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Aims Existing evidence suggests links between brain and cardiovascular health. We investigated associations between
cognitive performance and cardiovascular magnetic resonance (CMR) phenotypes in the UK Biobank, considering a
range of potential confounders.

...................................................................................................................................................................................................
Methods and
results

We studied 29 763 participants with CMR and cognitive testing, specifically, fluid intelligence (FI, 13 verbal-
numeric reasoning questions), and reaction time (RT, a timed pairs matching exercise); both were considered continu-
ous variables for modelling. We included the following CMR metrics: left and right ventricular (LV and RV) volumes in
end-diastole and end-systole, LV/RV ejection fractions, LV/RV stroke volumes, LV mass, and aortic distensibility.
Multivariable linear regression models were used to estimate the association of each CMR measure with FI and RT,
adjusting for age, sex, smoking, education, deprivation, diabetes, hypertension, high cholesterol, prior myocardial infarc-
tion, alcohol intake, and exercise level. We report standardized beta-coefficients, 95% confidence intervals, and P-values
adjusted for multiple testing. In this predominantly healthy cohort (average age 63.0± 7.5 years), better cognitive per-
formance (higher FI, lower RT) was associated with larger LV/RV volumes, higher LV/RV stroke volumes, greater LV
mass, and greater aortic distensibility in fully adjusted models. There was some evidence of non-linearity in the relation-
ship between FI and LV end-systolic volume, with reversal of the direction of association at very high volumes.
Associations were consistent for men and women and in different ages.

...................................................................................................................................................................................................
Conclusion Better cognitive performance is associated with CMR measures likely representing a healthier

cardiovascular phenotype. These relationships remained significant after adjustment for a range of cardio-
metabolic, lifestyle, and demographic factors, suggesting possible involvement of alternative disease
mechanisms.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

* Corresponding author. Tel: þ44 (207) 882 6902. E-mail: s.e.petersen@qmul.ac.uk
† These authors are joint first authors.
‡ These authors are joint senior authors.
VC The Author(s) 2021. Published by Oxford University Press on behalf of the European Society of Cardiology.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestrict-
ed reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

European Heart Journal - Cardiovascular Imaging (2022) 23, 663–672
doi:10.1093/ehjci/jeab075

https://orcid.org/0000-0002-7757-5465
https://orcid.org/0000-0003-1285-2393
http://orcid.org/0000-0002-0452-8756
https://orcid.org/0000-0002-2654-8117
https://orcid.org/0000-0002-5147-0550
https://orcid.org/0000-0001-5095-1611
https://orcid.org/0000-0002-5942-4778
https://orcid.org/0000-0001-6111-8318
https://orcid.org/0000-0002-5136-8302
https://orcid.org/0000-0002-4516-5103
https://orcid.org/0000-0002-8194-2512
https://orcid.org/0000-0003-4622-5160
http://creativecommons.org/licenses/by/4.0/


..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

Keywords cardiovascular magnetic resonance • cardiovascular disease • brain • cognition • dementia • heart–brain
axis • vascular risk factors

Introduction

Cardiovascular disease and cognitive impairment are growing public
health problems, particularly in ageing global populations.1,2 Existing
work suggests interactions across heart–brain organ systems. The brain
has been proposed as a target for end-organ damage from cardiovascu-
lar disease and risk factors.3 Indeed, cardiometabolic morbidities have
been linked to accelerated cognitive decline4,5 and their treatment with
slowed progression of dementia.6 Cardiovascular risk factors have
been associated with both vascular7 and Alzheimer’s dementia.5 In indi-
viduals without dementia, vascular risk factors correlate with worse
cognitive performance, with an additive effect from increasing number
of risk factors.8 Furthermore, cardiovascular risk factors are associated
with poorer brain health across grey and white matter macrostructure
and microstructure assessed on brain magnetic resonance imaging.9

There is support for common heart–brain disease pathways medi-
ated by atherosclerosis and arteriosclerosis.3 However, the precise
mechanisms by which cardiovascular diseases and risk factors may
cause cognitive impairment are incompletely understood, and it is not
known if alternative mechanisms may play a role in the observed asso-
ciations. Exploring the relationship between cognitive performance
and indices of cardiovascular structure and function may provide
novel insights into these relationships and their underlying mecha-
nisms; however, to date, this has not been studied in large cohorts.

We studied, in the UK Biobank, associations of cardiovascular
magnetic resonance (CMR) indices of cardiovascular structure and
function with cognitive performance measures. We considered po-
tential confounding from a wide range of cardiometabolic, lifestyle,
and demographic exposures.

Methods

Study population and setting
The UK Biobank is a large prospective cohort study incorporating data
from over half a million participants from across the UK. Individuals aged
40–69 years old were identified through National Health Service (NHS)
registers and recruited over a 4-year period between 2006 and 2010
from a range of urban and rural settings.10 The protocol is publicly avail-
able.11 Baseline assessment comprised detailed characterization of socio-
demographics, lifestyle, environmental factors, medical history, tests of
cognitive function, and a series of physical measures. Individuals who
were unable to consent or complete baseline assessment due to illness
or discomfort were not recruited. The UK Biobank Imaging Study, which
aims to scan 100 000 of the original participants (48 000 completed,
February 2021),12 includes, among a wide range of other assessments,
detailed CMR imaging.13

Ethics
This study was covered by the ethical approval for UK Biobank studies
from the NHS National Research Ethics Service on 17 June 2011 (Ref 11/

NW/0382) and extended on 10 May 2016 (Ref 16/NW/0274). All partici-
pants provided written informed consent.

Measures of cognitive function
We assessed cognitive measures available in terms of biological relevance
and repeatability. We selected two components from the UK Biobank
cognitive function assessment for inclusion in our analysis: fluid intelli-
gence (FI) and reaction time (RT). The FI test is intended to measure the
capacity to solve problems that require logic and reasoning independent
of acquired knowledge. The RT exercise is designed to provide a crude
measure of raw processing speed, reaction speed, and attention. Overall,
these two tests provide broad assessment of several different aspects of
cognitive performance. Additionally, these are robust measures, with
demonstrated reliability (internal consistency) and longitudinal stability in
previous work.14,15 Furthermore, their availability for a large subset of the
UK Biobank imaging cohort permits adequately powered analyses of
associations with CMR imaging phenotypes.

Fluid intelligence
Assessment of FI consisted of a series of 13 verbal-numeric reasoning
questions completed within 2 minutes. A point was awarded for each
correct answer; incorrect, or unanswered questions received a score of
zero. The final score was the sum of correct answers with a maximum
score of 13. Thus, higher FI scores correspond to higher cognitive per-
formance. The Cronbach alpha reliability for this test is 0.62.14 The full
protocol for FI assessment in UK Biobank is published elsewhere16; we
provide a summary of the questions in Supplementary data online, Table
S1. As the FI variable in our sample was normally distributed, it was
treated as a continuous numerical variable for purposes of modelling, as
per established methods.17

Reaction time
The RT test consisted of four rounds of a pairs matching exercise. In each
round, participants were shown 12 pairs of cards on a screen and asked
to press a button as soon as a matched pair of cards appeared. The final
RT score is calculated as the mean time in milliseconds to correctly iden-
tify matches over four rounds. Hence lower RT scores represent faster
processing speed and better cognition. The Cronbach alpha reliability for
this test is 0.85.11 The full protocol for the RT test is available in a dedi-
cated document.18

CMR image acquisition and analysis
UK Biobank CMR scans are performed using 1.5 T scanners
(MAGNETOM Aera, Syngo Platform VD13A, Siemens Healthcare,
Erlangen, Germany) according to a standardized protocol.19 Assessment
of the left and right ventricles (LV and RV) includes a complete short-axis
stack acquired using balanced steady-state free precession sequences.
Conventional LV and RV volumetric measures were extracted using a
fully automated quality controlled pipeline previously developed and vali-
dated in a large subset of the UK Biobank, as detailed elsewhere.20 Aortic
distensibility represents the relative change in area of the aorta (aortic
strain) per unit pressure. Aortic strain was measured using transverse
cine images of the aorta and divided by central pulse pressure from
VicorderVR readings at the time of imaging. Aortic distensibility results
were obtained from a previous analysis of UK Biobank scans using a
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purpose-designed automated quality controlled tool.21 Thus, we consid-
ered the following CMR measures: LV/RV volumes in end-diastole and
end-systole, LV/RV ejection fraction, LV/RV stroke volume, LV mass, and
aortic distensibility at the proximal descending aorta.

Statistical analysis
Statistical analysis was performed using R version 3.6.222 and RStudio
Version 1.3.1093.23 We included all participants with CMR and at least one
of FI or RT. Participants with dementia, ascertained from UK Biobank algo-
rithmically defined health outcomes, were excluded (n = 13). We tested, in
individual multivariable linear regression models, the association of CMR
metrics with measures of cognitive performance (FI and RT). Based on
existing literature and biological plausibility, we considered the following
covariates, determined a priori: age, sex, smoking, alcohol intake, exercise
level, education, deprivation, diabetes, hypertension, high cholesterol, and
prior myocardial infarction. There was no evidence of multicollinearity
based on a conservative variance inflation factor threshold of <2. For ease
of interpretation and to allow comparison of magnitude of effects across
CMR measures, we report standardized beta-coefficients with correspond-
ing 95% confidence intervals and P-values. Thus, results are standard devi-
ation change in FI/RT per 1 SD increase in CMR measure. P-values are
adjusted by Benjamin Hochberg method, where all CMR-related
P-values across the set of models are adjusted together, setting a conserva-
tive false discovery rate of <5%.24 We performed sex-stratified analyses
and tested for interaction effects by age and sex. All models were assessed
for potential non-linearity using squared and cubic polynomial terms.

Ascertainment of covariates
We used age at the imaging visit. Sex was taken as recorded at baseline.
Educational level, smoking status (current vs. never/previous), and alcohol
intake (intake frequency) were based on self-report. Material deprivation is
reported as the Townsend index, a measure of material deprivation relative
to national averages.25 A continuous value for the amount of physical activ-
ity measured in metabolic equivalent (MET) minutes/week was calculated
by weighting different types of activity (walking, moderate, or vigorous) by
its energy requirements using values derived from the International Physical
Activity Questionnaire study.26 Diabetes was coded based on self-report of
the diagnosis, self-reported use of ‘medication for diabetes’, or serum glyco-
sylated haemoglobin >48 mmol/mol. Hypertension was coded based on
self-report of the diagnosis or self-reported use of ‘medication for high
blood pressure’. High cholesterol was coded based on self-report of the
diagnosis, self-reported use of ‘medication for high cholesterol’, or serum
total cholesterol >7 mmol/L. Prior myocardial infarction was ascertained
from UK Biobank algorithmically defined outcome data.27

Results

Baseline population characteristics
There were 32 107 participants with CMR measures and without de-
mentia, of these, FI and RT were available for 29 243 and 29 683 par-
ticipants, respectively. Overall, there were 29 763 participants with
CMR data and at least one cognitive function measure (Figure 1). The
analysis sample comprised 14 379 men and 15 384 women. Mean age
was 63.0 (±7.5) years. Rates of diabetes, hypertension, high choles-
terol, and smoking were 3.0%, 13.5%, 22.3%, and 6.2%, respectively,
with greater burden in men (Table 1). Overall, the analysis sample
was healthier and more affluent than UK national averages. Average
FI and RT were 6.7 (±2.1) items and 573 (518, 644) ms, respectively,
as measured at the imaging visit.

Association of CMR indices with FI
In fully adjusted models, higher FI (better cognition) was associated
with larger LV volumes in end-diastole and end-systole, higher LV
stroke volume, and greater LV mass (Table 2 and Figure 2). The associ-
ation with LV ejection fraction was not statistically significant. Higher FI
was associated with greater aortic distensibility (Table 2 and Figure 2).
Higher FI was also associated with larger RV volumes in end-diastole
and end-systole, and with larger RV stroke volumes (Supplementary
data online, Table S2). All associations were consistent for both men
and women (Table 2 and Supplementary data online, Table S2). There
was no evidence of interaction effect with sex or age in relationships
with the LV or RV measures (Supplementary data online, Table S3).
There was a significant interaction effect with age for the association
between FI and aortic distensibility (Supplementary data online, Table
S3), with participants with higher aortic distensibility showing less rapid
age-related decline in FI (Supplementary data online, Figure S1).

Association of CMR indices with RT
In fully adjusted models, lower RT (better cognition) was associated
with larger LV volumes in end-diastole, higher LV stroke volume, and
greater LV mass (Table 2 and Figure 3). Lower RT was also associated
with greater aortic distensibility, but this relationship was not

Figure 1 Flowchart of UK Biobank participants included in the
analysis. CMR, cardiovascular magnetic resonance; FI, fluid intelli-
gence; RT, reaction time.
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..statistically significant. Overall, associations were consistent for both
men and women (Table 2). There was no evidence of interaction ef-
fect with sex or age in relationships with the LV or RV measures
(Supplementary data online, Table S3).

Non-linearity of relationships
All models were screened for non-linearity with cubic and squared
polynomials. For both FI and RT, in fully adjusted models, there was a
trend towards attenuation of associations at the high extremes of the
distribution for LV volumes and mass (very high volumes and mass).
This appeared most convincing for the relationship between FI and
LV end-systolic volume, where there was suggestion of attenuation

and possible reversal of the direction of association at the very high
extremes of the distribution (Supplementary data online, Figure S2).
However, nested model testing indicated that none of the non-linear
models showed a statistically significant improvement over linear
model fits (Supplementary data online, Table S4).

Discussion

Summary of findings
In this predominantly healthy cohort of 15 384 women and 14 379
men from the UK Biobank, we demonstrated association of better

....................................................................................................................................................................................................................

Table 1 Baseline population characteristics

Whole cohort (n 5 29 763) Men (n 5 14 379; 48.3%) Women (n 5 15 384; 51.7%)

Age at imaging 63.0 (±7.5) 63.7 (±7.6) 62.4 (±7.3)

Current smoker 1851 (6.2%) 1066 (7.4%) 785 (5.1%)

Education

Left school age <_14 years without qualifications 75 (0.3%) 42 (0.3%) 33 (0.2%)

Left school at age >_15 without qualifications 1981 (6.7%) 954 (6.6%) 1027 (6.7%)

High school diploma or equivalent 3900 (13.1%) 1500 (10.4%) 2400 (15.6%)

Sixth form qualification or equivalent 1691 (5.7%) 751 (5.2%) 940 (6.1%)

Professional qualification (e.g. teaching, nursing) 8283 (27.8%) 4198 (29.2%) 4085 (26.6%)

Higher education university degree 13 526 (45.4%) 6782 (47.2%) 6744 (43.8%)

Townsend score -2.7 (-3.9, -0.7) -2.7 (-4.0, -0.7) -2.6 (-3.9, -0.6)

IPAQ (MET minutes/week) 1530 (671, 3016) 1590 (693, 3111) 1464 (642, 2933)

Alcohol intake

Daily or almost daily 6554 (22.0%) 3832 (26.6%) 2722 (17.7%)

Three or four times a week 8426 (28.3%) 4388 (30.5%) 4038 (26.2%)

Once or twice a week 7731 (26.0%) 3632 (25.3%) 4099 (26.6%)

One to three times a month 3223 (10.8%) 1227 (8.5%) 1996 (13.0%)

Special occasions only 2423 (8.1%) 717 (5.0%) 1706 (11.1%)

Never 1390 (4.7%) 574 (4.0%) 816 (5.3%)

Diabetes 893 (3.0%) 581 (4.0%) 312 (2.0%)

Hypertension 4016 (13.5%) 2417 (16.8%) 1599 (10.4%)

High cholesterol 6640 (22.3%) 3616 (25.1%) 3024 (19.7%)

Prior MI 590 (2.0%) 494 (3.4%) 96 (0.6%)

Fluid intelligence (items) 6.7 (±2.1) 6.8 (±2.1) 6.5 (±2.0)

Reaction time (ms) 573 (518, 644) 565 (510, 636) 581 (526, 655)

LVEDVi (mL/m2) 78.8 (±13.9) 83.8 (±14.7) 74.1 (±11.1)

LVESVi (mL/m2) 31.1 (26.3, 36.7) 34.5 (29.5, 40.3) 28.3 (24.5, 32.7)

LVEF (%) 59.5 (±6.1) 57.8 (±6.2) 61.0 (±5.6)

LVSVi (mL/m2) 46.6 (±8.3) 48.2 (±9.0) 45.1 (±7.4)

LVMi (g/m2) 45.7 (±8.7) 51.1 (±7.9) 40.6 (±5.9)

RVEDVi (mL/m2) 83.2 (±15.2) 90.0 (±15.3) 76.9 (±12.1)

RVESVi (mL/m2) 35.9 (±9.4) 40.5 (±9.3) 31.5 (±7.1)

RVEF (%) 57.2 (±6.1) 55.1 (±5.9) 59.1 (±5.6)

RVSVi (mL/m2) 47.4 (±8.7) 49.5 (±9.3) 45.4 (±7.7)

PDA AoD (10-3/mmHg) 2.3 (1.6, 3.1) 2.3 (1.7, 3.1) 2.2 (1.5, 3.0)

Mean (standard deviation) for continuous data, number (percentage) for categorical data. Median (interquartile range) where absolute skew is >_0.9.
IPAQ, International Physical Activity Questionnaire; i, indexation to body surface area; LVEDVi, left ventricular end-diastolic volume; LVEF, left ventricular ejection fraction;
LVM, left ventricular mass; LVESVi, left ventricular end-systolic volume; LVSVi, left ventricular stroke volume; MET, metabolic equivalents; MI, myocardial infarction; PDA AoD,
aortic distensibility at the proximal descending aorta; RVEDVi, right ventricular end-diastolic volume; RVEF, right ventricular ejection fraction; RVESVi, right ventricular
end-systolic volume; RVSVi, right ventricular stroke volume.
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.cognitive performance with CMR measures likely representing a
healthier cardiovascular phenotype, independent of a range of life-
style, demographic, and vascular risk factors. Specifically, better cog-
nitive performance (higher FI and lower RT) was associated with
larger LV and RV volumes, greater LV and RV stroke volumes, higher
LV mass, and greater aortic distensibility. There was some evidence
of non-linearity for the relationship between FI and LV end-systolic
volume, with a trend towards reversal of the direction of association
at the high extremes of the distribution (very high volumes).
Associations appeared consistent for men and women and with age.
For the relationship with FI, there was significant interaction between
aortic distensibility and age, with participants with higher aortic dis-
tensibility showing less rapid age-related decline in FI.

Interpretation of cardiovascular
phenotypes
Although there was no prerequisite for healthy status for recruitment
into UK Biobank, there is a significant healthy participant effect, as
such, our results reflect trends within a spectrum of normality. This
means that in this analysis, for the most part, we do not report

transitions from health to ‘disease’, but rather trends within a pre-
dominantly healthy sample. It is also essential that interpretation of
the nature of cardiac phenotypes considers the overall pattern of
associations as interpretation of single CMR metrics in isolation, out-
side the context of the other metrics, may be misleading.

Our findings demonstrate association of better cognitive perform-
ance with larger ventricular cavity volumes, larger LV and RV stroke
volumes, and higher LV mass. This pattern of associations is indicative
of better right and left ventricular contractile function (higher stroke
volumes) and a pattern of ventricular remodelling, interpreted within
the spectrum of normality, akin to decelerated heart ageing (reverse
of alterations seen in healthy ageing). There was some evidence of re-
versal of the direction of associations between FI and LV end-systolic
volume at the high extremes of the distribution (very high volumes),
suggesting that LV volumes larger than the normal range are linked
with poorer cognition. However, within our analysis sample, the
non-linear models did not show a statistically significant improvement
over linear model fits. This may be because there were few partici-
pants with extreme values in our sample. Better cognitive perform-
ance was also linked to greater aortic distensibility (statistically

....................................................................................................................................................................................................................

Table 2 Multivariable linear regression models representing standard deviation change in fluid intelligence and
reaction time per one standard deviation increase in CMR measures

Whole cohort Men Women

LVEDVi (mL/m2) FI 0.043a (0.031, 0.056) 0.046a (0.030, 0.062) 0.040a (0.020, 0.060)

1.45 � 10-11 3.06 � 10-8 9.31 � 10-5

RT -0.028a (-0.040, -0.015) -0.031a (-0.047, -0.015) -0.024a (-0.044, -0.004)

1.24 � 10-5 1.64 � 10-4 0.018

LVESVi (mL/m2) FI 0.040a (0.028, 0.053) 0.044a (0.028, 0.059) 0.035a (0.014, 0.055)

2.76 � 10-10 6.28 � 10-8 0.001

RT -0.019a (-0.031, -0.006) -0.020a (-0.036, -0.005) -0.017 (-0.038, 0.004)

0.003 0.011 0.104

LVEF (%) FI -0.018a (-0.030, -0.006) -0.026a (-0.043, -0.010) -0.009 (-0.026, 0.008)

0.003 0.002 0.303

RT 0.002 (-0.010, 0.014) 0.002 (-0.014, 0.018) 0.002 (-0.015, 0.019)

0.725 0.831 0.792

LVSVi (mL/m2) FI 0.026a (0.015, 0.038) 0.027a (0.011, 0.043) 0.026a (0.008, 0.044)

1.17 � 10-5 7.70 � 10-4 0.004

RT -0.024a (-0.035, -0.012) -0.028a (-0.043, -0.012) -0.019 (-0.037, -0.001)

7.81 � 10-5 5.03 � 10-4 0.039

LVMi (g/m2) FI 0.048a (0.034, 0.063) 0.042a (0.023, 0.060) 0.058a (0.035, 0.081)

3.50 � 10-11 1.09 � 10-5 6.87 � 10-7

RT -0.039a (-0.053, -0.025) -0.045a (-0.063, -0.027) -0.032a (-0.055, -0.010)

8.25 � 10-8 1.26 � 10-6 0.005

PDA AoD (�10-3/mmHg) FI 0.030a (0.014, 0.045) 0.033a (0.010, 0.057) 0.032a (0.010, 0.053)

2.02 � 10-4 0.006 0.003

RT -0.017 (-0.032, -0.001) -0.016 (-0.039, 0.006) -0.015 (-0.036, 0.006)

0.036 0.159 0.171

Results are standardized beta coefficients followed by 95% confidence interval in brackets and corresponding P-value displayed below. Each cell represents results from an indi-
vidual linear regression model. Models are adjusted for: age, sex (whole cohort only), education, deprivation, diabetes, hypertension, high cholesterol, prior myocardial infarc-
tion, smoking, alcohol, and exercise. PDA AoD has been scaled to remove skew.
CMR, cardiovascular magnetic resonance; FI, fluid intelligence; i, indexation to body surface area; LVEDVi, left ventricular end-diastolic volume; LVEF, left ventricular ejection
fraction; LVESVi, left ventricular end-systolic volume; LVSVi, left ventricular stroke volume; PDA AoD, aortic distensibility at the proximal descending aorta. RT, reaction time.
aP-value is significant using a false discovery rate of 5%.
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Figure 2 Univariate linear regression models of the association between fluid intelligence and CMR measures. Each graph displays a kernel density
plot of one CMR variable against one cognition variable. The nine coloured rings each represent a decile of the data, while the remaining 10% lies in
the uncoloured area. Univariate linear regression is shown by black line. All plot areas are trimmed at the 1st and 99th percentile in both x and y direc-
tions. Fluid intelligence has had uniform random jitter/noise (-0.5, 0.5) added for visual smoothing. CMR, cardiovascular magnetic resonance; i, index-
ation to body surface area; LVEDVi, left ventricular end-diastolic volume; LVEF, left ventricular ejection fraction; LVESVi, left ventricular end-systolic
volume; LVSVi, left ventricular stroke volume; PDA AoD, Aortic distensibility at the proximal descending aorta.

Figure 3 Univariate linear regression models of the association between reaction time and CMR measures.
Each graph displays a kernel density plot of one CMR variable against one cognition variable. The nine coloured rings each represent a decile of the
data, while the remaining 10% lies in the uncoloured area. Univariate linear regression is shown by black line. All plot areas are trimmed at the 1st and
99th percentile in both x and y directions. CMR, cardiovascular magnetic resonance; i, indexation to body surface area; LVEDVi, left ventricular end-
diastolic volume; LVEF, left ventricular ejection fraction; LVESVi, left ventricular end-systolic volume; LVSVi, left ventricular stroke volume; PDA
AoD, Aortic distensibility at the proximal descending aorta.
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significant for FI). Aortic distensibility is a measure of local aortic com-
pliance and a maker of aortic bioelastic function, with higher distensi-
bility values indicating better vascular health. Conversely, poorer
cognitive function was associated with smaller ventricular volumes
and lower LV mass, together with smaller LV and RV stroke volumes,
and lower aortic compliance. Overall, this presents a picture of a car-
diac phenotype with poorer myocardial function, small, perhaps stiff,
ventricles, and higher aortic stiffness. This suggests that poorer cogni-
tion is associated with adverse cardiovascular phenotypes, perhaps
resembling a heart failure preserved ejection fraction (HFpEF)
phenotype.

Comparison with existing literature
Existing evidence is limited to small cohorts of select populations
with highly variable study designs. Several studies report poorer cog-
nitive function indices in small heart failure cohorts. Zuccalà et al.28

report an independent association between poorer LV function on
echocardiography and worse performance in a number of cognitive
tests (mini mental state examination, Raven score) in 57 patients with
heart failure. In a study of structural brain abnormalities in heart fail-
ure patients, Vogels et al.29 report greater periventricular and white
matter hyperintensities, lacunar and cortical infarcts, and global and
medial temporal lobe atrophy in 58 patients with heart failure com-
pared with controls.30 Similarly, studies in dementia cohorts demon-
strate links with adverse cardiovascular phenotypes. Oh et al.31

describe a correlation between greater left atrial enlargement on
echocardiography (an early indicator of raised filling pressures and
diastolic dysfunction) and adverse white matter changes on brain
magnetic resonance imaging in 93 patients with dementia. Two other
cohort studies demonstrate greater prevalence of diastolic dysfunc-
tion (assessed by echocardiography) in individuals with Alzheimer’s
disease compared with controls.32,33 Limited studies have examined
associations with other cardiovascular phenotypes. In a cohort of
303 participants, Manolio et al.34 report association of greater cere-
bral atrophy on brain MRI with greater internal carotid artery thick-
ness on ultrasound (a marker of atherosclerosis risk).

Whilst direct comparisons with our study are not possible, in gen-
eral, existing work supports associations between adverse cardiovas-
cular phenotypes and poorer cognitive function metrics. In particular,
there is evidence to support association of poorer cognitive function
indices with heart failure, which is perhaps more pronounced in
those with diastolic heart failure.35 This is consistent with our findings
demonstrating association of poorer cognitive function with smaller
LV/RV cavities and lower LV/RV stroke volumes. Overall, this pattern
of associations is suggestive of an adverse remodelling phenotype
most in keeping with an HFpEF pattern of dysfunction, in which dia-
stolic impairment is a prominent feature.

Potential underlying mechanisms
Numerous studies highlight links between individual cardiovascular
risk factors (diabetes, high cholesterol, smoking, hypertension, and
obesity) and worse cognitive performance.36–40 Furthermore, associ-
ation of cardiovascular risk factors and subclinical cardiovascular dis-
ease with worse cognition and dementia has been demonstrated in
multiple large epidemiological studies.9,41,42 More specific associa-
tions between cardiac risk factors and both vascular and Alzheimer’s
disease have also been demonstrated in large cohorts.7,43,44 The

systemic atherosclerotic arterial disease that occurs as a conse-
quence of these vascular risk factors may have direct adverse impact
on both cardiovascular and brain health through local hypoperfusion
and systemic embolic phenomena (Figure 4).

Associations between cognitive function and cardiovascular phe-
notypes in the present study were not attenuated by adjustment for
a wide range of vascular risk factors. This raises the possibility of alter-
native disease mechanisms contributing to heart–brain associations.
For instance, limited studies propose that Ab deposition, which is
hallmark of Alzheimer’s disease, may also be pathologically deposited
in the myocardium33 producing electrographic and echocardiograph-
ic manifestations typical of cardiac amyloid. Cardiac amyloid is charac-
teristically associated with a HFpEF pattern of dysfunction. This is
consistent with the cardiac phenotype most consistently linked with
cognitive impairment and in keeping also with observations in the
present study. However, these phenotypes are not specific to cardiac
amyloid and may be seen with a wide range of other exposures.
Another possibility is that poorer brain and cardiovascular health
may both be a consequence of accelerated multisystem ageing. For
instance, persistently elevated inflammatory cytokines, which is a pro-
posed driver of accelerated ageing, has been linked to both cardiovas-
cular disease and Alzheimer’s disease.45,46 Regardless of the
underlying cause, it seems likely that these pathways initiate a positive
feedback cycle of adverse heart–brain interactions with cardiac dys-
function resulting in chronic systemic hypoperfusion, disruptions to
cerebral perfusion, and further exacerbation of brain injuries
(Figure 4).

Whatever the underlying mechanisms, our findings suggest links
between cardiovascular and cognitive health which might, with fur-
ther investigation and validation, underpin novel clinical approaches
to risk assessment for associated outcomes such as myocardial infarc-
tion and dementia.

Strengths and limitations
In this study, we made use of the large and standardized UK Biobank
dataset to describe novel associations between cognitive function
and CMR phenotypes. The extensive algorithm-coded morbidity,
demographic, and lifestyle data available permitted adjustment for a
wide range of covariates. However, inherent to the observational
cross-sectional study design, the possibility of residual confounding
cannot be excluded, and it is not possible to establish a strict causal
relationship from the results. Further, the large sample size in this
study may reveal statistically but not clinically relevant associations.
With this in mind, we have taken a strict hypothesis based approach
to the analysis, applied conservative correction of P-value thresholds,
and consider biological (rather than clinical) interpretation of the
findings. Common to all research in the field of cognitive perform-
ance and dementia, the questionnaires and scoring systems used to
quantify cognitive performance may not accurately reflect global cog-
nitive ability and may be subject to bias depending on underlying edu-
cational status and other factors. In addition, there is, as is expected
with such cohorts, evidence of healthy selection in UK Biobank,47

thus the associations observed in this study describe, predominantly,
relationships within the limits of healthy populations. Therefore, the
pattern of associations observed may not be directly applicable to
disease cohorts. Another limitation of our work is that despite con-
sidering the potential confounding effect of an extensive range of
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exposure variables, we do not identify the underlying mechanism for
the observed associations. In a separate analysis, addition of body
mass index as covariate to fully adjusted models also did not alter
observed associations. Future work dedicated to exploring underly-
ing mechanisms is needed to better understand the links between
brain and heart health.

Conclusions

In this cohort of 29 763 UK Biobank participants, better cognitive
performance was associated with CMR and aortic distensibility meas-
ures likely representing a healthier cardiovascular phenotype. The
associations were in general consistent between men and women
and remained robust after adjustment for a range of lifestyle, demo-
graphic, and vascular risk factors, implying potential importance of al-
ternative underlying mechanism. These findings thus support links
between cardiovascular and cognitive health, inform understanding
of associated mechanisms, and suggest a rationale for a cross-system
approach to risk assessment for associated disease outcomes.

Supplementary data

Supplementary data are available at European Heart Journal - Cardiovascular
Imaging online.
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