
Murine Dendritic Cells Transcriptional Modulation upon
Paracoccidioides brasiliensis Infection
Aldo H. Tavares1., Lorena S. Derengowski2., Karen S. Ferreira3, Simoneide S. Silva2, Cláudia Macedo4,
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Abstract

Limited information is available regarding the modulation of genes involved in the innate host response to Paracoccidioides
brasiliensis, the etiologic agent of paracoccidioidomycosis. Therefore, we sought to characterize, for the first time, the
transcriptional profile of murine bone marrow-derived dendritic cells (DCs) at an early stage following their initial interaction
with P. brasiliensis. DCs connect innate and adaptive immunity by recognizing invading pathogens and determining the
type of effector T-cell that mediates an immune response. Gene expression profiles were analyzed using microarray and
validated using real-time RT-PCR and protein secretion studies. A total of 299 genes were differentially expressed, many of
which are involved in immunity, signal transduction, transcription and apoptosis. Genes encoding the cytokines IL-12 and
TNF-a, along with the chemokines CCL22, CCL27 and CXCL10, were up-regulated, suggesting that P. brasiliensis induces a
potent proinflammatory response in DCs. In contrast, pattern recognition receptor (PRR)-encoding genes, particularly those
related to Toll-like receptors, were down-regulated or unchanged. This result prompted us to evaluate the expression
profiles of dectin-1 and mannose receptor, two other important fungal PRRs that were not included in the microarray target
cDNA sequences. Unlike the mannose receptor, the dectin-1 receptor gene was significantly induced, suggesting that this b-
glucan receptor participates in the recognition of P. brasiliensis. We also used a receptor inhibition assay to evaluate the
roles of these receptors in coordinating the expression of several immune-related genes in DCs upon fungal exposure.
Altogether, our results provide an initial characterization of early host responses to P. brasiliensis and a basis for better
understanding the infectious process of this important neglected pathogen.
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Introduction

The thermodimorphic fungus Paracoccidioides brasiliensis is the

causative agent of paracoccidioidomycosis (PCM), a systemic

human disease that is geographically confined to Latin America.

PCM is mainly endemic in Argentina, Colombia, Venezuela and

especially in Brazil, where it is the most prevalent cause of death

among systemic mycoses not associated with AIDS [1].

P.brasiliensis infection is acquired upon the inhalation of airborne

propagules derived from the saprophytic mycelium form of the

fungus. Once in the lungs, P. brasiliensis converts to its parasitic

yeast form and interacts with resident macrophages and dendritic

cells (DCs) [2,3]. DCs are the most powerful antigen-presenting

cells and are uniquely able to recognize pathogen-associated

molecules and activate qualitatively different adaptive T-helper

(Th) cell responses [4]. Protective immunity against P. brasiliensis

has been credited to a Th1 type response, whereas the anti-

inflammatory cytokine IL-10 is generally correlated with delete-

rious effects in murine and human PCM [5–7]. Recent

experiments have shown that P. brasiliensis infection activates

DCs to migrate to regional lymph nodes and trigger a Th response

[8]. The direct activation of DCs occurs via the recognition of

specific microbial compounds, known as pathogen-associated

molecular patterns (PAMPs), by germline-encoded pattern recog-

nition receptors (PRRs). In particular, the Toll-like receptors

(TLRs) and C-type lectin receptors (CLRs) are the most important

PRRs for the recognition of fungal molecules [9,10].

During the activation process, DCs are subject to profound

changes due to the differential expression of a variety of immune-

related genes, which regulate the efficiency of the DC response to

pathogens [11]. From this perspective, the use of microarrays to

evaluate the gene expression profiles of DCs has served as an

important tool to investigate how these cells respond to infection

and modulate the immune system upon interaction with different

microorganisms [12]. Because little data are available about the

regulation of DC genes upon P. brasiliensis infection, we sought to

examine the transcriptional profile of murine bone marrow-

derived DCs at an early time of interaction with yeast cells. Gene

expression profiles were analyzed using microarray and validated

using real-time RT-PCR. Cytokine secretion was also monitored.
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We identified 299 genes that were differentially expressed upon

infection, including many genes that are involved in immunity

(e.g., inflammatory cytokines, chemokines and PRRs), signal

transduction, transcription and apoptosis. Additionally, we used

inhibition assays to evaluate the role of the CLRs dectin-1 and

mannose receptor (MR) in coordinating the expression of several

immune-related genes upon exposure to P. brasiliensis. Taken

together, our results provide a foundational description of early

host gene expression changes in response to P. brasiliensis, which

may allow a better understanding of the infectious process of this

important, but neglected, fungal pathogen.

Methods

Ethics statement
All work was conducted with the approval of the Committee on

the Ethics of Animal Experiments of the University of Sao Paulo

(CEUA/FCF permit number: 2921) according to the National

Council on Animal Experiments and Control (CONCEA-MCT-

Brazil) guidelines.

Mice
Male BALB/c mice were obtained from the animal laboratory

of the University of São Paulo and used in experiments at 8 to 12

weeks of age. This strain has been shown to have intermediate

resistance to P. brasiliensis infection [13].

Fungus
The yeast form of the highly virulent P. brasiliensis isolate 18 was

grown on Sabouraud agar and used for in vitro infection assays.

Viability, as determined with Janus Green B vital dye (Merck), was

always greater than 80%.

Generation of bone marrow-derived DCs, in vitro
infection and RNA extraction for microarray procedure

Bone marrow-derived DCs were generated from BALB/c mice

according to the protocol described by Inaba et al. [14] with slight

modifications. Briefly, mouse femurs and tibias were flushed with

2 ml phosphate buffered saline (PBS) containing 1% bovine serum

albumin (BSA). Bone marrow cells were differentiated into DCs by

culturing in RPMI 1640 tissue culture medium supplemented with

10% fetal calf serum (FCS), 10 mg/ml gentamicin and 50 ng/ml

recombinant granulocyte-macrophage colony stimulating factor

(GM-CSF) for 7 days at 37uC in a humidified atmosphere containing

5% CO2. On days 3 and 5, nonadherent cells (granulocytes and

lymphocytes) were removed, and fresh medium supplemented with

GM-CSF was added. On day 7, the non-adherent cells were

removed and analyzed by flow cytometry using DC cell surface

markers. Phenotypically, 80% of these cells express MHC class II,

CD80, CD40, CD11b and CD11c being characterized as bone

marrow-derived DCs (data not shown). Following DC generation,

107 cells were infected with P. brasiliensis at a yeast-to-cell ratio of 1:1

at 37uC. Using this ratio of infection, an average of 70% of DCs is

engaged in phagocytosis of at least one yeast cell (data not shown). At

6 h after infection, extracellular and weakly adherent fungi were

removed by washing with pre-warmed RPMI. DCs were then lysed,

and total RNA was extracted with the Trizol reagent (Invitrogen)

according to the manufacturer’s instructions. Total RNA from

control (uninfected) DCs was also extracted with Trizol.

Microarray preparation and probe hybridization
The transcriptional response of murine DCs to infection with P.

brasiliensis was assessed using cDNA microarrays prepared on silane-

coated UltraGAPS slides (# 40015, Corning). The microarrays

contained a total of 4,500 target tissue-restricted antigen cDNA

sequences, representing most murine tissues and organs. The cDNA

clones on the microarrays were isolated from the Soares thymus

2NbMT normalized library prepared from the thymus of C57BL/6J

4-week-old male mice, which is available at the IMAGE Consortium

(http://image.hudsonalpha.org/). The microarrays were prepared

based on published protocols [15] using a Generation III Array

Spotter (Amersham Molecular Dynamics) according to the manu-

facturer’s instructions and cross-linked using an ultraviolet cross-

linker. The cDNA complex probes were prepared by reverse

transcription using 10 mg of total DC RNA followed by labeling of

the resulting cDNAs with Cy3 or Cy5 fluorochromes using the

CyScribe post-labeling kit (Amersham Biosciences) and oligo dT12–18

as a primer. The cDNA complex probes derived from total RNA

obtained from P. brasiliensis-infected and non-infected control DCs

were labeled with Cy5 using the CyScribe post-labeling kit (GE

Healthcare). As a control for the hybridization procedure, we used

equimolar quantities of Cy3-labeled cDNA generated from total

RNA isolated from different mouse organs (thymus, spleen and lung).

This approach allowed for the amount of cDNA targeted in each

microarray spot to be estimated. The 15-h period of hybridization,

followed by washing, was performed in an automatic slide processor

system (ASP; Amersham Biosciences), and the microarrays were

scanned with a Generation III laser scanner (Amersham Biosciences).

Microarray data analysis
Microarray image quantification was performed using Spotfinder

(http://www.tm4.org/spot.nder.html). The normalization process

was carried out using the R platform (http://www.r-project.org),

and statistical analyses were conducted with Multiexperiment

Viewer (MeV) (version 3.1; http://www.tm4.org/mev.html). After

normalization, SAM (Significance Analysis of Microarrays) was used

to identify statistically significant differences in gene expression

between the experimental and control conditions [16]. SAM

computes a statistic for each gene, measuring the strength of the

relationship between gene expression and the response variable (P.

brasiliensis infected and non-infected DCs groups). It uses repeated

permutations of the data to determine if the expression of any genes

is significantly related to the response. The threshold for significance

is determined by a tuning parameter delta based on the false-positive

rate or false discovery rate (FDR). A high stringent FDR 0.5%

(Delta = 1.017) and q-value#0.05 were selected. The q-value (p-value

Author Summary

Paracoccidioidomycosis is a systemic disease that has an
important mortality and morbidity impact in Latin America,
mainly affecting rural workers of Argentina, Colombia,
Venezuela and Brazil. Upon host infection, one of the most
important aspects contributing to disease outcome is the
initial encounter of the Paracoccidioides brasiliensis fungus
with dendritic cells. This phagocytic cell is specialized in
decoding microbial information and triggering specific
immune responses. Thus, using a molecular biology
technique to examine the response of thousand of genes,
we aimed to identify the ways in which murine dendritic
cells interact with P. brasiliensis during an early time point
following infection. This approach allowed us to recognize
diverse modulated genes, in particular those associated
with a proinflamatory response and fungal recognition. Our
work provides an initial molecular characterization of early
infection process and should promote further investigations
into the innate host response to this important fungal
pathogen.

DCs Gene Expression in P. brasiliensis Infection
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adapted to multiple-testing conditions) for each gene is the lowest

FDR at which that gene modulation is called significant. SAM

analysis also provides the optional fold change parameter, to ensure

that significant modulated genes change by at least a pre-specified

amount. In the present work, a fold-change cutoff set to 1.2,

simulating 20% cutoff, was used. Microarray data were deposited

according to MIAME (Minimum Information About a Microarray

Experiment) guidelines in the ArrayExpress databank (http://www.

ebi.ac.uk/arrayexpress/) under accession number A-MEXP-2009.

Mannose and dectin-1 receptor inhibition assays and
cytokine quantitation

Bone marrow-derived DCs, generated as described above, were

plated at a concentration of 16106 cells/ml in 24-well cell-culture-

treated plates and pre-incubated for 30 min at 37uC with 100 mg/

ml a-mannan obtained from Saccharomyces cerevisae (Sigma-Aldrich)

or 200 mg/ml laminarin (Sigma-Aldrich) to block the mannose or

dectin-1 receptors, respectively. The DCs were then infected with

P. brasiliensis yeast cells, following the protocol for the in vitro

infection assay described above for the microarray experiments.

IL-12, IL-10 and TNF-a secretion were measured from culture

supernatants using commercially available ELISAs according to

the manufacturer’s recommendations (BD Pharmingen).

Quantitative RT-PCR (qRT-PCR)
qRT-PCR was used to validate the differential modulation of

DC genes revealed by the microarray experiment and for the

analysis of DC gene expression following mannose and dectin-1

receptor inhibition. To remove any genomic DNA contamination,

total RNA extracted from cells from both experimental conditions

was treated with RNase-free DNaseI (Promega) and precipitated

with ethanol. These DNA-free RNA samples were then used for

qRT-PCR. Equal amounts of RNA (1 mg) were reverse tran-

scribed (Superscript III, Invitrogen) using an oligo(dT)12–18 primer

and submitted to real time PCR. Amplification assays were carried

out on a 7500 Fast Real-Time PCR System with SDS software

(Applied Biosystems) in 10 ml reactions containing 0.2 mM of each

primer, 5 ml SYBR Green PCR master mix (26) and 0.2 ml

cDNA. After initial denaturation at 95uC for 20 s, amplifications

were carried out for 40 cycles at 95uC for 3 s and 60uC for 20 s.

To confirm the amplification specificity, the PCR products were

subjected to a melting curve analysis. The comparative CT

(crossing threshold) method [17], using the constitutively expressed

murine 40S ribosomal protein S9 (RPS9) gene as a control, was

used to evaluate the expression (fold change) of each gene of

interest. All primers used for qRT-PCR (Table S1) were based on

sequences obtained from the mouse transcriptome database

(http://www.informatics.jax.org) and designed with Primer3,

which is available online (http://www-genome.wi.mit.edu).

Statistical analyses
GraphPad Prism 5.0 (GraphPad Software) was used for

statistical analyses. The paired two-tailed Student’s t test was

used, and a P value#0.05 was considered significant. In addition,

multiple group comparisons were conducted by one-way ANOVA

followed by Bonferroni tests, as appropriate.

Results

Transcriptional response of DCs upon infection with
P. brasiliensis and validation of microarray data

The pattern of gene expression in murine bone marrow-derived

DCs infected with P. brasiliensis yeast cells was assessed using

microarray. Previous studies have shown that a 4- to 6-h co-

cultivation of P. brasiliensis yeast cells with murine bone marrow-

derived DCs stimulated significant phagocytosis [18]. Based on

these results, we selected a 6-h infection period because it

represented an early time point of fungal internalization by DCs.

For each condition (P. brasiliensis-infected or non-infected control

DCs), two independent cDNA microarray experiments were

performed with 4,500 cDNA clones on each microarray. The

analysis of DC gene-expression data using SAM revealed

significant changes in the expression profiles of 299 genes (81

up-regulated and 218 down-regulated) in response to infection

with P. brasiliensis (Table S2). Based on the findings of previous

fungal-phagocyte interaction studies, we selected modulated genes

and clustered them into different functional categories shown in

Tables 1 and 2.

Genes encoding cytokines such as tumor necrosis factor alpha

(TNF-a) and interleukin 12 (IL-12) were up-regulated. The

induction of TNF-a was confirmed by qRT-PCR (Table 3). In

addition, protein levels, as assayed by ELISA, were increased,

consistent with the increased accumulation of TNF-a and IL-12

mRNA in DCs exposed to P. brasiliensis. In contrast, no significant

IL-10 secretion was observed (Figure 1). P. brasiliensis infection also

modulated the expression of genes encoding chemokines, which

are critical chemotactic factors in the immune system. As shown in

Tables 1 and 2, the genes encoding the chemokines CCL22,

CCL27 and CXCL10 were up-regulated, whereas CCL25

transcription was decreased. Moreover, a ten-fold increase in

CCL22 transcript levels was observed using qRT-PCR, confirming

the microarray data (Table 3).

The expression levels of some DC membrane receptor genes

that are associated with immune responses were also significantly

modulated. Microarray results revealed that the genes encoding

the CLR receptor DC-SIGN (CD209a), the IgG receptor FccR1

and TLR4 were down-regulated at an early time point after yeast

infection, with fold-change values (FC) of 21.37, 21.33 and

21.26, respectively (Table 2). Although the decrease in TLR4

mRNA levels at 6 h after infection was confirmed by qRT-PCR

(Table 3), no significant modulation was found at a later time

point, 24 h after infection (data not shown). Microarray and qRT-

PCR data showed that TLR2 gene expression did not appear to be

influenced by the presence of fungal cells at 6 h (Table 3).

Likewise, the expression levels of two other TLRs family members

(TLR6 and TLR9, data not shown) and the universal adaptor

molecule of the TLR signaling pathway, MyD88, were not

modulated. The unchanged expression of MyD88 was also

validated using qRT-PCR (Table 3). In this manner, genes that

encode negative regulators of TLR-mediated signaling, such as

TOLLIP (Toll-interacting protein) and the lymphocyte antigen 86

(LY86) known as MD1, were up-regulated 6 h after infection

(Table 1).

Integrins are a family of proteins whose members are involved

in a variety of cell-matrix and cell-cell adhesion processes and

signaling events that are central to immunologic and inflammatory

processes [19]. These proteins are heterodimeric transmembrane

glycoproteins that consist of a series of related a and b subunits. As

shown in Table 2, down-regulation of the DC integrin genes

ITGAM (CD11b), Itg2b (CD18) and ITGA6 was observed in

response to P. brasiliensis infection. The a subunit of CD11b bound

to the b subunit CD18 is known as integrin CD11b/CD18 or

Complement Receptor 3 (CR3). In addition to its ability to

promote the phagocytosis of iC3b-opsonised particles, CR3

recognizes exogenous ligands, such as b-glucan, and has been

implicated in DC responses to fungi [10,20].

DCs Gene Expression in P. brasiliensis Infection
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Infected DCs also showed altered expression of interferon-

inducible genes and genes encoding transcription factors. IRG1,

or immunoresponsive gene 1, was up-regulated in response to

P. brasiliensis infection (Table 1). Interestingly, Degrandi et al. [21]

showed that the mRNA level of this gene increased following

TNF-a and IFN-c treatment. Another interferon-inducible gene,

IFI203, was shown to be up-regulated, with an FC of 2.27. As

shown in Tables 1 and 3, after 6 h of in vitro infection with

P. brasiliensis yeast cells, NFkB was up-regulated in DCs. Its product

is the major transcription factor that induces the expression of pro-

inflammatory genes. Moreover, NkRF was down-regulated. NkRF

encodes a transcriptional repressor that binds to specific negative

regulatory elements (NREs) to counteract NFkB activity at certain

gene promoters [22]. Other down-regulated genes involved in

transcriptional regulation included STAT2, STAT6, IER5 and

ILF2 (Table 2).

Another important group of genes with altered expression

consisted of those related to apoptosis. The pro-apoptotic genes

CASP2, BCLAF1 and DEDD were up-regulated (Table 1), while

BTG2 and RTN4 were down-regulated (Table 2). Moreover, the

expression of the anti-apoptotic gene CFLAR was inhibited, with

an FC of 1.75 (Table 2).

The expression of dectin-1 and MR in DCs infected with
P. brasiliensis and receptor inhibition assays

As described above, the expression of several DC receptor-

encoding genes, including opsonin-dependent receptors (CR3 and

FccR1) and non-opsonin dependent PRRs (TLR2, TLR4, TLR6,

TLR9 and DC-SIGN), were analyzed using microarray. The

genes encoding TLR4, CR3, FccR1 and DC-SIGN were down-

regulated, while TLR2, TLR6 and TLR9 were not differentially

regulated. To obtain a more comprehensive analysis of immune

receptor expression, we evaluated the expression profiles of dectin-

1 and MR, two major fungal CLRs [23] that were not included in

the microarray target cDNA library. qRT-PCR analysis revealed

that the dectin-1 receptor gene was up-regulated by more than ten

fold after 6 h of P. brasiliensis infection, while MR was down-

regulated (Figure 2). These results prompted us to investigate the

possible effects of dectin-1 and MR on the transcriptional profiles

of six immune-related genes (CCL22, TNF-a, NFkB, TLR2, TLR4

and MYD88) that were selected based on the microarray results

and importance to the fungi-host interaction. DCs were incubated

with laminarin or mannan to block dectin-1 and MR, respectively.

After 30 minutes, DCs were infected with P. brasiliensis for 6 h,

total RNA was extracted, and the expression profiles of the

selected immune-related genes were determined by qRT-PCR.

The comparative CT method [17], using the constitutively

expressed murine RPS9 gene as a control, was used to evaluate

the expression (fold change) of each interest gene. In this analysis

we have considered each gene expression ratio obtained between

P. brasiliensis infected and uninfected DCs with respect to host cells

treatment or not with mannan or laminarin. In the presence of

mannan, no differences in transcript accumulation were observed.

In contrast, DCs treated with laminarin before infection showed a

significant up-regulation of all six genes investigated, except

CCL22 (Figure 3). These data suggest that dectin-1 plays a

prominent role in the coordination of gene expression during the

initial phase of P. brasiliensis infection.

Table 1. Selected genes up-regulated in murine dendritic cells after 6 h of infection with P. brasiliensis.

Category Description Gene Clone ID* Fold Change

Immune Response Tumor necrosis factor alpha TNF-a 5213134 1.91

Interleukin 12b IL12B 750641 1.32

Chemokine (C-X-C motif) ligand 10 CXCL10 5327290 1.45

Chemokine (C-C motif) ligand 22 CCL22 577486 2.94

Chemokine (C-C motif) ligand 27 CCL27 1446118 1.34

CD27 antigen CD27 583084 1.42

CD53 antigen CD53 576862 1.38

Complement component 1 C1QB 583277 1.28

Interferon-activated gene 203 IFI203 582096 2.27

Immunoresponsive gene 1 IRG1 577102 1.43

Guanylate -binding protein 2 GBP2 583808 1.73

Lymphocyte antigen 86 (MD1) LY86 583305 1.22

Signal Transduction Toll-interacting protein TOLLIP 4951445 2.23

Diacylglycerol kinase gamma DGKG 576044 1.37

Nuclear receptor subfamily 3, group C, member 1 NR3C1 576681 1.96

Transcription Protein inhibitor of activated STAT1 PIAS1 577047 1.6

P105 subunit of nuclear factor kappa B NFkB 575033 1.42

Zinc finger homeobox 1a ZFHX1 583581 3.15

TAF4A RNA polymerase II, (TBP)-associated factor TAF4A 640087 3.50

Apoptosis Caspase 2 CASP2 573760 1.43

BCL-2-associated transcription factor 1 BCLAF1 641008 1.28

Death effector domain-containing DEDD 576731 1.48

*cDNA clones were obtained from the Soares mouse thymus 2NbMT normalized library, available from the IMAGE Consortium (http://image.hudsonalpha.org/).
doi:10.1371/journal.pntd.0001459.t001
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The effects of mannan and laminarin on cytokine
secretion by murine DCs infected with P. brasiliensis

The secretion of IL-10, IL-12 and TNF-a was evaluated after

inhibitor assays (Figure 4). Treatment with laminarin prior to

infection did not alter the secretion of any of these three cytokines

when DCs were exposed to P. brasiliensis, whereas MR inhibition

by mannan significantly reduced IL-12 secretion. Treatment with

laminarin or mannan alone (i.e., without subsequent infection) had

no effect on basal the secretion of any of these three cytokines by

DCs (data not shown).

Discussion

To our knowledge, this is the first study that has investigated the

gene expression profile of mouse DCs in response to a primary

pathogenic fungus. Previous studies have evaluated gene expres-

sion in human monocyte- and mouse splenic-derived DCs in

Table 2. Selected genes down-regulated in murine dendritic cells after 6 h of infection with P. brasiliensis.

Category Description Gene Clone ID* Fold Change

Immune response

Chemokine (C-C motif) ligand 25 CCL25 575567 21.63

CD63 antigen CD63 574568 21.33

CD209a antigen (DC-SIGN) CD209A 3413503 21.37

Toll-like receptor 4 TLR4 6047339 21.26

Fc receptor, IgG, high affinity I FCGR1 575540 21.33

Integrin, alpha 6 ITGA6 44814 21.63

Integrin beta 2 (CD18) ITGB2 583119 21.51

Integrin alpha M (CD11b) ITGAM 3966116 23.03

Signal transduction

Mitogen-activated protein kinase 6 MAPK6 50506 21.61

Mitogen-activated protein kinase 3 MAPK3 641003 21.63

Mitogen-activated protein kinase kinase kinase 10 MAP3K10 639683 21.40

Transcription NFkB repressing factor NkRF 21961 21.33

Immediate early response 5 IER5 639672 21.47

Signal transducer and activator of transcription 2 STAT2 5351573 21.63

Signal transducer and activator of transcription 6 STAT6 5349719 21.40

Interleukin enhancer-binding factor 2 ILF2 1264669 21.63

Chaperone Heat shock protein 8 HSPA8 575712 21.69

Heat shock protein 90 kDa beta (Grp94), member 1 HSP90B1 575854 21.36

Apoptosis

CASP8 and FADD-like apoptosis regulator CFLAR 640005 21.75

Reticulon 4 RTN4 640358 21.47

*cDNA clones were obtained from the Soares mouse thymus 2NbMT normalized library, available at the IMAGE Consortium (http://image.hudsonalpha.org/).
doi:10.1371/journal.pntd.0001459.t002

Table 3. Real-time PCR validation of microarray data.

Clone ID Gene Fold Change

Microarray
6 h

qRT-PCR*
6 h

577486 CCL22 2.94 10.2861.32

5213134 TNF-a 1.91 19.4260.98

575033 NFkB 1.42 4.4260.37

21961 NkRF 21.33 21.8260.02

6047339 TLR4 21.26 21.8260.07

4753177 TLR2 NM 1.1260.06

190887 MYD88 NM 1.0660.06

*Fold-change values were determined after normalization to Rps9 using the
comparative threshold method. Values indicate mean fold change 6 SD of two
independent experiments.
NM: not significantly modulated, as shown by microarray.
doi:10.1371/journal.pntd.0001459.t003

Figure 1. Quantification of cytokine secretion by murine
dendritic cells infected with P. brasiliensis. BALB/c bone marrow-
derived DCs were infected with live P. brasiliensis (Pb) yeast cells (1:1
ratio of yeast to DCs). Culture supernatants were harvested after 6 h,
and secreted protein levels were measured using ELISA. Data are
reported as the mean 6 standard deviation. * P,0.05.
doi:10.1371/journal.pntd.0001459.g001
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response to the opportunistic fungi Candida albicans and Cryptococcus

neoformans, respectively [12,24]. Our microarray data identified

several genes whose expression is modulated at an early time point

after bone marrow-derived DCs are exposed to P. brasiliensis yeast

cells. In particular, genes related to immune responses (mainly

inflammation-associated genes), signal transduction, transcription-

al regulation and apoptosis were altered.

DCs connect innate and adaptive immunity by recognizing

pathogen-associated molecules and producing cytokines that

subsequently drive qualitatively different adaptive Th responses.

IL-12 produced by DCs is the key cytokine that stimulates a Th1-

type cell-mediated response, the major source of immunity against

systemic fungal infections [10]. Here, we demonstrate the

increased production of IL-12 mRNA and protein by BALB/c

DCs infected with P. brasiliensis for 6 hours. Considering that this

mouse lineage has intermediate resistance to P. brasiliensis infection

[13], we could draw a parallel with previous observations

demonstrating that DCs derived from resistant mice (A/J)

stimulate a Th1 response in vitro more efficiently than DCs

derived from susceptible mice (B10.A) when pulsed with the

immunodominant P. brasiliensis antigen, gp43 [25]. Diverse

antigen-recognition and -processing mechanisms in DCs from

resistant and susceptible mice, which would give rise to differential

production of IL-12, could be involved in determining suscepti-

bility to this fungus. In fact, gp43-pulsed DCs from resistant mice

were later reported to secrete higher levels of IL-12 than those

from susceptible mice, but this increase was not statistically

significant [26]. Based on this observation, the authors speculated

that IL-12 is not the key factor for promoting a Th1-type response

in A/J mice. Other mechanisms, such as the high expression of the

costimulatory molecule CD80, concomitant with low production

of IL-4 and IL-6, could contribute to the induction of Th1 cells. In

contrast to these results, a recent study described a role for IL-12

in determining resistance to experimental PCM. Mice that are

deficient for the IL-12p40 subunit produce no detectable IFN-c
and high levels of IL-10 protein, and this phenotype is associated

with uncontrolled fungal proliferation and dissemination [27].

Moreover, Moraes-Vasconcellos et al. [28] described a patient

with disseminated PCM who harbored a primary immunodefi-

ciency in the beta 1 subunit of the IL-12/IL-23 receptor.

Our microarray analysis showed that, in addition to IL-12,

other proinflammatory cytokine- and chemokine-encoding genes

(TNF-a, CCL22, CCL27 and CXCL10) were induced by P.

brasiliensis exposure. Interestingly, microarray studies published

by Lupo et al. [24] demonstrated the up-regulation of all these

genes (except CCL27) in murine DCs exposed to acapsular C.

neoformans relative to DCs exposed to encapsulated strains. These

results are consistent with the role of the polysaccharide capsule as

the main virulence factor for this important opportunistic fungus

and the ability of the capsule to act as a shield from immune

recognition and activation. Notably, IL-12, CCL22 and CXCL10

are part of a cluster of murine DCs signature expressed genes that

discriminate very accurately between inflammatory and non-

inflammatory stimuli, such as lipopolysaccharide and dexameth-

asone, respectively [29]. Another signature inflammatory DC gene

identified in our study was NFkB1, which encodes the p105

subunit of the NFkB protein. NFkB is a master regulator of gene

transcription during development and inflammatory processes and

plays a critical role in the activation of innate and adaptive

immunity [30]. Among the known targets of NFkB, we were able

Figure 2. Relative quantification of dectin-1 and mannose
receptor transcripts in dendritic cells infected with P. brasilien-
sis. BALB/c bone marrow-derived DCs were cultured for 6 h with or
without P. brasiliensis yeast cells (Pb). Then total RNA was extracted
from the DCs and used in qRT-PCR assays. Fold change values were
determined after each gene was normalized to the constitutively
expressed RPS9 gene using the comparative threshold method. Data
are reported as the mean 6 standard deviation. * P,0.05.
doi:10.1371/journal.pntd.0001459.g002

Figure 3. Effect of mannan and laminarin on the accumulation of selected immune-related transcripts in dendritic cells infected
with P. brasiliensis. Murine bone marrow-derived DCs were incubated with mannan (Man) or laminarin (Lam) at 100 and 200 mg/ml, respectively, for
30 min. Subsequently, P. brasiliensis yeast cells (Pb) were added to DCs at a ratio of 1:1, and the co-culture was incubated for 6 h. Total RNA was
extracted from DCs and used in qRT-PCR assays. Fold-change values were determined after each gene was normalized to RPS9 using the comparative
threshold method. Data are reported as the mean 6 standard deviation. * P,0.05 compared to the DCs+Pb/DCs group.
doi:10.1371/journal.pntd.0001459.g003
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to show that DCs up-regulated IL-12, TNF-a, CCL22 and CXCL10

in response to P. brasiliensis. It is important to note that levels of

NkRF (a nuclear inhibitor of NFkB activity) mRNA were reduced

concomitant with NFkB induction.

TNF-a is a cytokine that is critical for the successful control of

fungal infections and the development of a Th1-dependent response.

This cytokine augments the cytotoxic activity of activated macro-

phages, induces chemokine production and, along with IFN-c,

regulates granuloma formation [31]. P. brasiliensis-infected mice

lacking the p55 subunit of TNF-a receptor were reported to develop

severe PCM associated with non-organized granulomas [32]. In

experimental pulmonary cryptococcosis, the transient depletion of

TNF-a production during the early innate immune response

permanently impaired the long-term control of fungal growth. This

effect was coupled with a temporary decrease in neutrophil lung

influx, reduced IL-12 production and recruitment of DCs to

draining lymph nodes [33]. In this context, the early TNF-a gene

expression and protein production observed in the current study is

likely to be associated with the induction of a protective response. As

discussed above, and consistent with a proinflammatory scenario, we

observed the up-regulation of several chemokines (CCL22, CXCL10

and CCL27) in our study. Chemokines play a major role in

mediating the extravasation and accumulation of specific leukocytes

at sites of infection, which is crucial for the local control of fungal

invasion [34]. Both CXCL10 and CCL22 are mainly chemotactic

for monocytes and T-lymphocytes. CCL22 is also chemotactic for

DCs, the major cell source for this chemokine in vivo and in vitro [35].

Notably, our group has previously shown the induction of CCL22

gene, among other chemokine-encoding genes, in peritoneal murine

macrophages that were infected with P. brasiliensis [36]. In addition to

its role as a chemoattractant, CCL22 enhances the microbicidal

activity of macrophages by stimulating a strong respiratory burst and

lysosomal enzyme release [37]. Similarly, CXCL10 not only induces

leukocyte migration but also up-regulates the production of Th1

cytokines (mainly IFN-c) and down-regulates the production of Th2

cytokines upon interaction with its receptor on T- cells [38]. In

humans, single nucleotide polymorphisms in the CXCL10 gene lead

to reduced chemokine production by DCs exposed to Aspergillus

fumigatus, causing invasive aspergillosis [39].

Of particular interest in our study was the assessment of

transcriptional modulation of genes encoding PRRs, which

specifically interact with pathogen PAMPs and thus regulate the

production of various immune-related molecules. A great number

of PRRs have been identified; of these, the TLRs and CLRs

families are of major interest because they appear to have critical

roles in fungal immunity [40–41]. Regarding TLRs, we observed

no appreciable modulation of the expression of TLR2, whereas

TLR4 was down-regulated. In accordance, the expression of

MYD88 was unaltered in P. brasiliensis-infected DCs, as shown

using microarray and qRT-PCR. MYD88 is a universal adaptor

molecule in the TLR signaling pathway that ultimately activates

NFkB and thus affects subsequent cytokine and chemokine

production [42]. Interestingly, the importance of MYD88

signaling in the experimental murine model of PCM is

controversial. Gonzalez et al [43] showed that this adaptor protein

is not necessary for the effective control of blood-borne

disseminated P. brasiliensis infection. In contrast, a recent study

demonstrated that MyD88-dependent signaling participates in the

induction of protective immune host defense against pulmonary

PCM [44]. Different fungal strains and routes of infection may

have been responsible for this divergence. In our study model, the

limited participation of TLR-mediated signal transduction in

response to P. brasiliensis is further supported by the fact that two

genes (TOLLIP and MD1) that encode negative regulators of this

signaling pathway were induced. TOLLIP is an adaptor molecule

that can associate with TLR2 and TLR4 to inhibit MyD88

binding and activation [45]. Indeed, the overexpression of

TOLLIP precludes NFkB activation in response to TLR2 and

TLR4 agonists [46]. Likewise, MD1 is a helper molecule for

RP105, a TLR homolog that acts as a physiological negative

regulator of TLR4 responses [47]. These results suggest that TLRs

may have only a minor role in the host responses elicited by P.

brasiliensis. In fact, TLR2 and TLR4 deficient mice infected with

this fungus demonstrated equivalent mortality rates compared

with wild-type littermates [48–49]. Interestingly, similar results

were obtained in TLR2 and TLR4 knockout mice infected with C.

neoformans [50].

Our microarray data suggesting limited role for TLR-mediated

signaling in response to P. brasiliensis, coupled with significant

production of IL-12 and TNF-a but not IL-10, prompted us to

search for a TLR2-4/MyD88-independent mechanism that could

explain the induction of these proinflammatory cytokines in DCs.

In accordance, bone marrow-derived DCs from mice deficient in

the TLR2 and TLR4 genes and infected with C. neoformans had no

significant reduction in IL-12 and TNF-a protein levels [50].

Because receptors of the C-type lectin family, particularly dectin-1

and MR, have been reported to be critical for the recognition of

fungi and the activation of macrophages and DCs [40], we sought

to evaluate their expression using qRT-PCR analysis (these genes

were not represented in our microarray). The dectin-1 receptor

gene, whose product recognizes b-(1,3)-glucans on the cell walls of

fungi, was up-regulated by ten fold, whereas the MR gene

transcription was diminished. These results suggest that dectin-1

participates in the induction of TNF-a and the production of IL-

12. Unexpectedly, the blockade of this receptor with laminarin did

not significantly reduce the production of these cytokines by DCs.

This apparent contradiction may be because dectin-1 inhibition

results in significant induction of the TLR2, TLR4, MYD88, NFkB,

and TNF-a genes, which could be involved in the sustained IL-12

and TNF-a production, probably via TLR-mediated signaling.

Thus, dectin-1 may act as negative regulator of the TLR signaling

pathway in our model. These results could be associated with the

intermediate PCM resistance pattern of the mouse strain used in

Figure 4. Effect of mannan and laminarin on cytokine secretion
by murine dendritic cells infected with P. brasiliensis. Murine
bone marrow-derived DCs were incubated with mannan (Man) or
laminarin (Lam) at 100 and 200 mg/ml, respectively, for 30 min.
Subsequently, P. brasiliensis yeast cells (Pb) were added to DCs at a
ratio of 1:1, and the co-culture was incubated for 6 h. Culture
supernatants were harvested and secreted protein levels were
measured using ELISA. Data are reported as the mean 6 standard
deviation. * P,0.05 compared to the DCs+Pb group.
doi:10.1371/journal.pntd.0001459.g004
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our study. DCs from mice that are susceptible to this fungus, but

not resistant mice, secrete significant amounts of IL-10 in a

TLR2/dectin-1 collaborative signaling-dependent manner. Fur-

thermore, TLR2 gene expression was only induced by P. brasiliensis

in susceptible mice and its deletion suppress IL-10 production

[51]. Altogether, these results suggest that dectin-1 signaling down-

regulates the expression of TLR-associated genes, leading to a

Th1-like response with little anti-inflammatory IL-10 production

(i.e., no collaborative dectin-1 and TLR signaling). MR blockade

did not alter TNF-a or IL-10 secretion, as observed in DCs treated

with laminarin. However, despite the downregulation of the MR-

encoding gene, a significant reduction in IL-12 expression was

observed after treatment with mannan. MR recognizes P.

brasiliensis, C. neoformans and C. albicans, and this receptor has been

implicated in mediating the production of pro-inflammatory

cytokines, including IL-6, TNF-a, IL-1b and IL-12 [40]. These

data could indicate a lack of correlation between the MR mRNA

level and the expression of the functional receptor. Alternatively,

because we used fungal mannan in our inhibition assay and this

mannose polymer is also recognized by other PRRs, such as DC-

SIGN, SCARF1 and mincle, we could not rule out the possibility

that one or more of those receptors promote the induction of IL-12

secretion.

In summary, our findings demonstrate that P. brasiliensis triggers

the accumulation of mRNAs for genes that encode proinflamma-

tory cytokines and chemokines as well as other molecules involved

in the early response of DCs to this fungus. These results provide a

better understanding of the molecular pathogenesis of PCM and

should promote future investigations into the innate host response

to this fungus, including in vivo analysis. Of particular interest were

the results regarding receptor inhibitor assay, because the

mechanisms by which dectin-1 negatively regulates TLR-associ-

ated gene expression remain to be determined.

The information concerning genes and proteins accession

numbers mentioned in the manuscript (text and Tables 1 and 2) is

described below, following the criteria: Gene name - Gene
Accession number/Protein Accession number Il12b

(Il12p40) - NM_008352/NP_032378; Cxcl10 - AK146144/

NP_067249; Ccl22 - AF052505/NP_033163; Ccl27a - AK146066/

NP_035466; Cd27 - L24495/NP_001036029; Cd53 - NM_007651/

NP_031677; C1qb - AK152764/NP_033907; Ifi203 - AK172243/

NP_032354; Irg1 - NM_008392/NP_032418; Gbp2 - BC032882/

NP_034390; Ly86 - AK172197/NP_034875; Tollip - BC062139/

NP_076253; Nr3c1 - NM_008173/NP_032199; Pias1 - AK075708/

NP_062637; Nfkb1 - AK036827/NP_032715; Taf4a - NM_

001081092/NP_001074561; Casp2 - BC034262/NP_031636; Ccl25

- AK154211/NP_033164; Cd209a - AY049062/NP_573501; Fcgr1 -

AK033874/NP_034316; Itgb2 - AK136502/NP_032430; Itgam -

NM_001082960/NP_032427; Mapk3 - BF579077/NP_036082;

Map3k10 - NM_001081292/NP_001074761; Ier5 - NM_010500/

NP_034630; Stat2 - AF206162/NP_064347; Stat6 - NM_009284/

NP_033310; Otud7b - BC141397/NP_001020785; Hspa8 - BC00

6722/NP_112442; Hsp90b1 - AK160827/NP_035761; Nadk -

NM_001159637/NP_619612; Rtn4 - NM_194054/Q99P72.

Supporting Information

Table S1 Oligonucleotides used for qRT-PCR analysis.

(DOC)

Table S2 Complete list of probe sets identified by SAM
as being differentially modulated in DCs infected with P.
brasiliensis.

(XLS)

Acknowledgments

We are grateful for helpful discussions provided by Dr Kelly Grace
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