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Introduction
Antibiotic resistance among oral microbiota is a growing con-
cern, but has received little attention in the literature. 
Metagenomic studies of the oral cavity based on high-through-
put sequencing have enabled us to glean insights into the 
resistome of the microbiome at this site. Antimicrobial resist-
ance genes (ARGs) appear to be a natural feature of the oral 
microbiome, and is independent of antibiotic exposure to a 
large extent.1 Consequently, the oral microbiome serves as a 
significant reservoir for these genes, which are transferred to 
pathogenic microbes by horizontal gene transfer (HGT). In 
the oral cavity, bacteria form biofilms, and this facilitates the 
acquisition of ARGs and their HGT.2-8 Thus, it may be worth-
while investigating antibiotic resistance of microbial pathogens 
that inhabit the oral cavity. In this paper, the authors review 
antibiotic resistance in the oral flora with regard to methicillin-
resistant Staphylococcus aureus (MRSA), and highlight the 
implications for antibiotic prophylaxis and surveillance.

Oral Microbial Flora
The mouth is home to an excess of 700 bacterial species, which 
are adapted to its inherently distinct ecological niches.9 More 
than 50% of these species colonize the periodontal pocket, and 
the remnants are distributed across other sites of the oral cav-
ity. In the mouth of any given person, approximately 100-200 
of these 700 plus species are present, with 50 of these harbored 
in the periodontal pocket.10 Some of the common oral flora 
belong to the genera Enterococcus, Peptostreptococcus, 
Streptococcus, Staphylococcus, Actinomyces, Corynebacterium, 
Eubacterium, Lactobacillus, Bacteroides, Campylobacter, 
Leptotrichia, Prophyromonas, Treponema, Fusobacterium, etc.11-19 

Even though the ecology of the oral flora is highly diversified, 
it has the hallmark of high equilibrium called microbial home-
ostasis.20-22 This is of chief relevance to oral health, since it 
ensures that the numbers of potentially pathogenic microbes 
are curtailed.20 Substantial agitations in the oral environment, 
including pH changes, disrupt the microbial homeostasis, and 
promote pathological conditions, such as dental caries and 
periodontitis.20,23-25 Moreover, orthodontic appliances,26-29 
degree of dentition,30-32 denture wearing,32-34 periodontitis,35 
dental caries,36 dental eruption,37 exfoliation,38 diet,39-42 preg-
nancy,43 and use of antibiotics44-46 are also known to influence 
this homeostasis.

To illustrate, several lines of evidence indicate that the 
makeup of elements, ruggedness, and other physicochemical 
properties of the exteriors of orthodontic appliances are capa-
ble of putting the oral microbial adhesion, interaction, and 
diversity in disarray.47-50 A study by Naranjo et  al,51 for 
instance, reported that the populations of Tannerella forsythia, 
Fusobacterium spp., Prevotella nigrescens, Prevotella intermedia, 
and Porphyromonas gingivalis increased following orthodontic 
appliance replacement. Another study, Ronsani et  al,52 
demonstrated that Cr3+, Fe3+, and Ni2+ metal cations, which 
frequently leak out from orthodontic appliances, increased the 
biomass of Candida albicans biofilms. As regards the influence 
of diet, intake of dry-food diets has been demonstrated to have 
significant correlates with oral Porphyromonas spp.41 A similar 
report has been made for vitamin C and Fusobacterium.42 Diets 
that are rich in sugar have also been noted to be significantly 
associated with oral carriage of Fusobacterium nucleatum and 
Streptococcus mutans.39,40 Moreover, oral administration of 
antibiotics—such as amoxicillin, ciprofloxacin, clindamycin, 
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and azithromycin—have been documented to alter microbial 
diversity and counts, such as a proximate reduction in the pop-
ulations of throat Actinomyces spp.44-46 With regard to dental 
caries, children with a relatively good oral health have been 
demonstrated to have a significantly more diverse oral micro-
biome than those with severe dental caries.53

Generally, there is very scanty information on the interac-
tion of S. aureus, and therefore MRSA, with the oral microbi-
ota. In an in vitro study, Lima et  al54 showed that S. aureus 
complexes with Porphyromonas gingivalis and Fusobacterium 
nucleatum. Further investigation of the F. nucleatum-S. aureus 
relationship demonstrated that the adhesin RadD, which is 
present on the outer-membrane, is somewhat involved in the 
configuration of the complexes, and that the RadD-mediated 
relationship induces increased staphylococcal global regulator 
gene, sarA, expression.

S. aureus and MRSA: Epidemiological and Clinical 
Significance
Staphylococcus aureus is considered a commensal as well as a 
human pathogen. As a commensal, S. aureus is principally iso-
lated from the anterior nares, although it colonizes other ana-
tomical sites, the mouth inclusive.55 Oral S. aureus could have 
their origins in the oral cavity itself; they could also transit to 
the mouth from their ecological niche in the anterior nares, 
using the oropharynx as a conduit.56 Prevalence of oral S. aureus 
tends to vary from one population to another—in healthy den-
tate adults, reports have indicated carriage prevalence that 
range from 24% to 84%17,57 and 48% in denture wearers.58 
Higher carriage prevalence of S. aureus in patients with a pre-
disposition to joint infections may provide a basis for consider-
ing the mouth as a seedbed for the hematogenous spread of the 
bacterium to compromised joint spaces.

For a period in the mid-twentieth century (early 1940s), 
infections of S. aureus were managed with the newly discovered 
antibiotic penicillin, which at the time, seemed a kind of pana-
cea for the treatment of a multitude of ailments. Its relevance as 
a therapeutic for S. aureus infections nonetheless began to wane 
in the mid-1940s when S. aureus strains resistant to the antibi-
otic began to be discovered.59,60 The rates at which penicillin 
resistance was reported in S. aureus has risen exponentially over 
the years to up to 100%.61-64 The molecular basis of this  
penicillin resistance attribute is known to be the organism’s 
production of the heterogeneously expressed enzyme, the  
beta lactamase, which hydrolyzes the beta lactam ring of  
penicillin.60,65,66 The emergence and spread of S. aureus strains 
with this attribute necessitated the inception of methicillin 
usage in 1959, with the purpose of treating infections of peni-
cillin-resistant S. aureus. However, in the early 1960s, S. aureus 
strains refractory to methicillin, identified as methicillin-
resistant Staphylococcus aureus (MRSA), were observed in sev-
eral European countries.67-71 S. aureus strains that retain the 
attribute of methicillin susceptibility are known as methicillin-
sensitive Staphylococcus aureus (MSSA). MRSA now has a 

worldwide distribution, and is prevalent in several hospitals, 
especially, those in Asia, Europe, and the United States.72-74 
MRSA strains harbor any of the variants of the mec gene, which 
are borne on different homologues of the Staphylococcal cas-
sette chromosome (SCCmec) —these specify methicillin-resist-
ant penicillin-binding proteins alien to S. aureus.75-77 Cassette 
chromosome recombinases (ccrA/ccrB or ccrC) are also borne on 
the SCCmec homologues—these facilitate the excision and 
integration of the mec genes, and together with the mec genes, 
serve as a premise for the characterization of the SCCmec.78,79 At 
present, more than ten SCCmec types have been characterized.80 
MRSA is refractory to all beta-lactam antibiotics and many 
commonly prescribed antibiotic groups, including aminoglyco-
sides, fluoroquinolones, macrolides, chloramphenicol, and tet-
racyclines.59,81,82 A key distressing concern is the emergence 
and dissemination of MRSA strains that are refractory to 
mainstays of MRSA therapy, such as daptomycin, linezolid and 
vancomycin. Even though recent reports indicate the existence 
of such strains, they have not spread at magnitudes that  
could be considered clinically significant.83-87 Yet, such con-
cerns are not misplaced, as several resistance determinants,  
including those for vancomycin and linezolid, are widespread 
in enterococci.88,89 At present though, resistance to these three 
drugs of choice have been reported to develop during pro-
longed treatment.87 Also, a significant relationship has been 
reported between daptomycin resistance and vancomycin 
resistance,90-92 as well as daptomycin resistance and the induc-
tion of beta-lactam susceptibility.93-95

In addition to its extensive resistance to antibiotics, MRSA is 
of serious concern because of the high prevalence of its infections 
and association with persistent outbreaks, which have serious 
economic implications.96-98 In the United States, invasive MRSA 
infections are estimated at an annual incidence of 94 360, with 18 
650 deaths.97 Furthermore, hospital stays for MRSA disease in 
the United States cost $14 000, compared with $7600 for all 
other stays.97 In Europe, data from thirty-one countries reported 
27 711 episodes of MRSA blood stream infections, which were 
associated with 5503 deaths and an estimated hospital stay cost of 
44 million Euros.98 Traditionally, MRSA is regarded as a major 
nosocomial pathogen in healthcare facilities, and is referred to as 
healthcare-associated MRSA (HA-MRSA).98,99 Of the known 
clones of HA-MRSA, just a limited number is implicated in the 
majority of infections, and the dominance of any of these varied 
clones is contingent on the geographical area. To illustrate, the 
clone tagged as ST239-SCCmecIII is the one frequently encoun-
tered in Africa, South America, and Asia.100-102 The clone that 
predominates in the United States is CC5-SCCmecII 
(USA100),103,104 whereas in Europe, it is CC22-SCCmecIV 
(EMRSA-15).103-109 Notably, the dominance of clones in various 
geographical locations have been dynamic.110-112 Investigations 
centered on HA-MRSA evolution provide solid proof of a wide 
spectrum of antibiotic resistance mutations and transmissible 
genetic elements that are associated with emergence of major 
HA-MRSA clones in hospital epidemics.113,114 MRSA, although 
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traditionally considered a nosocomial pathogen, has surfaced in 
the community within the past twenty years, and accounts for 
several types of community-acquired infections.99,100,115,116 These 
strains adapted to communities, called community-associated 
MRSA (CA-MRSA), are often isolated from individuals devoid 
of healthcare-exposure specific risk factors.117 Epidemiologically, 
CA-MRSA and HA-MRSA are considered to be different from 
each other,118,119 and Table 1 shows some clinical and genetic dif-
ferences between them. However, this epidemiological distinc-
tion can be blurred by the fact that both genotypes are being 
observed in healthcare and community infections interchangea-
bly.120 Moreover, CA-MRSA infections could also be caused by 
livestock-associated MRSA (LA-MRSA).121 LA-MRSA is ini-
tially associated with livestock (such as pigs, cattle, and chicken) 
and differs genotypically from HA-MRSA and CA-MRSA.121 
Globally, among the known LA-MRSA strains, CC398 is the 
most widely disseminated, followed by CC9.121

An inverse relationship between carriage of S. aureus and 
Streptococcus pneumoniae has been reported in children in sev-
eral epidemiological studies from various geographical 
regions.122-124 Selva et al125 described an interesting mechanism 
through which S. pneumoniae produces hydrogen peroxide and 
kills S. aureus. The inverse relationship between the two organ-
isms seems to suggest that the massive vaccination with pneu-
mococcal conjugate vaccines that is on-going globally may 
cause an upward shift in S. aureus carriage, with the conse-
quence of an increase in the incidence of S. aureus diseases, and 
therefore MRSA.

Occurrence of MRSA in the Oral Cavity
Recent reports indicate high S. aureus and MRSA carriage 
rates in the oral cavity.126,127 Although it is unclear whether 
these reported high rates are as a consequence of increased 
focus on S. aureus and MRSA, it is noted that MRSA carriage 
in the mouth may constitute a reservoir for subsequent coloni-
zation of other anatomical sites or for cross-infection to other 

people. Evidence from several studies indicate that MRSA 
appears to preferentially colonize denture surfaces in the 
mouth. As an example, Tawara et al58 reported a 10% MRSA 
carriage rate on the dentures of unselected denture wearing 
patients; these colonizers were refractory to standard denture 
cleaning agents. In another study, eradication of persistent 
MRSA carriage from denture wearers was successful only after 
heat sterilizing or remaking of the dentures that had become 
persistently colonized.128 A recent study by Vanzato et  al126 
reported carriage rates of 47.6% and 4.1% for S. aureus and 
MRSA respectively in the oral cavity of healthcare workers. 
Also, quite recently, an MRSA carriage study conducted among 
dental students in Italy reported a carriage rate of 1.9% (n = 3) 
in the mouth; the total carriage prevalence was 3.2% (n = 5), 
representing a composite of oral, nasal, and skin carriage.129 
Furthermore, in a retrospective study spanning a ten-year 
period, McCormack et al130 reported 10% of S. aureus isolated 
from the oral cavity to be MRSA. In an earlier study involving 
an elderly institutionalized veteran population, it was demon-
strated that 19% of them had MRSA carriage in the mouth, 
whereas 20% were nasal carriers.127 Of interest, 4% of the 
proven MRSA oral carriers were culture negative for nasal  
carriage.127 This insightful observation partly explains why 
decolonization exercises that target nasal carriage alone are 
replete with failure. Moreover, good oral care is reported to 
lower risks of oral and bloodstream infections.131 Hence it is 
not surprising that poor oral care has been suggested as part of 
the risk factors for carriage of, and subsequent infection with, 
MRSA, that is given little attention.132 This observation made 
by Small et  al132 was probably partly informed by an earlier 
report on the decline in ventilator-associated pneumonia risks 
among patients in intensive care, by virtue of decontamination 
of their mouths with 2% (w/v) chlorhexidine,133 as well as the 
outcome of an in vitro study in which within 30 seconds, 
MRSA isolates from both oral and non-oral sources were killed 
with a 0.2% (w/v) chlorhexidine gluconate mouthwash.134  

Table 1. Some points of divergence between CA-MRSA and HA-MRSA.

PARAMETER CA-MRSA HA-MRSA

Genetic traits Panton-Valentine Leukocidin gene, 
Staphylococcal Cassette chromosome IV 
(most common—USA300, USA400)

Various Staphylococcal cassette chromosome 
(most common—USA100, USA200)

Part of body affected Skin, Lungs Site of implant; Surgical site; Blood stream

Resistance gene SCCmec Type IV, V SCCmec Types I, II, III

Panton-Valentine Leukocidin producer Frequent (almost 100%) Rare (5%)

Risk population Young, otherwise healthy patients (most 
common); no recent hospitalizations; 
anyone

Immunocompromised individuals; residency in 
long term care facilities; recent hospitalizations; 
dialysis patients; recent surgery

Antibiotic used in management Doxycylcline, Clindamycin and 
Cotrimoxazole often used.

First-line antibiotics used include vancomycin. 
Additional newer antimicrobial agents: 
daptomycin, linezolid and tigecycline.

Adapted from Popovich et al118 and Bassetti et al119
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The potential of chlorhexidine application in selecting for 
resistant strains among organisms constituting the oral micro-
biome has however been previously reported, hence warranting 
a measure of caution in its usage.135 Nonetheless, blending 
nasal application of 2% mupirocin with refined oral hygiene 
practices—such as applying chlorhexidine oral rinses—merits 
consideration when designing strategies for clearing MRSA 
from the upper respiratory tract, especially, among persistent 
carriers. However, given the failure of decolonization of some 
persistent USA300 MRSA carriers using a similar rigorous 
approach during the first CA-MRSA outbreak in France,136 it 
is important  to have  realistic expectations of decolonization 
approaches; regardless of the degree of decolonization efforts, 
decolonization should not be perceived as a fool-proof strategy. 
In fact, an earlier study had reported successful decolonization 
at a rate of 65%.137 These reports underscore the need for fur-
ther investigations on the significance of the mouth as an 
impediment to MRSA decolonization.

S. aureus is implicated in several infective oral pathologies, 
including angular cheilitis,138 parotitis139 and mucositis,140 and 
also in dental implant failure.141,142 Generally, very few studies 
have reported on MRSA clinical infections in the oral cavity, 
and were inconclusive as to whether the isolation of MRSA 
reflected disease or carriage. In the 10-year retrospective study 
from 1998 to 2007 at the Oral Microbiology Laboratory, 
Glasgow Dental Hospital (highlighted earlier), 11 312 speci-
mens from patients with oral infections were investigated, of 
which S. aureus was isolated from 1986 (18%). Among the S. 
aureus isolates, 10% (204) were identified to be MRSA, which 
were of EMRSA-15 or EMRSA-16 lineage.130 The authors 
indicated that detection rates of S. aureus and MRSA might 
reflect increased carriage rather than disease association. 
Tuzuner-Oncul et al143 published a case report on a 35-year-
old man with osteomyelitis of the mandible involving intraoral 
and external purulent discharges, which were culture-positive 
for MRSA. Although the infecting MRSA strain demon-
strated in vitro susceptibility to clarithromycin, vancomycin, 
clindamycin, and azithromycin, the patient did not respond to 
the post-operative treatment involving intermaxillary fixation 
of the jaws, local irrigation with rifampicin, and parenteral 
infusion with clindamycin.

The Implications of MRSA Oral Carriage for 
Antibiotic Prophylaxis Among Dental Procedure 
Candidates
Dental procedures have long been associated with an aftermath 
of disseminated infections, including bacteremia,144-147 infec-
tive endocarditis,148 and sepsis.149 There have been arguments 
that such infections could probably be of oral origin.149-151 
Hence in individuals undergoing dental procedures, particu-
larly, those at a moderate to high risk of developing dissemi-
nated infections, it has been recommended that antibiotic 
prophylaxis be administered,152-155 although consensus on the 
practice is in controversy.156,157

The antibiotic that is routinely prescribed as prophylaxis 
in such individuals is amoxicillin.158 However, in light of 
recent reports on the high carriage rates of MRSA in the oral 
cavity, the issue of antibiotic prophylaxis in dental procedure 
candidates needs an extensive re-evaluation. Also worth con-
sidering are the several reports on S. aureus and MRSA 
resistance to amoxicillin, and its derivative, amoxicillin cla-
vulanic acid, which had shown promise in MRSA therapy.159 
To illustrate, in the study of Groppo et al,160 half of the iso-
lated S. aureus strains were resistant to amoxicillin, and nearly 
a quarter (23.3%) were amoxicillin-clavulanic acid-resistant. 
Also, Pathak et al161 reported a rate of 54% amoxicillin-cla-
vulanic acid resistance among MSSA isolates from India. 
Moreover, Abbasi-Montazeri et  al162 reported amoxicillin-
clavulanic acid resistance rates of 86% for MRSA and 56% 
for MSSA isolated in their study conducted in Iran. 
Furthermore, a more recent study reported amoxicillin-cla-
vulanic acid resistance in nearly half of the proportion of 
MRSA isolated (47.9%).163

As MRSA forms part of the organisms that could cause dis-
seminated infections in at-risk populations undergoing dental 
procedures, its resistance to amoxicillin undermines the admin-
istration of amoxicillin as prophylaxis in these at-risk popula-
tions. Moreover, the organism that has usually been implicated 
in dental procedure-associated bacteremia and endocarditis is 
Streptococcus viridans,164 which may be more amenable to anti-
biotics than MRSA, owing to the propensity for extensive anti-
microbial resistance of the latter.98 Hence a shift in the 
predominant causative agent to MRSA, arising from selective 
pressure, may worsen the prognosis of at-risk populations who 
develop such disseminated infections. It is possible that the evo-
lution of MRSA in the oral cavity had been influenced by the 
widespread usage of amoxicillin for prophylaxis; this hypothesis 
may require an in-depth analysis for a conclusive assertion to be 
made. Moreover, selecting for other antimicrobial resistance-
prone organisms constituting the microbiome, other than 
MRSA, such as the enterococcus88,89,165,166 could result in an 
invariably similar outcome.

Also worth considering is the 3% rate of untoward drug 
reactions accounted for by amoxicillin,158 which reportedly 
doubles as a five-fold risk factor for anaphylactic shock-related 
deaths.167 Besides these, the estimated cost for amoxicillin 
prophylaxis for patients with hip and knee prostheses alone is 
in excess of $50 million.168

Another factor that renders the administration of antibiotic 
prophylaxis to these at-risk populations somewhat obsolete 
stems from the recent reports which have demonstrated that 
everyday oral care practices, such as tooth-brushing, frequently 
result in transient bacteremia147,169-171 that is not significantly 
lower than what is observed following single-tooth extraction,171 
and poses more risks for those at risk for infective endocardi-
tis.147 Interestingly, such bacteremia resulting from routine oral 
care is not pre-managed with antibiotic prophylaxis, as that is 
impractical. Hence it seems somewhat far-fetched to prescribe 
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antibiotic prophylaxis for dental procedure candidates, espe-
cially since the risks of releasing infective endocarditis-causing 
bacteria into circulation could be reduced by 4–8 folds when 
optimum routine oral care is adopted.172 All these are fraught 
with the fact that infective endocarditis is rare.173-175 That said, 
“to give or not to give” antibiotic prophylaxis to such individuals 
presents a dilemma to clinicians, as they need to reflect on the 
Hippocratic Oath to make a judgment call on whether to pre-
scribe antibiotic prophylaxis to at-risk populations who may 
experience a rare undesired outcome, at the risk of administer-
ing the prophylaxis to tens of thousands who may not need it—
and accentuate the antimicrobial resistance menace while at 
that. The fact is that choosing an alternative antibiotic for pro-
phylactic purposes in this risk group is complicated by the 
occurrence of MRSA in the mouth. As would be expected, the 
antibiotic cannot be either of daptomycin, linezolid, or vanco-
mycin, as these constitute the limited mainstays of MRSA ther-
apy. If indeed antibiotic prophylaxis needs to be administered to 
this patient group, efforts in the development of new therapeu-
tic agents of alternative sources, such as plant sources, need to be 
intensified.

It is important to note that the recently updated guidelines 
for antibiotic prophylaxis in dental procedures consider very 
specific categories of at-risk individuals. These include patients 
with prosthetic cardiac valve, previous infective endocarditis, 
congenital heart disease, heart transplant, and rheumatic heart 
disease that carry a high risk of endocarditis.176-178 Currently, 
antibiotic prophylaxis is not routinely recommended for 
patients with prosthetic joints who are undergoing dental 
treatment.176-178

Conclusions and Future Perspectives
The increasing presence of MRSA in the oral cavity is an 
immense public health threat that cannot be downplayed, 
given its potential for enhanced MRSA transmission. 
Moreover, it introduces new dimensions to the already inten-
sified debates on whether or not to administer antibiotic 
prophylaxis to at-risk dental procedure candidates. Probably, 
the choice needs to be made on a case by case basis. It follows 
then that newer therapeutic agents are needed more urgently 
than previously.

Admittedly, there is very limited data to inform on the 
interaction of S. aureus, and therefore MRSA, with the oral 
microbiota, and the extent to which the oral cavity mediates S. 
aureus- and MRSA-caused endocarditis as a sequel to dental 
procedures. Additionally, it is largely unclear whether the pres-
ence of MRSA in the oral cavity reflects disease or carriage. 
Subsequent studies in the area could focus on filling these 
identified knowledge gaps. Principally, researchers undertaking 
MRSA carriage studies may need to concurrently screen for 
oral and nasal colonization.
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