). 

2.2. MRI acquisition 

A 3.0 T MRI scanner (Achieva, Philips Medical Systems, Best, 
Netherlands) was used with an eight-channel sensitivity encoding 
transmit-receive head coil. DW imaging was performed in transverse 
plane with echo-planar sequence (TR 5877 ms, TE 62 ms, 60 2.0 mm 
slices with no gap, 112×128 reconstructed matrix, turbo factor 59, echo- 
planar imaging factor 59, FOV rectangular 224 mm, two signals ac
quired). We acquired a b = 0 s/mm2 image and b = 800 s/mm2 images 
with 15 different gradient-encoding directions. Images with isotropic 2 
mm voxel size were obtained. Besides DWI, routine T1, T2, fluid- 
attenuated inversion recovery and susceptibility weighted imaging se
quences were acquired. All images were analysed by a neuroradiologist 
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to ascertain that inclusion criteria were fulfilled. 

2.3. DWI analysis 

Images were postprocessed to remove distortions due to shear, eddy 
currents, and motion using Diffusion Registration Tool (Philips Medical 
Systems). Deterministic DTI tractography was done using the FiberTrak 
software (Philips Medical Systems). Analysed tracts were corpus cal
losum, left and right cingulum, left and right uncinate fascicle, and left 
and right superior longitudinal fascicle. Each was defined by two free
hand inclusion ROIs and possible one exclusion ROI. ROIs were drawn 
based on individual anatomy as depicted in overlaid colour coded DWI 
and T1 images. The ROIs were generated by JT and inspected by TK, 
both with a specialist degree in radiology and TK also a certified 
neuroradiologist. The tracts were defined in the following way: 1) The 
corpus callosum was defined by two inclusion ROIs drawn on sagittal 
images at the level of left and right cingulate gyrus, and including the 
corpus callosum. 2) The cingulum was defined by two inclusion ROIs 
drawn around the cingulum on coronal images at the level of the upper 
part of the aqueduct and at the level of the mammillary bodies. Also an 
exclusion ROI was drawn around the corpus callosum on a midline 
sagittal image. 3) The superior longitudinal fascicle was defined by two 
ROIs drawn around the fascicle on coronal images at the level of the 
upper part of the aqueduct and at the level of the mammillary bodies. 4) 
The uncinated fascicle was defined by two ROIs drawn on a single cor
onal image, one surrounding the most anterior part of the fascicle that 
could be seen traversing in anteroposterior direction in the basal frontal 
lobe, and the other ROI surrounding the entire anterior temporal lobe at 
the same level. 

For tract termination a minimum FA limit 0.5 was used for corpus 
callosum and 0.3 for the other tracts, and a maximum angle limit of 27◦. 
Minimum track length was set at 10 mm. These criteria were used to 
reconstruct each tract volume, from which average FA and MD values 
were calculated by the FiberTrak software. 

For the CSD based tractography, DWI images were denoised (Veraart 
et al., 2016), corrected for Gibbs ringing artefacts (Kellner et al., 2016), 
eddy currents and head motion (Andersson and Sotiropoulos, 2016), and 
bias field (Tustison et al., 2010), comprising a similar preprocessing 
pipeline as in (Ades-Aron et al., 2018). MRtrix3 (Tournier et al., 2019) 
was used to generate fODF peaks, using the Tournier et al. (Tournier 
et al., 2013) iterative algorithm. Spherical harmonics up to order four 
were used to estimate the fODF. The fODF peaks were used as input for 
TractSeg to reconstruct fibre bundles, using probabilistic Tract 

Orientation Mapping (TOM) tractography (Wasserthal et al., 2019; 
Wasserthal et al., 2018). 

To evaluate the effect of the more advanced preprocessing methods 
available in the CSD analysis pipeline, compared to the DTI pipeline, we 
calculated an alternative CSD and TractSeg based analysis, with only 
motion and eddy current correction preprocessing steps. These results 
are reported separately. 

From both CSD + TractSeg and DTI based tractography the mean FA 
and MD values of selected tracts were extracted for statistical analysis. 
Examples of final tractograms are presented in Fig. 1. 

2.4. Statistical analysis 

Statistical analyses were done using IBM SPSS Statistics version 25 
(IBM corp., Armonk, NY, USA) and Matlab R2021a (The MathWorks, 
Natick, MA, USA). Repeated measures analysis of variance (rmANOVA) 
was conducted, with analysis method (CSD + TractSeg or DTI) and tract 
(corpus callosum, and separately for each hemisphere the uncinate 
fascicle, cingulum, and superior longitudinal fascicle) as within-subjects 
variables and group (controls or TBI) as a between-subjects factor. 
Greenhouse-Geisser correction was applied where sphericity assumption 
was violated. Partial eta squared effect size estimates (η2

p) were calcu
lated. Independent or paired samples t-tests and Mann-Whitney U-tests 
with Bonferroni corrections were used for post-hoc comparisons and 
Chi-square test for sex distribution. Spearman rank-order correlation 
coefficients were calculated to evaluate the relation of clinical variables 
(GCS, GOSE, PTA and time from injury) to tractography statistics. 
Pearson’s correlation coefficients were calculated to compare the FA and 
MD produced by each tractography method for every tract and also for a 
calculated mean FA and mean MD including data from all the tracts. All 
analyses were performed separately for the FA and MD values. 

3. Results 

3.1. Participant characteristics 

Characteristics of the participant sample are presented in Table 1. On 
average, the participants with TBI had sustained the injury 1.2 years 
before MRI, with shortest interval being 2 weeks and longest 9.9 years. 
All TBIs were sustained in civilian settings, with most common mecha
nisms being traffic accidents and falls, and some cases of assault also 
included. No penetrating or blast-induced TBIs were included. All par
ticipants’ TBI had been initially evaluated as mild based on GCS 13–15. 

Fig. 1. Sample tractograms from DTI and CSD based tractographies. On the left a sample patient’s data from the control group and on the right from the TBI 
group. Data from different tractography methods is organised in rows, with sagittal and coronal images shown in their own rows. Tractograms are overlaid on T1 
weighted anatomical images. For DTI, the ROIs on which the tractograms are based on are also demonstrated. The left sided association tracts were defined 
correspondingly. CC, corpus callosum; CG, cingulum; UF, uncinated fasciculus; SLF, superior longitudinal fasciculus. 
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However, 40.5 % of patients were found to have a PTA ≤ 24 h and 59.5 
% had a PTA > 24 h, and 11 TBI participants (29.7 %) had micro
haemorrhages detected in clinical MRI. Depending on classification 
used, these features may imply a complicated mild or moderate TBI in 
these participants, despite initial mild level GCS. All participants had 
incomplete functional recovery at the time of imaging (GOSE < 8). The 
clinical neurological and neuropsychological evaluation results were 
studied from patient records and revealed common TBI related symp
toms (e.g., fatigue, memory and emotional problems, minor motor 
symptoms). 

3.2. Analysis of FA and MD values – other than group-related effects 

Results of the main rmANOVAs are presented in Tables 2 and 3. 
Differing FA and MD values were found for the different individual 

tracts, disregarding which tractography method was used (main effect of 
tract for FA p < 0.001, and MD p < 0.001). CSD + TractSeg based 
tractography resulted in generally lower FA (main effect of method p <
0.001) and lower MD (p < 0.001) values than DTI-based tractography. 
Participant age was found to be related to FA values (main effect of age 
p < 0.001), due to lower FA values with higher age. 

An interaction was found between tractography method and tract 
studied (p < 0.001 and η2

p = 0.615 for FA values and p < 0.001 and η2
p =

0.163 for MD values). Based on descriptive statistics (not shown) and 
Fig. 2 this is due to CSD + TractSeg and DTI resulting in different relative 
FA and MD values for different tracts. For example, with CSD + TractSeg 
the highest FA values were found in the superior longitudinal fascicles, 
but with DTI the highest FA was found in the corpus callosum (see 
Fig. 2). 

For FA values, we found an interaction between tract and age (p =
0.006, η2

p = 0.047). Based on analysis of scatterplots (not shown) this 
seems to be due to more obvious age-related declines in FA values of 

some tracts (e.g. the superior longitudinal fascicles), while no clear trend 
was seen in other tracts (e.g. the corpus callosum). This aspect of our 
results was not analysed further, as it was not considered essential to this 
study. 

For MD values, we found also interactions of tract × sex (p = 0.007), 
tract × method × sex (p = 0.019), and tract ×method × age (p = 0.044). 
Follow-up ANOVAs were calculated separately for each tract. It was 
found that MD values in corpus callosum were higher in males (p =
0.027). CSD + TractSeg produced lower MD values for females 
compared to males on right cingulate gyrus (interaction p = 0.014), 
while no sex differences were found with DTI or with either method on 
the left cingulate gyrus. No significant effects were found for the unci
nated fascicles or the superior longitudinal fascicles. This data is not 
presented in more detail. 

3.3. Analysis of FA and MD values – group-related effects 

There was an interaction between the participant group (TBI or 
control) and tractography method (CSD + TractSeg or DTI) on FA values 
(p < 0.001, η2

p = 0.221) and with a smaller effect size on MD values (p =
0.008, η2

p = 0.092). To explain this, separate rmANOVAs were calculated 
for each tractography method. CSD + TractSeg resulted in lower FA 
values (p = 0.008, η2

p = 0.091) in the TBI group compared to the control 
group, while FA values derived from DTI did not differ statistically 
significantly between the groups (p = 0.580, η2

p = 0.004). Thus, CSD +
TractSeg was able to differentiate the patient group from controls based 
on FA, but the same was not found for DTI. 

For the MD values, follow-up rmANOVA did not reveal statistically 
significant effect of group on either the CSD + TractSeg-derived values 
(p = 0.064, η2

p = 0.046) or DTI values (p = 0.527, η2
p = 0.005). Thus, the 

weaker group × method interaction for MD values is not conclusively 
explained. Based on descriptives it may, however be related to higher 
MD values in TBI group compared to controls in CSD + TractSeg 
tractography. 

Correlation analyses did not reveal correlations between the recor
ded background variables (GCS, GOSE, PTA and time interval from 
injury to imaging) and tractography results. Separate rmANOVAs were 
conducted to analyse the effect of time from injury to imaging to FA and 
MD values. In this, only TBI participants were included and time interval 
from injury to imaging was dichotomised, using a cutoff of 3 months to 
yield groups of N = 17 and N = 20. This dichotomy was used as a 
grouping variable and otherwise identical rmANOVAs to the ones re
ported above were done. No statistically significant main effects or in
teractions including the dichotomised time from injury to imaging were 
found. 

Table 1 
Participant characteristics. For all variables except sex, mean ± standard 
deviation is reported and the minimum and maximum observed values are in 
parentheses. For sex and age, p-values (Chi-square test for sex and independent- 
samples t-test for age) of between groups comparisons are reported.  

Group TBI (n = 37) Control (n = 41) p-value 

Sex 15 female 
22 male 

17 female 
24 male  

0.934 

Age, years 37.2 ± 11.4 (19–60) 36.4 ± 11.9 (18–57)  0.777 
GCS 14.7 ± 0.6 (13–15)   
PTA, hours 76 ± 23.0 (0–504)   
Imaging interval, years 1.2 ± 2.1 (0.04–9.9)   
GOSE 5.6 ± 1.1 (4–7)   
Microhaemorrhages 11 patients (29.7 %)    

Table 2 
Rmanova results for fa values. Main effects and interactions are reported, with 
F-values, Greenhouse-Geisser corrected p-values, and ηp

2 estimates of effect size. 
Statistically significant effects are marked with an asterisk.   

F p ηp
2 

Sex  0.079  0.779  0.001 
Age  14.152  <0.001*  0.161 
Group  1.779  0.186  0.023 
Tract  48.806  <0.001*  0.397 
Tract × sex  2.063  0.086  0.027 
Tract × age  3.660  0.006*  0.047 
Tract × group  0.483  0.747  0.006 
Method  818.712  <0.001*  0.917 
Method × sex  2.478  0.120  0.032 
Method × age  0.042  0.837  0.001 
Method × group  21.027  <0.001*  0.221 
Tract × method  118.206  <0.001*  0.615 
Tract × method × sex  0.996  0.411  0.013 
Tract × method × age  0.430  0.790  0.006 
Tract × method × group  0.329  0.862  0.004  

Table 3 
Rmanova results for md values. Main effects and interactions are reported, 
with F-values, Greenhouse-Geisser corrected p-values, and ηp

2 estimates of effect 
size. Statistically significant effects are marked with an asterisk.   

F p ηp
2 

Sex  0.417  0.521  0.006 
Age  0.083  0.775  0.001 
Group  1.580  0.213  0.021 
Tract  25.394  <0.001 *  0.255 
Tract × sex  3.854  0.007 *  0.050 
Tract × age  1.325  0.264  0.018 
Tract × group  1.328  0.263  0.018 
Method  0.867  0.355  0.012 
Method × sex  0.070  0.793  0.001 
Method × age  0.056  0.813  0.001 
Method × group  7.505  0.008 *  0.092 
Tract × method  14.402  <0.001 *  0.163 
Tract × method × sex  2.936  0.019 *  0.038 
Tract × method × age  2.436  0.044 *  0.032 
Tract × method × group  0.763  0.557  0.010  
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3.4. Correlation between methods 

Correlation coefficients were calculated for each tract’s CSD +
TractSeg and DTI derived values. The results of the different tractog
raphy methods were positively correlated for every tract. Strong corre
lations were generally found for MD values. Most FA values were 
moderately or strongly correlated between the methods, with the 
strongest correlations found for superior longitudinal fasciculi, and only 
a weak (but statistically significant) correlation for the left uncinate 
fascicle (Table 4). 

As the correlation properties of each tract were very similar, mean FA 
and MD values across all tracts were also calculated by adding all in
dividual tract results and dividing by the number of tracts. This was done 
to allow simpler presentation of the distribution of FA and MD values 
and correlation of the values between DTI and CSD + TractSeg. The 
distributions of these compound mean FA and mean MD values sepa
rately for each tractography method and group are displayed in Fig. 3. It 
is noteworthy that the distributions overlap in large part, but in CSD +
TractSeg derived FA values, there is a longer tail of small FA values, 
representing a minority of TBI patients with more deviant values. 

The mean FA values measured by DTI and CSD + TractSeg were 
moderately strongly correlated (r = 0.710, p < 0.001). The mean MD 

values measured by DTI and CSD + TractSeg were strongly correlated (r 
= 0.911, p < 0.001). Fig. 4 visualises these correlations as scatterplots, 
also showing the participant groups separately. 

3.5. Analysis with alternative preprocessing methods 

To test for effect of more limited preprocessing, CSD + TractSeg 
tractography was done with only motion and eddy current correction. 
Using this data we repeated the rmANOVAs described above in sections 
3.2 and 3.3. Similar results were obtained. For FA values, same statis
tically significant main effects and interactions were found as before (cf. 
Table 2), with the exceptions that the previously found tract × age 
interaction lost its significance, but a new interaction of method × age 
(p < 0.001) was detected. 

For MD values (cf. Table 3), the interaction method × group was lost, 
as was the interaction tract × method × age. New statistically significant 
interaction method × age (p = 0.027) was found. 

4. Discussion 

The aim of this study was to compare a deterministic DTI based 
tractography and manual segmentation method with a CSD based 
probabilistic tractography and automatic tract segmentation using 
TractSeg. Our sample consisted of healthy controls and persistently 
symptomatic patients with a history of TBI and acutely evaluated GCS of 
13–15. Our main finding is that CSD and automated TractSeg based 
tractography were able to differentiate the TBI group from a group of 
healthy controls, while DTI based tractography was not. This suggests 
that CSD and TractSeg is more sensitive at detecting microstructural 
injuries associated with TBI than DTI based analysis. If this is the case, 
CSD and TractSeg may lead to detection of clinically significant alter
ations in patients for whom more traditional tractography might appear 
normal. 

The groups differed mainly on the basis of FA measured from the 
corpus callosum and three bilateral association tracts. The TBI group 

Fig. 2. Mean values ± 95 % confidence intervals of mean for each tract, separately for each group. Upper row, FA values; lower row, MD values. Left column, 
CSD + TractSeg; right column, DTI. CC, corpus callosum; CG, cingulum; UF, uncinated fasciculus; SLF, superior longitudinal fasciculus; L, left; R, right. 

Table 4 
Pearson correlations of the different tractography methods for each tract. 
Correlations of both FA and MD values are indicated. CC, corpus callosum; CG, 
cingulum; UF, uncinated fasciculus; SLF, superior longitudinal fasciculus; L, left; 
R, right. Pearson correlation coefficients and p-values are reported.   

CC CG L CG R UF L UF R SLF L SLF R 

FA 0.588 
p <
0.001 

0.532 
p <
0.001 

0.547 
p <
0.001 

0.387 
p <
0.001 

0.546 
p <
0.001 

0.686 
p <
0.001 

0.784 
p <
0.001 

MD 0.825 
p <
0.001 

0.828 
p <
0.001 

0.855 
p <
0.001 

0.762 
p <
0.001 

0.832 
p <
0.001 

0.876 
p <
0.001 

0.852 
p <
0.001  
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had lower FA, which is consistent with previous studies and has been 
interpreted as a sign of microstructural white matter injury (Borja et al., 
2018; Eierud et al., 2014). There was also an interaction of tractography 
method and participant group on MD values in the main analysis 
(although in the alternative analysis with more limited preprocessing 
this effect was lost). Higher MD values of the TBI group compared to 
control group in CSD and TractSeg tractography possibly underlie this 
weaker interaction, but could not be conclusively demonstrated. 

Using more advanced DWI processing methods such as CSD does not 
necessarily require newest high-end image acquisition but can be 
feasible with b = 800 s/mm2 and 15 gradient directions data, if com
bined with appropriate tract reconstruction methods. However, a higher 
b-value and gradient number imaging is recommended, if available, as 
the ability to resolve crossing fibres with CSD is better with higher b- 
values (Tournier et al., 2008). Based on our results, TractSeg is a feasible 
method for reconstructing TBI patients’ tracts. Once analysis pipeline is 
established, it is faster than reconstructing the same tracts based on 

manual ROI definitions and reduces the need for subjective judgement 
and neuroanatomical expertise. Our study thus demonstrates a potential 
method to increase the sensitivity and reliability of tract analysis and 
reduce workload. 

The values acquired by DTI and CSD-based tractography methods 
were generally moderately to strongly correlated. The distributions of 
FA and MD values were similar and largely overlapping between the 
groups, but CSD specifically seemed to find relatively low FA values in 
more participants of the TBI group than DTI did. This suggests a subset of 
the TBI participants with more pronounced microstructural injuries, that 
were better identified by the CSD and TractSeg approach, although a 
causal link between these findings and the initial injury cannot be 
established by this study. 

Correlations were not found between GCS, GOSE, and PTA and the 
tractography results. There are mixed reports of tractography statistics 
correlating (Kraus et al., 2007; Kumar et al., 2009; Lipton et al., 2009; 
Mohammadian et al., 2020, 2017; Niogi et al., 2008) or not correlating 

Fig. 3. Pyramid plots of the distribution of mean MD and mean FA. Upper row, FA values; lower row, MD values. Left column, CSD + TractSeg; right column, 
DTI. On X axis is frequency (n of participants). Left side of each pyramid plot represents the controls and right side TBI group. 

Fig. 4. Scatter plots of mean FA and MD values. X axis represents values derived from DTI tractography and Y axis values from CSD + TractSeg tractography. 
Control group participants are represented by green circles and TBI group participants by grey asterisks. 
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(Churchill et al., 2017; Studerus-Germann et al., 2018; Wäljas et al., 
2015; Wäljas et al., 2014) with clinical variables. Although by far not a 
unique feature of our study, the lack of correlation might be considered 
to cast doubt on the clinical validity of the results. However, several 
explanations for this shortcoming may be considered, namely the chal
lenges related to TBI severity stratification and outcome evaluation, the 
multifactorial aetiology of long-term symptoms, and methodological 
issues generally related to tractography studies. 

In our sample all TBI participants had an injury initially diagnosed as 
mild TBI based on the initial GCS and majority had a GCS score of 15. 
Therefore, GCS variability was low and might explain lack of correlation 
to tractography results. With regards to GOSE, all patients in the TBI 
sample showed incomplete recovery (GOSE < 8). Thus, patients with 
complete recovery were not in the analysis, and this might hamper 
finding correlations with tractography in the patient group. While GOSE 
is widely used and validated as a tool for measuring functional outcome, 
it has also been criticised for lacking inter-rater reliability and sensitivity 
especially in grading long-term symptoms related to mild TBI (McMillan 
et al., 2016). Addition of separate measures of cognitive outcome to TBI 
studies has been advocated (Bagiella et al., 2010) and could be espe
cially helpful in studies of mild TBI. 

Post-TBI symptoms are thought to represent the outcome of complex 
biopsychosocial interactions, where also other factors besides white 
matter injury may have important contributions. These may include e.g., 
post-traumatic stress disorder, prior physical and mental health, 
involvement in litigation, extra-cranial injuries, pain, and emotional 
distress (Carroll et al., 2004; Iverson, 2006; Iverson and Lange, 2003; 
Iverson and McCracken, 2009; Van Der Naalt et al., 2017; Wäljas et al., 
2015). Therefore, although we expected microstructural white matter 
injury to contribute to long-term symptoms, correlation to symptoms 
may be obscured by other factors. 

On the other hand, we may still be unable to detect some significant 
injuries with the present techniques, and thus unable to account for 
some injury-related symptoms by imaging. Improvements in imaging 
technique may help, but inherent problems are also caused by the 
sizeable inter-individual variation in tractography statistics. TBI- 
associated tractography findings are not disease-specific, and similar 
changes have been reported in e.g. psychiatric conditions, substance use, 
and sleep deprivation, with baseline cognitive capacity also potentially 
modifying the results (Dizaji et al., 2021; Elvsåshagen et al., 2015; 
Hampton et al., 2019; Jiang et al., 2017; Lipton et al., 2012). 

Additionally, we found that FA and MD values calculated from DTI 
and CSD + TractSeg-based tractography were generally different. CSD 
+ TractSeg resulted in lower FA and MD than DTI. Also, the relative 
values of different tracts were different, with e.g., the corpus callosum 
having the highest FA in the DTI analysis, but superior longitudinal 
fasciculi having the highest FA in CSD + TractSeg. On a general level, 
these findings reflect the methodological differences between the trac
tography methods. Tracts reconstructed by such different methods are 
not expected to be directly comparable, as there are fundamental dif
ferences in how they are defined (Schilling et al., 2021). As demon
strated in Fig. 1, CSD and TractSeg resulted in tracts with higher volume 
and extension closer to the cortical interface. This can explain why 
average FA was lower in CSD-based analysis. In deterministic DTI 
tractography the fibers will be terminated if FA falls below the pre
defined limit. A sufficiently strict FA limit is required to prevent tracking 
of fibres that are not anatomically related to the target tract. In TractSeg, 
lower FA volumes that are still actually related to the target tract may be 
included in the tract, as tracts are directly segmented from the fODF, 
utilising a pretrained convolutional neural network. Based on the pre
sent results and also the study by Ressel et al., 2018 (Ressel et al., 2018), 
such lower FA areas may however be highly clinically significant. 

Seemingly small changes in tractography parameters can also result 
in substantial differences in the results, as exemplified here by the 
relatively high FA of corpus callosum in DTI tractography. This is related 
to the fact that we chose a tract termination minimum FA limit of 0.5 for 

the corpus callosum (to avoid excessive propagation of the tract), but 0.3 
for other tracts. These findings do not pose a problem for our analysis, as 
the TBI and control group were analysed identically, but serve to 
highlight some of the potential challenges in generating normative data 
for clinical tractography (cf. Jones et al., 2013). Different relative FA 
and MD values may also be a reflection of how the tractography methods 
handle crossing fibres. The corpus callosum has highly parallel fibres, 
while association tracts have more crossing fibres, which results in lower 
DTI-based FA values. Crossing fibres should be better addressed by CSD, 
possibly explaining the relatively high FA derived from e.g. the superior 
longitudinal fasciculi with CSD + TractSeg. 

Besides different diffusion model and tractography method, different 
preprocessing steps in the CSD and DTI based analysis pipelines might 
have influenced our results (Maximov et al., 2019; Oldham et al., 2020). 
In this study, DTI preprocessing utilised an older, commercial pre
processing tool compatible with the tractography software, while pre
processing pipeline for CSD data was more modern, including denoising 
and Gibbs and bias field corrections. To control for possible effects, we 
did an alternative CSD and TractSeg based analysis, utilising pre
processing similar to what was done in DTI pipeline. This gave mostly 
equivalent results (including our main finding of CSD + TractSeg being 
able to differentiate the groups based on FA, while DTI was not). As 
problems in signal-to-noise-ratio are more prevalent in higher b-value 
imaging (Maximov et al., 2019), it may be that our results are not 
particularly strongly affected by preprocessing approaches such as 
denoising. Still, some differences were also observed, highlighting the 
importance of considering preprocessing approaches in diffusion MRI 
studies. 

Limitations of this study include the relatively low b-value and 
gradient number DWI acquisition, which limits tractography quality. 
However, an important outcome was that it is nevertheless possible to 
perform CSD-based tractography and obtain an apparent advantage in 
terms of sensitivity. The compared tractography approaches were 
different in several aspects, which makes it impossible to pinpoint a 
single reason why their performance was different. It must also be noted 
that patients with mass lesions were excluded, so applicability in such 
circumstances is not ascertained. GOSE was used as the outcome mea
sure, but quantitative cognitive test results would have been a valuable 
addition. Estimates of premorbid cognitive functioning might also have 
been a valuable covariate in the analyses. Our TBI sample was hetero
geneous in terms of time from injury to imaging, although this was not 
found to influence the results. The sample cannot be considered repre
sentative of mild TBI in general, as we used a selected sample with 
persistent TBI-related symptoms and GOSE < 8. Finally, we used healthy 
controls, which has been customary in many comparable studies. It can 
be argued that general trauma patients without TBI would make a better 
control group (Carroll et al., 2004), as they would better control for risk 
factors associated with being injured in the first place and non-specific 
injury related effects (such as pain and emotional distress). Comparing 
to TBI patients with good recovery would also have allowed more 
convincing hypotheses to be drawn about the clinical significance of the 
FA alterations we found. 

5. Conclusion 

Tractography based on CSD and automatic segmentation with 
TractSeg was able to discriminate a group of patients with TBI from 
healthy controls, while DTI-based tractography was not. CSD and 
TractSeg demonstrated lower FA values in the TBI group than in the 
control group. In combination with TractSeg it is feasible to use CSD 
with a lower b-value and a smaller number of gradient directions DWI 
data than previously reported. 
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Liimatainen, S., Hartikainen, K., Öhman, J., 2015. A prospective biopsychosocial 
study of the persistent post-concussion symptoms following mild traumatic brain 
injury. J. Neurotrauma 32, 534–547. https://doi.org/10.1089/NEU.2014.3339. 

Wasserthal, J., Neher, P., Maier-Hein, K.H., 2018. TractSeg - Fast and accurate white 
matter tract segmentation. Neuroimage 183, 239–253. https://doi.org/10.1016/j. 
neuroimage.2018.07.070. 

Wasserthal, J., Neher, P.F., Hirjak, D., Maier-Hein, K.H., 2019. Combined tract 
segmentation and orientation mapping for bundle-specific tractography. Med. Image 
Anal. 58, 101559. 

Wilde, E.A., McCauley, S.R., Hunter, J.V., Bigler, E.D., Chu, Z., Wang, Z.J., Hanten, G.R., 
Troyanskaya, M., Yallampalli, R., Li, X., Chia, J., Levin, H.S., 2008. Diffusion tensor 
imaging of acute mild traumatic brain injury in adolescents. Neurology 70, 948–955. 
https://doi.org/10.1212/01.wnl.0000305961.68029.54. 

Yeatman, J.D., Dougherty, R.F., Myall, N.J., Wandell, B.A., Feldman, H.M., Beaulieu, C., 
2012. Tract Profiles of White Matter Properties: Automating Fiber-Tract 
Quantification. PLoS One 7 (11), e49790. 

J. Tallus et al.                                                                                                                                                                                                                                   

https://doi.org/10.1007/S11682-012-9175-2
http://refhub.elsevier.com/S2213-1582(22)00349-7/h0210
http://refhub.elsevier.com/S2213-1582(22)00349-7/h0210
http://refhub.elsevier.com/S2213-1582(22)00349-7/h0210
http://refhub.elsevier.com/S2213-1582(22)00349-7/h0210
http://refhub.elsevier.com/S2213-1582(22)00349-7/h0210
http://refhub.elsevier.com/S2213-1582(22)00349-7/h0210
http://refhub.elsevier.com/S2213-1582(22)00349-7/h0210
http://refhub.elsevier.com/S2213-1582(22)00349-7/h0210
http://refhub.elsevier.com/S2213-1582(22)00349-7/h0210
http://refhub.elsevier.com/S2213-1582(22)00349-7/h0210
http://refhub.elsevier.com/S2213-1582(22)00349-7/h0210
http://refhub.elsevier.com/S2213-1582(22)00349-7/h0210
http://refhub.elsevier.com/S2213-1582(22)00349-7/h0210
http://refhub.elsevier.com/S2213-1582(22)00349-7/h0210
https://doi.org/10.1002/HBM.24691
http://refhub.elsevier.com/S2213-1582(22)00349-7/h0220
http://refhub.elsevier.com/S2213-1582(22)00349-7/h0220
http://refhub.elsevier.com/S2213-1582(22)00349-7/h0220
http://refhub.elsevier.com/S2213-1582(22)00349-7/h0225
http://refhub.elsevier.com/S2213-1582(22)00349-7/h0225
http://refhub.elsevier.com/S2213-1582(22)00349-7/h0230
http://refhub.elsevier.com/S2213-1582(22)00349-7/h0230
http://refhub.elsevier.com/S2213-1582(22)00349-7/h0230
https://doi.org/10.1016/j.nicl.2016.11.016
https://doi.org/10.1089/NEU.2020.7081/FORMAT/EPUB
https://doi.org/10.1089/NEU.2020.7081/FORMAT/EPUB
https://doi.org/10.1007/s00234-016-1732-8
http://refhub.elsevier.com/S2213-1582(22)00349-7/h0250
http://refhub.elsevier.com/S2213-1582(22)00349-7/h0250
http://refhub.elsevier.com/S2213-1582(22)00349-7/h0250
http://refhub.elsevier.com/S2213-1582(22)00349-7/h0250
http://refhub.elsevier.com/S2213-1582(22)00349-7/h0250
http://refhub.elsevier.com/S2213-1582(22)00349-7/h0255
http://refhub.elsevier.com/S2213-1582(22)00349-7/h0255
http://refhub.elsevier.com/S2213-1582(22)00349-7/h0255
http://refhub.elsevier.com/S2213-1582(22)00349-7/h0260
http://refhub.elsevier.com/S2213-1582(22)00349-7/h0260
http://refhub.elsevier.com/S2213-1582(22)00349-7/h0260
http://refhub.elsevier.com/S2213-1582(22)00349-7/h0260
https://doi.org/10.1186/S41747-018-0066-1
http://refhub.elsevier.com/S2213-1582(22)00349-7/h0270
http://refhub.elsevier.com/S2213-1582(22)00349-7/h0270
http://refhub.elsevier.com/S2213-1582(22)00349-7/h0270
http://refhub.elsevier.com/S2213-1582(22)00349-7/h0270
http://refhub.elsevier.com/S2213-1582(22)00349-7/h0270
http://refhub.elsevier.com/S2213-1582(22)00349-7/h0270
https://doi.org/10.3389/FNEUR.2018.00948
https://doi.org/10.1016/J.NEUROIMAGE.2021.118502
https://doi.org/10.1016/J.NEUROIMAGE.2021.118502
https://doi.org/10.1212/WNL.0000000000009985
https://doi.org/10.1212/WNL.0000000000009985
https://doi.org/10.1016/J.PJNNS.2018.08.011
https://doi.org/10.1016/J.PJNNS.2018.08.011
http://refhub.elsevier.com/S2213-1582(22)00349-7/h0295
http://refhub.elsevier.com/S2213-1582(22)00349-7/h0295
http://refhub.elsevier.com/S2213-1582(22)00349-7/h0295
http://refhub.elsevier.com/S2213-1582(22)00349-7/h0295
http://refhub.elsevier.com/S2213-1582(22)00349-7/h0295
https://doi.org/10.1002/nbm.3017
https://doi.org/10.1002/nbm.3017
http://refhub.elsevier.com/S2213-1582(22)00349-7/h0305
http://refhub.elsevier.com/S2213-1582(22)00349-7/h0305
http://refhub.elsevier.com/S2213-1582(22)00349-7/h0305
http://refhub.elsevier.com/S2213-1582(22)00349-7/h0305
https://doi.org/10.1016/j.neuroimage.2008.05.002
https://doi.org/10.1016/j.neuroimage.2008.05.002
https://doi.org/10.1002/MRM.10268
https://doi.org/10.1002/MRM.10268
https://doi.org/10.1109/TMI.2010.2046908
http://refhub.elsevier.com/S2213-1582(22)00349-7/h0325
http://refhub.elsevier.com/S2213-1582(22)00349-7/h0325
http://refhub.elsevier.com/S2213-1582(22)00349-7/h0330
http://refhub.elsevier.com/S2213-1582(22)00349-7/h0330
http://refhub.elsevier.com/S2213-1582(22)00349-7/h0330
http://refhub.elsevier.com/S2213-1582(22)00349-7/h0330
https://doi.org/10.1016/j.neuroimage.2016.08.016
https://doi.org/10.1089/NEU.2013.2941
https://doi.org/10.1089/NEU.2013.2941
https://doi.org/10.1089/NEU.2014.3339
https://doi.org/10.1016/j.neuroimage.2018.07.070
https://doi.org/10.1016/j.neuroimage.2018.07.070
http://refhub.elsevier.com/S2213-1582(22)00349-7/h0355
http://refhub.elsevier.com/S2213-1582(22)00349-7/h0355
http://refhub.elsevier.com/S2213-1582(22)00349-7/h0355
https://doi.org/10.1212/01.wnl.0000305961.68029.54
http://refhub.elsevier.com/S2213-1582(22)00349-7/h0365
http://refhub.elsevier.com/S2213-1582(22)00349-7/h0365
http://refhub.elsevier.com/S2213-1582(22)00349-7/h0365

	A comparison of diffusion tensor imaging tractography and constrained spherical deconvolution with automatic segmentation i ...
	1 Introduction
	2 Methods
	2.1 Participants
	2.2 MRI acquisition
	2.3 DWI analysis
	2.4 Statistical analysis

	3 Results
	3.1 Participant characteristics
	3.2 Analysis of FA and MD values – other than group-related effects
	3.3 Analysis of FA and MD values – group-related effects
	3.4 Correlation between methods
	3.5 Analysis with alternative preprocessing methods

	4 Discussion
	5 Conclusion
	Declaration of Competing Interest
	Data availability
	Funding
	References


