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Abstract

Automatic detection of some pulmonary abnormalities using chest X-rays may be impacted

adversely due to obscuring by bony structures like the ribs and the clavicles. Automated

bone suppression methods would increase soft tissue visibility and enhance automated dis-

ease detection. We evaluate this hypothesis using a custom ensemble of convolutional neu-

ral network models, which we call DeBoNet, that suppresses bones in frontal CXRs. First,

we train and evaluate variants of U-Nets, Feature Pyramid Networks, and other proposed

custom models using a private collection of CXR images and their bone-suppressed coun-

terparts. The DeBoNet, constructed using the top-3 performing models, outperformed the

individual models in terms of peak signal-to-noise ratio (PSNR) (36.7977±1.6207), multi-

scale structural similarity index measure (MS-SSIM) (0.9848±0.0073), and other metrics.

Next, the best-performing bone-suppression model is applied to CXR images that are

pooled from several sources, showing no abnormality and other findings consistent with

COVID-19. The impact of bone suppression is demonstrated by evaluating the gain in per-

formance in detecting pulmonary abnormality consistent with COVID-19 disease. We

observe that the model trained on bone-suppressed CXRs (MCC: 0.9645, 95% confidence

interval (0.9510, 0.9780)) significantly outperformed (p < 0.05) the model trained on non-

bone-suppressed images (MCC: 0.7961, 95% confidence interval (0.7667, 0.8255)) in

detecting findings consistent with COVID-19 indicating benefits derived from automatic

bone suppression on disease classification. The code is available at https://github.com/

sivaramakrishnan-rajaraman/Bone-Suppresion-Ensemble.

Introduction

Chest X-ray (CXR) is a commonly performed radiological examination to visualize various

abnormalities in the thoracic cavity [1]. However, accurate interpretation of pulmonary
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abnormalities like COVID-19 and others is particularly challenging because their visibility

may be obstructed by the presence of bony structures like ribs and clavicles. This reduced visi-

bility may lead to an erroneous interpretation by an expert or an artificial intelligence (AI)

algorithm, thereby severely impacting clinical decision-making. It has been noted in the litera-

ture that the presence of ribs and clavicles in CXR images led to missed lung cancer nodules

resulting in false interpretations [2].

Advanced radiology methods like dual-energy subtraction (DES) chest radiography are

used to produce “bone-only” and soft tissue images [3]. However, compared to traditional

CXRs, DES has several limitations [4]: (i) DES radiography exposes the subjects to a slightly

higher radiation dosage compared to traditional CXR imaging; (ii) DES radiographic imaging

can only be performed in the posterior-anterior view; (iii) Cost of DES radiography is higher

compared to conventional CXR imaging; and, (iv) DES radiography is recommended only for

patients above 16 years of age. Therefore, an automated bone suppression method for tradi-

tional CXRs should add value for enhancing soft tissue visibility and aid in the improved detec-

tion of pulmonary manifestations.

A study of the literature reveals several works published on suppressing bones in CXRs.

These studies involve using (i) commercial software, (ii) conventional machine learning meth-

ods using hand-crafted feature descriptors, or (iii) state-of-the-art deep learning (DL) models

to initially generate bone-only images and further subtract them from the original CXR to

increase soft-tissue visibility. In [5], the authors used commercial software to suppress bones

and improve performance for detecting lung nodules. It was observed that the performance of

the experts significantly improved (p< 0.05) by using the bone-suppressed CXRs resulting in

an area under the receiver-operating-characteristic curve (AUROC) of 0.863, compared to an

AUROC of 0.82 using non-bone-suppressed CXRs. Another study used commercial software

to suppress bones in CXRs and investigated for a performance improvement in Tuberculosis

(TB) detection [6]. They observed that the average AUROC of experts improved from 0.882 to

0.933 using bone-suppressed images. A convolutional neural network (CNN)-based model

was used in [7] to generate a bone-only image. This image is subtracted from the original CXR

to increase soft-tissue visibility, thereby resulting in 89.2% bone suppression. A cascade of

CNNs was used in [8] to create bone-only images at multiple scales. The generated images

were fused to form the final bone-only image that was subtracted from the original CXR to

generate a “bone-free” image. In another study [9], an artificial neural network was used to

generate a bone-only image that was subtracted from the original CXR to increase the visibility

of soft tissues. A method based on independent component analysis was proposed in [10] to

suppress bones and increase lung nodule visibility. Other studies [11–14] adopted bone sup-

pression methods to improve performance toward detecting lung nodules and other pulmo-

nary manifestations. These studies in general, propose multiple steps to generate bone-only

images and subtract them from the original CXRs to increase soft-tissue visibility. A limitation

of this approach is that an inaccurate generation of bone-only images would lead to introduc-

ing noise, reducing the visibility of soft tissues, increasing interpretation errors, and adversely

impacting decision-making. As of the writing of this manuscript and to the best of our knowl-

edge, other than [15] there are no other articles in the literature that propose an automated

method to generate a soft-tissue image directly from the original CXR image, alleviating the

need for intermediate bone image generation and subsequent subtraction methods.

Though CNN models demonstrate state-of-the-art performance in natural and medical

vision recognition tasks, they are often found to suffer from bias and variance issues that could

adversely affect their interpretation. These issues could be tackled through ensemble learning

that optimally combines the predictions of several models to improve prediction performance

compared to the individual constituent models and reduce prediction spread or dispersion
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[16]. Ensemble learning is widely used in medical computer vision tasks such as segmentation,

object detection, and classification [17]. To the best of our knowledge, we do not find any liter-

ature that evaluates the performance of DL model ensembles for bone suppression in CXRs.

In this study, we propose DeBoNet, an ensemble of DL models, for suppressing bones in

frontal CXRs. Through its use, we aim to improve disease classification and interpretation per-

formance which is demonstrated through the detection of findings that are consistent with

COVID-19 on CXRs [18]. We train several state-of-the-art architectures such as U-Nets [19]

and Feature Pyramid Networks (FPNs) [20], using several ImageNet classifiers as backbones,

and also propose custom models toward bone suppression. DeBoNet is constructed by (i) mea-

suring the multi-scale structural similarity index (MS-SSIM) score between the sub-blocks of

the bone-suppressed image predicted by each of the top-3 performing bone-suppression mod-

els and the corresponding sub-blocks in the respective ground truth soft-tissue image, and (ii)

performing a majority voting of the MS-SSIM score computed in each sub-block to identify

the sub-block with the maximum MS-SSIM score and use it in constructing the final bone-

suppressed image. We empirically determine the sub-block size that delivers superior bone

suppression performance. The performances of individual models and DeBoNet are evaluated

using several performance metrics such as average peak signal-to-noise (PSNR) ratio, struc-

tural similarity index (SSIM), MS-SSIM, correlation, intersection, chi-square, and Bhatta-

charya distances. Next, the best-performing bone suppression model is selected, truncated,

and appended with classification layers. This is done to transfer CXR modality-specific knowl-

edge and improve performance in the task of classifying CXRs as showing normal lungs or

other findings consistent with COVID-19. The performance of the classification model trained

on non-bone-suppressed CXRs and bone-suppressed CXRs are compared through several per-

formance metrics such as accuracy, AUROC, precision, recall, the area under the precision-

recall curve (AUPRC), F-score, and MCC. Additionally, we used our in-house class-selective

relevance map (CRM) algorithm [21] to interpret model predictions. Fig 1 shows the graphical

abstract of our proposed approach.

Our novel contributions are highlighted as follows:

(i) To the best of our knowledge, this is the first study to develop a model ensemble for sup-

pressing bones in CXRs, that we call DeBoNet, and demonstrate its effectiveness through

extensive qualitative and quantitative analyses.

(ii) We train and evaluate variants of U-Nets, Feature Pyramid Networks, and other proposed

custom models toward the bone suppression task.

(iii) The individual constituent models and the DeBoNet proposed in this study are not

restricted to the task of CXR bone suppression but can be potentially applied to other

image denoising applications.

Materials and methods

Datasets

The following datasets are used in this study:

(i) COVID-19 CXR collection: A total of 3016 de-identified publicly available CXR images

showing findings that are consistent with COVID-19, which serve as the set of cases in our

study, are pooled from several sources. A majority of these CXRs are pooled from the

BIMCV-COVID19+ CXR data collection that contains 2473 CXRs showing COVID-

19-like manifestations [22]. A set of 183 CXR images showing findings consistent with

COVID-19 are collected from a GitHub repository hosted by the Institute for Diagnostic
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and Interventional Radiology, Hannover Medical School, Hannover, Germany [23]. These

CXR images are accompanied by other metadata such as admission status and patient

demographics. The authors [17] collected 226 CXRs manifesting COVID-19, from a public

GitHub repository hosted by the authors of [24]. The CXR collection is accompanied by

other metadata including sex, age, finding, and intubation status. They also used a collec-

tion of 134 CXRs acquired from SARS-CoV-2 PCR+ patients from a hospital in Spain and

posted by a radiologist in a public Twitter thread [25]. The ground truth COVID-19 dis-

ease-specific region of interest (ROI) annotations, set by the verification from two expert

radiologists, for a subset of this collection [n = 36] are used by the authors of [16] in inter-

preting model performance.

(ii) RSNA CXR dataset: To serve as experimental controls, we randomly select an equal num-

ber of 3016 de-identified CXR images showing no abnormalities from the publicly avail-

able RSNA CXR dataset, released toward the RSNA pneumonia detection challenge

hosted by Kaggle [26]. The collection, however, includes a total of 26,684 CXR images, of

which, 8851 CXRs showed no abnormalities, 6012 CXRs showed pneumonia-related lung

opacities, and 11,821 CXRs showed other pulmonary abnormalities.

(iii) NIH-CC-DES-Set 1: This set consists of 27 de-identified DES CXR images [15] that were

acquired at the National Institutes of Health (NIH) Clinical Center (CC) as a part of rou-

tine clinical care. A GE Discovery XR656 digital radiography system was used to acquire

the DES images at 120 and 50 Kilovoltage-peak (kVp), respectively, to capture the soft-tis-

sue images and bone-only images. This dataset is used to evaluate the performance of the

bone suppression models proposed in this study.

(iv) NIH-CC-DES-Set 2: Another set of de-identified 100 DES CXRs are acquired similar to

NIH-CC-DES-Set 1. This collection contains DES images of 54 females and 46 males, the

average age and standard deviation of the males and females are 48.9 +/- 14.5 and 45.4+/-

13.6, respectively. This dataset is augmented and used to train the bone suppression models.

The NIH-CC-DES-Set 1 and NIH-CC-DES-Set 2 data were selected samples of adult sub-

jects with no radiological findings from the NIH archives that were deidentified and manually

Fig 1. Graphical abstract of the proposal. Several proposed bone suppression models (M1, M2, . . ., Mn, n = 1, 2, . . ., 14) are trained on a set of input CXRs. The

predictions of the top-3 performing bone suppression models are combined using a majority voting approach to construct DeBoNet. A classification model is trained on

the non-bone-suppressed and bone-suppressed images to classify them into COVID-19 or normal categories.

https://doi.org/10.1371/journal.pone.0265691.g001
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verified before use. The NIH Institutional Review Board (IRB) exempted their use from full

review. The total number of CXRs pooled from different sources is given in Table 1.

Bone suppression models

The set of 100 grayscale DES CXR images (i.e., the original CXRs and soft tissue counterparts)

from the NIH-CC-DES-Set 2 dataset is augmented using affine transformations such as rota-

tions (-10 to 10 degrees), horizontal and vertical shifting (-5 to 5 pixels), horizontal mirroring,

zooming, median filtering, Gaussian blurring, and unsharp masking, resulting in 1000 DES

CXRs. The augmented images are further resized to 256×256 dimensions to reduce computa-

tional complexity. The contrast of the images is enhanced by clipping the top and bottom 1%,

respectively, of all pixel values. The pixel values are then normalized.

We propose the following model architectures for the task of bone suppression in CXRs: (i)

Autoencoder-BS (BS—Bone Suppression); (ii) ResNet-BS; (iii) U-EB0-BS; (iv) U-Res18-BS;

(v) U-SE-Res18-BS; (vi) U-D121-BS; (vii) U-IV3-BS; (viii) U-MobileV2-BS; (ix) F-EB0-BS; (x)

F-Res18-BS; (xi) F-SE-Res18-BS; (xii) F-D121-BS, (xiii) F-IV3-BS; (xiv) F-MobileV2-BS. These

model architectures are discussed in subsequent sections.

Autoencoder with separable convolutions (Autoencoder-BS). The Autoencoder-BS

model is a denoising autoencoder with symmetrical encoder and decoder layers. Fig 2 illus-

trates the architecture of the proposed Autoencoder-BS model.

The encoder consists of four separable convolutional blocks. Each convolutional block

except for the last block contains two separable convolutional layers. Separable convolutions

are used to reduce computational complexity, thereby facilitating faster convergence and real-

time deployment [27]. The number of filters in the separable convolutional blocks of the

encoder are 64, 128, 256, and 512, respectively. Except for the last block, a max-pooling layer is

used after each separable convolutional block to calculate the maximum value for individual

patches of the feature map. Upsampling layers are used correspondingly in the symmetric

decoder blocks to preserve the spatial resolution of the input.

ResNet-based model with residual scaling (ResNet-BS). The architecture of the pro-

posed ResNet-BS model is shown in Fig 3. The first and last convolutional layer contains 128

filters of dimension 3×3. We used residual blocks with shortcuts to skip over layers. This

approach helps to overcome convergence issues due to vanishing gradients in deeper models.

Skipping layers helps to reuse the activations of the earlier layers until weight updates in the

succeeding layers. Each residual block consists of two convolutional layers with 3×3 filters and

128 feature maps.

Inspired by [28], we used a modified residual block in which (i) the batch normalization

layers are removed for they are mentioned to adversely affect the range flexibility through the

Table 1. Dataset sources.

Source Number of CXR images

COVID-19 Normal

BIMCV-COVID19+ CXR 2473 No

Hannover Medical School, Hannover 183 No

Cohen et al. 226 No

Twitter COVID-19 CXR 134 No

RSNA CXR 3016 3016

NIH-CC-DES-Set 1 No 27

NIH-CC-DES-Set 2 No 100

https://doi.org/10.1371/journal.pone.0265691.t001
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normalization process, and (ii) activations are not used outside the residual blocks and in the

final layer. The network consists of 16 residual blocks with an identical layout. We used zero

paddings to preserve the spatial dimensions of the input image. The residuals after the deepest

Fig 2. The architecture of the Autoencoder-BS model. The input to the model is a grayscale CXR image. The model has a symmetrical separable convolutional

encoder and decoder architecture.

https://doi.org/10.1371/journal.pone.0265691.g002

Fig 3. The architecture of the ResNet-BS model. The input is a grayscale CXR image. The block R denotes the modified residual block. The proposed model has 16

residual blocks, each having two convolutional layers with 3×3 filters and 128 feature maps. The deepest convolutional layer with sigmoidal activation predicts the

grayscale bone-suppressed image.

https://doi.org/10.1371/journal.pone.0265691.g003
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convolutional layer in each residual block are scaled at an empirically determined scaling fac-

tor (0.1) before adding them back to the convolutional path. This scaling approach stabilizes

training in deeper models with high computational complexity [28]. The deepest convolu-

tional layer with the sigmoidal activation function predicts a grayscale bone-suppressed image.

U-Net and FPN-based models. The U-Net models are widely used in image segmentation

tasks [19]. The U-Net is composed of an encoder and decoder. The encoder or the contracting

path extracts image features at multiple scales and the decoder or the expanding path semanti-

cally projects the features learned by the encoder onto the pixel space.

The Feature Pyramid Networks (FPN) are widely used as feature extractors to help object

detection [20]. Fig 4 shows the general architecture of the U-Net and FPN models. The FPN

network is composed of bottom-up and top-down pathways. The bottom-up pathway consti-

tutes the encoder backbone that extracts image features at multiple scales (scaling step is 2). A

convolutional layer with a 1×1 filter is used to reduce the feature dimensions of the deepest

convolutional layer in the bottom-up pathway to 256. This constitutes the first layer of the top-

down pathway. Going deeper, the preceding layer is up-sampled by a factor of 2 using the

nearest neighbor up-sampling method. A 1×1 convolutional filter is applied to the correspond-

ing feature maps in the bottom-up pathway and is added elementwise. A 3×3 convolution is

then applied to all the merged layers to reduce aliasing effects. This helps to generate high-res-

olution features at each scale.

The grayscale CXR is duplicated in three channels and fed into the U-Net and FPN models.

This is because we use ImageNet-pretrained models, trained on RGB images, as the encoder

backbones. We experimented with several encoder backbones for the U-Net and FPN models

[29] toward the task of bone suppression in CXRs. These backbones include (i) EfficientNet-

B0 [30], (ii) ResNet-18 [31], (iii) SE-ResNet-18 [32], (iv) DenseNet-121 [33], (v) Inception-V3

[34], and (vi) MobileNet-V2 [35]. We are motivated by the fact that these ImageNet-pretrained

models have demonstrated superior performance in medical visual recognition tasks [17]. The

final layer of the U-Net and FPN models consists of a convolutional layer with Sigmoidal acti-

vation to predict grayscale bone-suppressed CXRs.

The proposed bone-suppression models are trained on the augmented NIH-CC-DES-Set 2

dataset and tested with the NIH-CC-DES-Set 1 dataset. We allocated 10% of the training data

for validation using a fixed seed. We compiled the models using an Adam optimizer with an

initial learning rate of 1e-3 and monitored the following validation performance metrics: (i)

loss, (ii) PSNR, (iii) SSIM, and (iv) MS-SSIM. We propose a mixed-loss function that benefits

from the combination of mean absolute error (MAE) and MS-SSIM losses, given by,

Mixed loss ¼ Ω:MS � SSIM þ 1 � Ωð Þ:MAE ð1Þ

We empirically set the value of O to 0.84. The MS-SSIM metric is given higher weightage since

the bone suppressed image is preferred to closely match the ground truth. The MAE metric is

given a comparatively lower significance because the metric focuses on the contrast and lumi-

nance that is expected to change while suppressing the bones. We reduced the learning rate

whenever the validation performance ceased to improve. Early stopping with the patience of

10 epochs is used. The best-performing models (with the least validation loss) are further used

to predict bone-suppressed CXR images using the test set. An Ubuntu Linux system with NVI-

DIA GeForce GTX 1080 graphics card and Keras framework with Tensorflow backend is used

for model training and evaluation.

DeBoNet—bone suppression model ensemble. The bone suppression model ensemble,

which we call DeBoNet, is constructed using the top-3 performing models that demonstrate

markedly improved performance in terms of the MS-SSIM metric using the NIH-CC-DES-Set
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Fig 4. The general architecture of the (a) U-Net and (b) FPN model. The input is a three-channel CXR image. The following encoder-

backbones are used in this study (EfficientNet-B0, ResNet-18, SE-ResNet-18, DenseNet-121, Inception-V3, MobileNet-V2, trained on

ImageNet dataset).

https://doi.org/10.1371/journal.pone.0265691.g004
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1 test set. Each of the top-3 performing models predicts a bone-suppressed image for an input

CXR. The predicted image by the individual models is divided into sub-blocks of M×M

dimensions. The optimal value of M [4, 8, 16, 32, 64, 128, 256] is determined through extensive

empirical evaluations. For a given sub-block size and in each sub-block, the following are per-

formed: (i) we measured the MS-SSIM score between the sub-block of the bone-suppressed

image predicted by each of the top-3 performing models and the corresponding sub-block in

respective ground truth soft-tissue image; (ii) we performed a majority voting for the

MS-SSIM score to find that image sub-block with the maximum MS-SSIM score and use it in

constructing the final bone-suppressed image. The algorithm below discusses these steps. Fig 5

illustrates the steps involved in constructing the DeBoNet.

Algorithm
Input: Ground-truth bone-suppressed image K of 256×256 resolution
Bone-suppressed Images I = (IM1, IM2, IM3) of 256×256 resolution from
M = [M1, M2, M3]; M1, M2, M3 are the top-3 performing bone-suppression
models
Image sub-block sizes B = [4, 8, 16, 32, 64, 128, 256]
Output: Final Bone-suppressed image J
for each sub-block size B
for each set of bone-suppressed Images I generated by M1, M2, M3
for each sub-block in K and IM1, IM2, IM3
compute MS-SSIM between K and IM1, K and IM2, K and IM3
perform Majority Voting = Max(MS-SSIM(K and IM1), MS-SSIM(K and

IM2), MS-SSIM(K and IM3))
choose the sub-block with the maximum MS-SSIM value and put it

in its respective position in the final bone-suppressed image J

Fig 5. The architecture of the proposed DeBoNet.

https://doi.org/10.1371/journal.pone.0265691.g005
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end for
end for

end for

DeBoNet evaluation. We performed evaluations by using the histograms of the ground

truths and the bone-suppressed images predicted by the individual bone-suppression models

and the DeBoNet. Several metrics such as correlation, intersection, chi-square distance, and

Bhattacharyya distance are measured to investigate for similarity. The higher the value of cor-

relation and intersection, the closer (or more similar) are the histograms of the image pairs.

For distance-based metrics such as chi-square and Bhattacharyya, a smaller value indicates a

superior match between the histogram pairs. This implies the histograms of the predicted

bone-suppressed images closely match their respective ground truths. The mathematical for-

mulations of these metrics can be found in the literature [36]. The average values of the afore-

mentioned metrics are computed for each model and the DeBoNet and compared for

statistical significance.

Classification model. For classification, we initially used a custom U-Net model proposed

in [17] to segment the lung ROI on the CXRs. This approach ensures that the models learn rel-

evant features from the lung ROI and not the surrounding context. The U-Net model is

trained to generate 256×256-dimension lung masks. The generated masks are overlaid on the

input CXRs to delineate the lung boundaries. The delineated boundaries are cropped to a

bounding box containing the lung pixels. The lung-cropped CXRs are further preprocessed to

enhance image contrast by clipping the top and bottom 1%, respectively, of all pixel values. We

further performed pixel normalization, centering, and standardization to reduce computa-

tional complexity during model training.

The encoder of the best-performing bone-suppression model is truncated and appended

with the following layers: (i) Zero padding (ZP); (ii) Convolutional layer with 512 filters, each

of size 3×3; (iii) Global average pooling (GAP), and (iv) a dense layer with two nodes and Soft-

max activation to classify the CXRs as showing normal lungs or other findings consistent with

COVID-19. This approach is followed to transfer the CXR modality-specific knowledge

learned from the bone suppression task to improve performance in a relevant classification

task. A study of the literature reveals several works that used CXR modality-specific models to

transfer knowledge and improve classification and localization performance in a relevant task

[17, 37, 38].

Recall that we use the COVID-19 CXR collection as cases and the RSNA CXR collection

as controls for the classification task. Since the ground truth soft-tissue images are not avail-

able for these CXRs, the DeBoNet could not be directly used. Instead, the best-performing

bone suppression model is selected and applied to these CXR collections. We used 90% of

these data for training and 10% for hold-out testing. For consistency, we use a fixed seed

and allocated 10% of the training data for validation. The model is then retrained individu-

ally on the non-bone-suppressed and bone-suppressed CXR images to classify them as

showing no abnormalities or findings consistent with COVID-19. We performed augmen-

tation with random affine transformations such as rotations (-10 to 10 degrees), horizontal

and vertical pixel shifting (-5 to 5 pixels), zooming, and horizontal mirroring, to introduce

variability into the training process and reduce model overfitting to the training data. The

model is compiled using a stochastic gradient descent optimizer with an initial learning rate

of 1e-3. The learning rate is reduced whenever the validation performance did not improve.

We used callbacks to store model weights and early stopping to prevent overfitting and

stored the best weights for further analysis. The best model is used to predict the test set and

output class probabilities.
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The following metrics are measured to compare model performance: (i) accuracy; (ii)

AUROC; iii) precision (P); (iv) recall (R); (v) AUPRC; (vi) F-score; and (vii) MCC. These met-

rics are expressed below.

Accuracy ¼
TP þ TN

TP þ TN þ FP þ FN
ð2Þ

Recall ¼
TP

TPþ FN
ð3Þ

Precision ¼
TP

TP þ FP
ð4Þ

F � score ¼ 2�
Precision� Recall
Precisionþ Recall

ð5Þ

MCC ¼
TP � TN � FP � FN

TPþ FPð Þ TP þ FNð Þ TN þ FPð Þ TN þ FNð Þð Þ
1=2

ð6Þ

Here, TP, TN, FP, and FN denote the true positive, true negative, false positive, and false nega-

tive values, respectively. Additionally, we used our in-house class-selective relevance map

(CRM) algorithm [21] to interpret the predictions of the model trained on non-bone-sup-

pressed and bone-suppressed images and ensure they learned to highlight regions containing

findings that are consistent with COVID-19.

Statistical analyses. We performed statistical analyses to identify the existence of a signifi-

cant difference in performance achieved by the bone suppression and classification models.

For bone suppression, we performed a one-way Analysis of Variance (ANOVA) to analyze if a

significant difference existed in the MS-SSIM and chi-square distance values obtained using

the top-3 performing bone-suppression models and DeBoNet. We performed Shapiro-Wilk

and Levene tests to analyze if the prerequisite conditions of data normality and homogeneity

of variances are satisfied to perform one-way ANOVA analyses. For classification, we mea-

sured the 95% binomial confidence intervals (CI) as the Exact Clopper-Pearson interval for the

MCC metric to compare the classification performance achieved by the models trained on

non-bone-suppressed and bone-suppressed images. We used R statistical software (Version

4.1.1) to perform these evaluations.

Results

Bone suppression

Recall that the proposed bone suppression models are trained on the augmented NIH-CC--

DES-Set 2 dataset and tested using the NIH-CC-DES-Set 1 collection. The performance

achieved by the bone suppression models is shown in Table 2. Fig 6 shows the bone-sup-

pressed images predicted using the proposed bone suppression models for an input CXR

instance from the test set.

It is observed from Table 2 that the FPN model with the EfficientNet-B0 encoder backbone

(F-EB0-BS) demonstrated superior performance for all metrics compared to other models. We

observed from Fig 6 that all models predicted bone suppressed images that demonstrated sub-

stantial suppression of the bony structures. We further performed a quantitative evaluation to

differentiate model performance. In this regard, we observed that the F-EB0-BS model demon-

strated the least values for the chi-square and Bhattacharya distances and superior values for
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the correlation and intersection measures. Higher values for the correlation and intersection

metrics demonstrate that the bone-suppressed images predicted by the F-EB0-BS model

closely match that of the ground truth soft-tissue images. Considering the chi-square and

Bhattacharyya distance-based metrics, a smaller value indicates a superior match between the

images. This signifies that compared to other models, the bone-suppressed image predicted by

the F-EB0-BS model closely matches that of the ground truth soft-tissue images. This perfor-

mance is followed by the FPN model with ResNet-18 encoder backbone (F-Res18-BS) and the

U-Net model with the ResNet-18 encoder backbone (U-Res18-BS) that demonstrated

markedly improved values for the PSNR, SSIM, MS-SSIM, correlation, intersection, chi-

square, and Bhattacharya distance measures compared to other models. These top-3 perform-

ing models are further considered to construct the ensemble.

The predicted bone-suppressed images by the top-3 performing models are divided into

sub-blocks of M×M dimensions. We empirically determined the value of M [4, 8, 16, 32, 64,

128, 256] that deliver superior bone suppression performance. For a given sub-block size, and

in each sub-block, (i) we measured the MS-SSIM score between the sub-block of the bone-sup-

pressed image predicted by each of the top-3 performing models and the corresponding sub-

block in the respective ground truth, and (ii) performed a majority voting of the MS-SSIM

score for each sub-block to identify the sub-block with the maximum MS-SSIM score and use

it in constructing the final bone-suppressed image. Table 3 shows the performance achieved

while constructing the DeBoNet using varying sub-block sizes. It is observed from Table 3 that

the DeBoNet performance with various sub-block sizes is superior compared to the perfor-

mance achieved using the top-3 performing models (from Table 2). We observed that using a

sub-block size of 4×4, the DeBoNet achieved superior performance in terms of PSNR, SSIM,

MS-SSIM, correlation, intersection, chi-square, and Bhattacharya distances compared to using

other sub-block sizes and the top-3 performing models. Curiously, we also note a relatively

high performance at 256x256 grid dimensions. Studying the correlation between granularity

and MS-SSIM score is left as future work.

We performed a one-way ANOVA analysis to observe if a statistically significant difference

existed in the MS-SSIM and chi-square values obtained using DeBoNet with sub-block size

4×4, and the top-3 performing bone-suppression models namely, the F-EB0-BS, F-Res18-BS,

Table 2. Performance achieved by the proposed bone suppression models using the NIH-CC-DES-Set 1 test set. The values are given in terms of mean ± standard

deviation. The best performances are denoted by bold numerical values in the corresponding columns.

Model PSNR SSIM MS-SSIM Correlation Intersection Chi-square Bhattacharya

Autoencoder-BS 33.1861±3.5922 0.9371±0.0310 0.9798±0.0093 0.5949±0.1800 8.4827±1.4190 1.4279±0.9773 0.4009±0.0878

ResNet-BS 30.9168±3.1286 0.9420±0.0261 0.9817±0.0092 0.5142±0.1831 8.2680±1.5036 2.6780±1.6202 0.4281±0.0884

U-EB0-BS 35.9098±1.5674 0.9359±0.0306 0.9795±0.0084 0.6529±0.1576 8.8000±1.3606 0.9004±0.6436 0.3813±0.0845

U-Res18-BS 35.7993±1.4498 0.9402±0.0283 0.9809±0.0080 0.6518±0.1403 8.8879±1.4312 0.9767±0.4622 0.3796±0.0833

U-SE-Res18-BS 35.531±1.6773 0.9325±0.0310 0.9773±0.0077 0.6421±0.1505 8.6794±1.3098 1.0484±0.8215 0.383±0.0836

U-D121-BS 33.7751±1.3033 0.9284±0.0301 0.9746±0.0083 0.6017±0.1543 8.4233±1.6595 1.7434±1.2997 0.3852±0.0838

U-IV3-BS 34.8914±1.7280 0.9368±0.0294 0.9795±0.0089 0.6411±0.1339 8.8026±1.4659 1.1195±0.4987 0.3836±0.0816

U-MobileV2-BS 27.6842±0.1715 0.8593±0.0342 0.9136±0.0139 0.2583±0.1131 5.7133±1.5060 10.9967±4.2341 0.4704±0.0631

F-EB0-BS 36.5525±1.6923 0.9449±0.0290 0.9840±0.0081 0.6654±0.1473 9.0462±1.4529 0.6893±0.4005 0.3790±0.0846

F-Res18-BS 36.3233±1.7004 0.9428±0.0281 0.9823±0.0079 0.6417±0.1424 8.8840±1.4194 0.9392±0.3799 0.3856±0.0833

F-SE-Res18-BS 36.0318±1.6900 0.9418±0.0294 0.9821±0.0084 0.6334±0.1559 8.8531±1.4131 1.0227±0.5185 0.3853±0.0841

F-D121-BS 35.2788±1.4938 0.9402±0.0283 0.9794±0.0082 0.6290±0.1365 8.7087±1.5015 1.2203±0.9092 0.3827±0.0818

F-IV3-BS 33.7446±1.8066 0.9369±0.0310 0.9793±0.0084 0.6225±0.1560 8.6645±1.3670 1.1846±0.7676 0.3910±0.0817

F-MobileV2-BS 33.5028±1.3452 0.9255±0.0320 0.9734±0.0088 0.5767±0.1743 8.1361±1.6643 2.3053±1.4224 0.3877±0.0844

https://doi.org/10.1371/journal.pone.0265691.t002
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and U-Res18-BS models. Fig 7 shows the mean plots for the MS-SSIM and chi-square values,

respectively, obtained by the models.

The one-way ANOVA analyses require that the assumptions regarding the normal distribu-

tion of the data and homogeneity of data variances are satisfied. We performed the

Table 3. Performance achieved by the DeBoNet using various sizes for the sub-blocks. The values are given in terms of mean ± standard deviation. The best perfor-

mances are denoted by bold numerical values in the corresponding columns.

Block size PSNR SSIM MS-SSIM Correlation Intersection Chi-Square Bhattacharya

4×4 36.7977±1.6207 0.9465±0.0272 0.9848±0.0073 0.6720±0.1404 9.0862±1.4413 0.6174±0.2726 0.3778±0.0839

8×8 36.4574±1.4724 0.9226±0.0255 0.8721±0.0223 0.6344±0.1361 8.5230±1.3419 1.2636±0.4771 0.3806±0.0822

16×16 36.7651±1.6012 0.9437±0.0256 0.9837±0.0073 0.6598±0.1431 9.0193±1.4464 0.7282±0.3169 0.3800±0.0839

32×32 35.7137±1.2588 0.8965±0.0266 0.8390±0.0237 0.5161±0.1218 7.1297±1.1228 3.4226±1.0079 0.3901±0.0801

64×64 36.2657±1.4698 0.9218±0.0272 0.8719±0.0221 0.6297±0.1409 8.4949±1.3528 1.3402±0.5874 0.3815±0.0834

128×128 36.4872±1.5982 0.9380±0.0282 0.9213±0.0174 0.6667±0.1483 8.9424±1.4365 0.7807±0.4931 0.3784±0.0850

256×256 36.5787±1.6885 0.9458±0.0284 0.9841±0.0080 0.6641±0.1470 9.0304±1.4599 0.7026±0.4129 0.3796±0.0849

https://doi.org/10.1371/journal.pone.0265691.t003

Fig 6. Bone-suppressed CXR images predicted by the proposed models using a CXR sample from the NIH–CC DES-Set 1 test set. (a) Original CXR; (b) Ground truth

soft tissue image; (c) U-EB0-BS; (d) U-Res18-BS; (e) U-SE-Res18-BS; (f) U-D121-BS; (g) U-IV3-BS; (h) U-MobileV2-BS; (i) F-EB0-BS; (j) F-Res18-BS; (k) F-SE-Res18-BS;

(l) F-D121-BS; (m) F-IV3-BS and (n) F-MobileV2-BS.

https://doi.org/10.1371/journal.pone.0265691.g006
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Shapiro-Wilk normality test and Levene test for analyzing the homogeneity of variances. For

the MS-SSIM metric, we observed that the p-values for the Levene (p = 0.9828) and Shapiro-

Wilk (p = 0.3824) tests are not statistically significant (p>0.05). This confirms that the assump-

tions of data normality and homogeneous variances are satisfied. Hence, we performed one-

way ANOVA analyses by measuring the size of the group, the variance within groups, and the

variance between the means of the groups. This information is collectively used to measure the

F statistic. In this study, we have four groups/models (i.e., the 4×4 DeBoNet, F-EB0-BS,

F-Res18-BS, and U-Res18-BS models) with 27 observations (images) each, hence the distribu-

tion is given as F (3, 104). Considering the MS-SSIM metric, we observed that no statistically

significant difference existed between the 4×4 DeBoNet and the top-3 performing models (F

(3, 104) = 0.886, p = 0.451, p>0.05). A similar analysis is performed using the chi-square dis-

tance metric. We observed that the conditions of data normality and homogeneous variances

are satisfied based on the p-values obtained using the Shapiro-Wilk (p = 0.4768) and Levene

(p = 0.4321) tests (p>0.05). The one-way ANOVA analysis revealed that a statistically signifi-

cant difference existed in the chi-square values obtained using the 4×4 DeBoNet, F-EB0-BS,

F-Res18-BS, and U-Res18-BS models (F (3, 104) = 5.838, p = 0.001, p<0.05). We further per-

formed Tukey post-hoc analyses to identify the models that demonstrate these significant dif-

ferences in the chi-square values. We observed that the chi-square distance value obtained

using the 4×4 DeBoNet (0.6174±0.2726) is significantly smaller compared to the F-Res18-BS

(0.9392±0.3799, p = 0.0142) and U-Res18-BS (0.9767±0.4622, p = 0.0047) models. These evalu-

ations underscored the fact that the 4×4 DeBoNet achieved significantly smaller values for the

chi-square metrics (p<0.05). Also, the chi-square value obtained using the F-EB0-BS model is

significantly smaller (p = 0.0355) compared to the U-Res18-BS model. Unlike the top-3 per-

forming models, the bone-suppressed images predicted by the 4×4 DeBoNet closely resembled

the ground truth soft-tissue images.

Fig 7. Statistical analyses using one-way ANOVA. (a) and (b) shows the mean plot for the MS-SSIM and chi-square values, respectively, obtained by the DeBoNet (4×4),

F-EB0-BS, F-Res18-BS, and U-Res18-BS models.

https://doi.org/10.1371/journal.pone.0265691.g007
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Recall that the best-performing F-EB0-BS bone suppression model is used to suppress the

bones in the CXRs used in this classification task. This is because the ground truth soft-tissue

images are not available for these CXRs. Hence, DeBoNet could not be used. Fig 8 shows the

bone-suppressed images predicted by the F-EB0-BS model for instances of CXRs showing

findings that are consistent with COVID-19. Note that the F-EB0-BS model generalizes to the

unseen CXRs from the classification data that are not used during bone-suppression model

training and validation. We observed superior suppression of bones and the image resolution

is preserved.

Fig 8. Bone-suppressed images predicted by the F-EB0-BS model using instances of CXRs with COVID-19-consistent

findings. (a) CXR from the BIMCV-COVID19+ CXR data collection; (b) Corresponding bone-suppressed image; (c) CXR

from the Twitter COVID-19 CXR collection, and (d) Corresponding bone-suppressed image.

https://doi.org/10.1371/journal.pone.0265691.g008
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Classification

Recall that the encoder of the best-performing F-EB0-BS bone suppression model is truncated

and added with the classification layers to classify the CXRs as showing normal lungs or

COVID-19-consistent findings. Such an approach is followed to transfer CXR modality-spe-

cific knowledge to improve classification performance. The classification model is retrained

on the non-bone-suppressed and bone-suppressed CXR images, and the measured perfor-

mance is shown in Table 4 and illustrated in Fig 9 in terms of AUROC, confusion matrix, nor-

malized Sankey diagram, and AUPRC curves.

We observed from Table 4 and Fig 9 that the classification model trained on bone-sup-

pressed images demonstrated superior performance in terms of accuracy, AUROC, AUPRC,

sensitivity, precision, F-score, and MCC metrics, compared to the model trained on non-

bone-suppressed images. The 95% binomial CI value obtained for the MCC metric using the

model trained on bone-suppressed images demonstrated a tighter error margin, higher preci-

sion, and is found to be significantly superior (p< 0.05) compared to the MCC metric

achieved by the model trained on non-bone-suppressed images.

We qualitatively evaluated the performance of the models trained on non-bone-suppressed

and bone-suppressed images to ensure if the models learned to highlight regions containing

COVID-19-consistent findings and not the surrounding context. We used the CRM localiza-

tion tool to interpret model behavior. Fig 10 shows the instances of CXRs, and the CRM-based

disease ROI localization obtained using the trained models.

Fig 10A, 10D and 10G show instances of CXRs from the Twitter COVID-19 CXR collection

with expert annotations shown in blue bounding boxes. Fig 10B, 10E and 10H show the locali-

zation achieved using the model trained on non-bone-suppressed images. It could be observed

that the model is highlighting the surrounding context but not COVID-19-consistent manifes-

tations. This demonstrates that the model has not learned relevant features regarding findings

that are consistent with COVID-19. Fig 10C, 10F and 10I show the localization achieved using

the model trained on bone-suppressed images. We could observe that this model precisely

highlighted regions specific to findings that are consistent with COVID-19, thereby demon-

strating that the model learned task-specific features, confirming the experts’ knowledge about

the disease.

Discussion and conclusions

The observations made from this study underscores the need for (i) customizing a model for

the problem under study, (ii) constructing a model ensemble for bone suppression, and (iii)

interpreting model behavior.

Our proposed approach facilitates predicting a bone-suppression image given an input

CXR image. This is more computationally effective than other studies proposed in the litera-

ture [5–9] that propose a series of steps to generate bone-only images and subtract them from

input CXRs to increase soft-tissue visibility. A limitation of this approach proposed in the liter-

ature is that a sub-optimal generation of bone-only images introduces noise and distortion

into the process and may adversely impact decision-making. We proposed several custom

Table 4. Classification performance achieved with the model trained on non-bone-suppressed and bone-suppressed images. Data in parenthesis denote the 95%

binomial CI measured as the Exact Clopper Pearson interval for the MCC metric. Bold numerical values denote superior performance in respective columns.

Data Accuracy AUROC AUPRC Sensitivity Precision F-score MCC

Non bone suppressed 0.8964 0.9470 0.9275 0.8964 0.8997 0.8962 0.7961 (0.7667, 0.8255)

Bone suppressed 0.9820 0.9980 0.9981 0.9820 0.9825 0.9820 0.9645 (0.9510, 0.9780)

https://doi.org/10.1371/journal.pone.0265691.t004
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models and experimented with state-of-the-art architectures like U-Nets and FPN using vari-

ous ImageNet-pretrained encoder backbones to obtain superior bone suppression perfor-

mance. To the best of our knowledge, this study is the first to explore the use of these models

in the context of an image denoising problem where the bony structures in an input CXR are

considered noise. Through extensive empirical evaluations, we observed that the FPN model

with the EfficientNet-B0 encoder backbone delivered superior bone suppression performance,

followed by the FPN model with ResNet-18, and U-Net with ResNet-18 encoder backbones.

The bone-suppressed images predicted by these top-3 models appeared sharp while preserving

soft-tissue characteristics. Therefore, these images could be used for further CXR image analy-

sis such as screening for cardiopulmonary diseases. We propose an ensemble approach toward

bone suppression, called DeBoNet, that demonstrated superior values for PSNR, SSIM,

MS-SSIM, correlation, intersection, chi-square, and Bhattacharya distance metrics compared

to the individual constituent models. This underscores the fact that the DeBoNet improved

bone suppression performance so that the predicted bone suppressed image closely matched

the ground-truth, soft-tissue image.

We observed the effect of bone suppression toward improving COVID-19 detection using

CXRs. We observed that the classification model trained using bone-suppressed images dem-

onstrated significantly superior performance in terms of accuracy, AUPRC, AUROC, preci-

sion, recall, F-score, and MCC, compared to the model trained on non-bone-suppressed

images. We further observed through localization studies that the models trained on bone-sup-

pression images precisely highlighted regions showing findings that are consistent with

COVID-19, confirming the expert knowledge of the disease. This underscores the fact that,

unlike the model trained on non-bone-suppressed images, the models trained on bone-sup-

pressed images learned task-specific features and not the surrounding context, to classify the

CXRs to their respective classes. The models trained on non-bone-suppressed images are accu-

rate, however, they demonstrated sub-optimal localization. This underscores the fact that (i)

the disease-specific ROI localization ability of a trained model is not related to its classification

accuracy and (ii) localization studies are therefore indispensable to interpret the learned

behavior of the trained models.

This study suffers from the following limitations: (i) We used the best-performing bone-

suppression model, and not the DeBoNet, to suppress bones in the CXR data used for the clas-

sification task. This is because we do not have the ground truth soft-tissue images for these

CXRs. However, on a positive note, DeBoNet ensemble training helps develop and identify the

best performing individual model. (ii) The lack of large-scale publicly available DES CXR data-

sets is a significant limitation in training the bone-suppression models. The studies reported in

the literature [5–9] used the JSRT CXR images and their bone-suppressed counterparts gener-

ated by an automated algorithm developed by the researchers from the Budapest University of

Technology and Economics [39] to train the bone suppression models. However, these auto-

mated algorithms might have introduced noise and artifacts into the bone suppression process,

thereby leading to sub-optimal model training and inference. To the best of our knowledge,

this is the first study to use DES CXRs to train the bone-suppression models. However, this is

not large-scale data and hence may not encompass a wide range of variability in the bone

structures. With the increased availability of DES CXRs that would introduce sufficient data

diversity into the training process, it would be possible to propose deeper architectures and

Fig 9. Classification performance achieved by the model trained on non-bone-suppressed and bone-suppressed

images. (a), (c), (e), and (g) denote the AUROC, confusion matrix, Sankey diagram, and AUPRC curves achieved through

training the model with non-bone-suppressed images; (b), (d), (f), and (h) denote the AUROC, confusion matrix, Sankey

diagram, and AUPRC curves achieved through training with the bone-suppressed images.

https://doi.org/10.1371/journal.pone.0265691.g009
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improve model confidence, performance, and generalization to real-world data. (iii) This is

not a classification-related study, but we wanted to evaluate if bone suppression would

Fig 10. CRM-based localization of COVID-19-consistent manifestations. (a) (d) and (g) denote instances of CXRs from the Twitter

COVID-19 CXR collection showing COVID-19-manifestations with expert annotations (shown with blue bounding boxes); (b) (e) and (h)

shows the regions highlighted by the model trained on non-bone-suppressed images; (c) (f) and (i) shows the COVID-19-consistent ROIs

highlighted by the model trained on bone-suppressed images.

https://doi.org/10.1371/journal.pone.0265691.g010
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improve performance toward COVID-19 detection. We observed that the model trained on

bone-suppressed CXRs improved detection of findings that are consistent with COVID-19,

signifying that CXR bone suppression improved the model sensitivity toward COVID-19 clas-

sification and localization. Empirically determining the best classification model is outside the

scope of this study.

The proposed approach could be extended to other image denoising problems. The impor-

tance of using bone suppressed CXRs for detecting other cardiopulmonary abnormalities

including lung nodules, TB, pneumothorax, among others would be good research avenues.

We believe our results will improve human visual interpretation of COVID-19-consistent

findings, as well as automated detection in AI-driven workflows.
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