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Gestational diabetes mellitus (GDM) is one of the common pregnancy complications, which increases the risk of short-term and
long-term adverse consequences in both the mother and offspring. However, the pathophysiological mechanism of GDM is still
poorly understood. Inflammation, insulin resistance and oxidative stress are considered critical factors in the occurrence and
development of GDM. Although the lifestyle intervention and insulin are the primary treatment, adverse pregnancy outcomes
still cannot be ignored. Exosomes have a specific function of carrying biological information, which can transmit information
to target cells and play an essential role in intercellular communication. Their possible roles in normal pregnancy and GDM
have been widely concerned. The possibility of exosomal cargos as biomarkers of GDM is proposed. This paper reviews the
literature in recent years and discusses the role of exosomes in GDM and their possible mechanisms to provide some reference
for the prediction, prevention, and treatment of GDM and improve the outcome of pregnancy.

1. Introduction

Gestational diabetes mellitus (GDM) is defined as impaired
glucose tolerance that occurs for the first time during preg-
nancy and incidence of GDM in accordance with the increase
in obesity and type 2 diabetes mellitus (T2DM) prevalence.
GDM increases the incidence of perinatal complications such
as macrosomia, cesarean section, preterm delivery, neonatal
hypoglycemia, and hyperbilirubinemia and the maternal risk
of T2DM and cardiovascular disease in the long term. The
pathogenesis of GDM is complex and has not been fully clar-
ified, which is believed to be related to insulin resistance,
inflammation, oxidative stress, adipose tissue, and endothelial
cell dysfunction [1, 2]. It is of great clinical value to further
study the pathogenesis of GDM and put forward innovative
prevention and treatment methods.

Extracellular vesicles (EVs) are nano-sized particles derived
from the membrane, which play the role of intercellular com-
munication. The exosome, also known as small extracellular
vesicles (sEVs), is a subgroup concerned by many researchers
[3, 4]. Exosomes are extracellular vesicles produced by various
cells in the diameter of 50-150nm, which are widely found in

peripheral blood, urine, saliva, cerebrospinal fluid, and pla-
centa. Exosomes carry cargos rich proteins, lipids, DNA,
RNA, and other bioactive factors, which are released in the
form of exocytosis to take a part in the process of intercellular
information transmission, immune regulation, antigen presen-
tation, tumor growth, and so on. At present, many studies have
shown that exosomes are involved in the occurrence and devel-
opment of a variety of diseases and may be used in the treat-
ment of diseases. During pregnancy, all types of cells in the
body secrete exosomes, including placenta, adipose tissue, liver,
pancreas, and skeletal muscle [5]. Higher plasma concentra-
tions of exosomes were observed in normal pregnant women
than in nonpregnant women [6]. In addition, placental-
derived exosomes were detected in maternal plasma as early
as six weeks of gestation, and the concentration of exosomes
gradually increased with gestation age [7]. The exosomes iso-
lated from maternal blood have biological activity in vitro
and can enter target cells through endocytosis [8]. Maternal
sEVs can circulate from the mother to the fetus through the
placental barrier, resulting in functional changes during preg-
nancy [9–11], indicating that sEVs play an important role in
maintaining communication between the fetus and the mother
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[10]. Moreover, sEVs are also associated with GDM, a compli-
cation during pregnancy [12]. This article will introduce the
possible effects of exosomes derived from different tissue and
their possible mechanisms of influence on GDM.

2. Exosomes Derived from Different Tissue
That Related with GDM

2.1. Placental-Derived Exosomes. As an important organ
connecting mother and fetus, the placenta plays a crucial
role in regulating maternal physiological function and nutri-
tional exchange between mother and infant during preg-
nancy. Placental-derived exosomes are secreted by various
placental cells during pregnancy, mainly syncytiotropho-
blastic layer releasing a large amount of EVs through exocy-
tosis [13, 14]. Placental-derived exosomes can be identified
by human placental alkaline phosphatase (PLAP) because
PLAP is a specific allosteric synthesized in the placenta [6,
15]. Compared with the control group, the particle size of
exosomes in umbilical cord blood in the GDM group was
larger and the concentration was higher [16]. It was well
established that the concentration of placental-derived exo-
somes in patients with GDM was significantly higher than
that in normal pregnant women [17], suggesting that mater-
nal hyperglycemia can promote the release of placental exo-
somes into blood circulation. Furthermore, maternal
hyperglycemia can also stimulate the biological activity of
placental-derived exosomes [18]. Additionally, placental-
derived EVs can regulate insulin sensitivity during normal
pregnancy, while insulin signaling is weakened in
placental-derived EVs of GDM [19].

2.2. Adipose Tissue-Derived Exosomes. Adipose tissue is
mainly composed of adipocytes, whose function is to store
fat. Exosomes have been isolated from the culture medium
of adipose cells, adipose tissue, and adipose-derived stem
cells [20, 21]. The amount of maternal fat increases during
pregnancy, but adipose tissue hyperplasia and hypertrophy
are associated with insulin resistance and abnormal metabo-
lism [22]. It was reported that the adipose tissue of patients
with GDM secreted more sEVs than normal pregnant
women, and the increase in the number of sEVs was believed
to be positively correlated with the Z score of birth weight of
offspring [23], suggesting that a higher level of exosomes in
adipose tissue may be involved in regulating fetal growth.
However, this differs from Franzago et al. who found that
the concentration of sEVs in adipocytes in the maternal cir-
culation of GDM was lower than that in normal pregnancy
[24]. Different conditions such as hypoxia and obesity can
lead to changes in the composition of exosomes [25]. A total
of 509 proteins were detected in exosomes derived from adi-
pose tissue of obese and non-obese diabetics, of which 200
proteins were differentially expressed in exosomes of obese
diabetes [25]. Obesity is a risk factor and potential mecha-
nism of GDM [26]. Obesity during pregnancy can cause
systemic inflammation. The increase of circulating proin-
flammatory cytokines in adipose tissue may result in the rise
of placental inflammatory cytokines secreted by the pla-
centa, thus changing the placental function, which may pro-

mote the occurrence of GDM [5]. Additionally, exosomes
derived from adipose tissue in GDM are rich in proteins tar-
geting key pathways, such as mitochondrial dysfunction,
OXPHOS, and SIRT signaling pathways, and exosomes
derived from adipose tissue of GDM have the ability to
increase the expression of genes related to glycolysis and glu-
coneogenesis in placental cells [23], which also suggests that
adipose tissue-derived sEVs may be associated with the
pathogenesis of GDM.

3. The Possible Mechanism of Exosomes
Participation in GDM

3.1. Regulation of Gene Expression through RNA. Exosomes
contain many different types of RNA molecules, such as
miRNA, circRNA, and lncRNA. These RNA molecules can
act on receptor cells and exert biological functions such as
intercellular signal transmission.

3.1.1. miRNA. miRNA is a wealthy class of small noncoding
RNAs, which play a role in many biological processes by
specifically binding to its target mRNA to induce its degra-
dation or inhibit translation. More and more studies have
found that some miRNAs involved in placental and fetal
development are abnormally regulated in GDM, suggesting
that miRNAs may be involved in the pathogenesis of GDM
[8, 27]. The chromosome 19 miRNA cluster (C19MC), as
an exosomes carrier, is expressed only in the placenta [28],
the most important of which are miR-516b-5p, miR-517-
5p, and miR-518a-3p [29]. Placental-derived miRNAs are
released from syncytiotrophoblast cells into the maternal
circulation [30, 31], and their expression levels are regulated
by stimuli such as stress, circulating blood glucose and other
pregnancy characteristics. The abundance of miR-518a-5p,
miR-518b, miR-518c, miR-518e, miR-520c-3p, and miR-
525-5p in placental exosomes of GDM patients was higher
than that of the normal pregnancy group, and miR-520c-
3p was related to placental oxygen supply [18]. However,
the cellular targets of C19MC miRNAs have not been fully
determined, which may include non-trophoblastic placental
cells, maternal organs or fetal cells.

In addition, some non-C19MC-coded miRNAs, such as
miR-16-5p and miR-222-3p, are also related to GDM [32].
miR-16-5p plays a regulatory role in PI3K/Akt, Wnt, insulin,
and mTOR signaling pathways, and the overexpression of
these signaling pathways is related to GDM [33, 34]. The
gene encoding insulin receptor substrate proteins 1 and 2
(IRS1/IRS2) are the targets of miR-16-5p. The upregulation
of miR-16-5p in GDM patients at the 2nd trimester will lead
to the negative regulation of IRS1 and IRS2, which may lead
to abnormal Wnt/β-catenin signaling and eventually lead to
diabetes [35, 36]. The expression of miR-222-3p in serum of
GDM patients was lower than that of control group either at
the 17th or 26th week of pregnancy [37, 38]. Nevertheless,
Shi et al. proved that miR-222-3p was upregulated in the
adipose tissue of GDM [39]. Most of the genes involved in
the pathways of insulin resistance are the targets of miR-
16-5p and miR-222-3p [14, 40]. miR-103 and miR-107 are
also closely related to insulin sensitivity [41]. Other studies
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reported that the levels of miR-132, miR-29a, and miR-222
in serum of patients with GDM decreased [37], while the
levels of hsa-miR-16-5p, hsa-miR-17-5p, hsa-miR-19a-3p,
hsa-miR-19b-3p, and hsa-miR-20a-5p in plasma of patients
with GDM are increased [32]. The expressions of miRNA-
125b and miRNA-144 were out of balance in the circulating
exosomes and placenta of patients with GDM [42]. In sum-
mary, exosome-derived miRNAs are becoming a new partic-
ipant in the development of GDM, which may become an
attractive biomarker and potential therapeutic target.

3.1.2. circRNA. circRNA is a kind of endogenous noncoding
RNA with wide distribution and diverse cellular functions.
circRNAs can alter mRNA stability and inhibit protein activ-
ity by binding to RNA binding proteins [43]. circRNAs can
also serve as templates for protein translation [44]. The
enrichment and stability of circRNAs in exosomes have been
discovered recently. circRNAs are involved in the develop-
ment of GDM and fetal growth. A recent study shows that
in patients with GDM, the expression of circ_0008285 was
significantly upregulated, while that of circ_0001173 was
decreased [45]. 88371 circRNAs in the umbilical cord blood
exosomes of the two groups were evaluated, and the results
showed that there was a differential expression of 507 cir-
cRNAs between GDM patients and control groups, of which
229 circRNAs were significantly upregulated in GDM
patients and 278 circRNAs were downregulated consider-
ably in GDM patients. Further circRNA/miRNA interaction
analysis showed that most of the exosomal circRNAs con-
tained miRNA binding sites and some of the miRNAs were
related to GDM [46]. Exosomal circRNAs regulates gene
expression through the miRNA sponge mechanism [47]. cir-
cRNAs have many miRNA binding sites that compete with
miRNAs, so circRNAs may regulate gene expression by
reducing the inhibition of miRNAs on target molecules.
For example, miR-330, miR-23a, and miR-16-5p were
upregulated in the plasma of patients with GDM [32,
48–50], and these miRNAs were paired with circ_0092108
downregulated in the exosomes of umbilical cord blood of
patients with GDM. Therefore, the role of circRNAs in
GDM may be related to the effect mediated by miRNAs.
Nevertheless, the mechanism of circRNA-miRNA-target
gene interaction needs to be further explored.

CircRNA polyribonucleotide nucleotidyltransferase 1
(Cir-PNPT1) is a newly discovered functional circRNA
derived from the PNPT1 gene. It has been observed that it
has different expression in GDM patients, which may be a
risk factor for GDM [51]. Cir-PNPT1 was highly expressed
in the placental tissues of GDM and high glucose (HG)-
induced trophoblast cells. The expression of miR-889-3p
decreased in GDM and HG-induced trophoblast cells, while
the expression of PAK1 increased. Therefore, it is speculated
that circ-PNPT1 may be involved in the inhibition of HG-
induced trophoblast proliferation, migration, and invasion
through the miR-889-3p/PAK1 axis [52]. Downregulation
of circ-PNPT1 can alleviate trophoblast dysfunction induced
by HG, suggesting that silencing circ-PNPT1 may play a
protective role in the progression of GDM [52], which puts
forward a new insight into the pathogenesis of GDM. In

summary, exosomal circ-PNPT1 may be an ideal biomarker
for GDM treatment.

3.1.3. lncRNA. A study demonstrated that 84 mRNAs and
256 lncRNAs were differentially expressed in umbilical cord
blood exosomes of patients with GDM compared with the
control group. And further lncRNA/miRNA interaction
analysis showed that most of the exosomal lncRNAs con-
tained miRNA binding sites, some of which were related to
GDM [16]. β-cell dysfunction is a pathophysiological char-
acteristic of GDM. Some abnormal expressions of circula-
tory or placental-related lncRNAs are related to insulin
resistance and β-cell dysfunction [53]. There is much evi-
dence that exosomal lncRNAs can regulate miRNA-
targeted gene expression, transcription, and protein synthe-
sis [54, 55]. It has been reported that miR-362-5p and
miR-508 were dysregulated in the placenta of patients with
GDM [56]. miR-362-5p matched with lnc-ZNF800-1 : 1,
which was confirmed to be downregulated in the umbilical
cord blood exosomes of GDM, and miR-508 might combine
with upregulated lnc-COX17-2 : 3. In consequence, exoso-
mal lncRNAs may participate in GDM development and
fetal growth through miRNA-mediated action. The potential
mechanism of lncRNA-miRNA-target gene interaction in
GDM is worthy of further studies. To sum up, exosomes
play an essential role in GDM through RNA, especially
miRNA. In Tables 1 and 2, we summarize the upregulated
or downregulated expression levels of different types of
RNA in GDM in recent years, all of which may be potential
diagnostic and future targeted therapies for GDM.

3.2. Exosomes and Endothelial Cell Dysfunction. GDM
mainly affects the function of placental vascular endothelial
cells and then leads to the impairment of placental function.
L-arginine/NO signaling pathway is one of the key signaling
ways associated with vascular physiological changes and is
associated with endothelial dysfunction. It was upregulated
in GDM; that is, human cationic amino acid transporter 1
(hCAT-1) expression was increased, and eNOS activity and
expression were increased [104–106]. Exosomes regulate
the function of endothelial cells and are related to endothe-
lial dysfunction [107, 108]. A few studies have shown that
endothelial exosomes play a role as a regulator of L-argi-
nine/NO signaling pathway, and endothelial exosomes par-
ticipate in the regulation of fetal placental endothelial
function in GDM by regulating PI3K/eNOS signaling path-
way [109, 110]. A recent study has shown that exosomes
from syncytiotrophoblast cells carry eNOS [111], which
may lead to the production of NO. In addition, considering
that exosomes in the fetal circulation of GDM may contain
miRNA-203 that can induce NOS activity [112, 113], it
may also affect the function of fetal endothelial cells. Exo-
somes released from human umbilical vein endothelial cells
(HUVECs) were found to increase L-arginine transport
through hCAT-1 [114, 115]. Interestingly, HUVECs from
normal pregnant women blocked the increased L-arginine
transport by GDM, the expression and activity of hCAT-1
and eNOS, and the activation of 44 and 42 kDa mitogen acti-
vated protein kinases (p44/42mapk). Inhibition of p44/42mapk
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Table 1: The upregulated expression levels of RNAs in GDM and the possible mechanism involved in GDM.

Sample Upregulated Related mechanism Publication

Serum and urine miR-429 IRS-1: a target gene of miR-429 [57]

Serum miR-1323 Inhibit trophoblast cell viability via inhibiting TP53INP1 [58]

Serum miR-16-5p, miR-29a-3p, and miR-134-5p — [59]

Placenta miR-222
Suppress inflammatory response by promoting CXCR4 and

inactivating NLRP3 inflammasomes
[60]

Serum miR-2467 Adiponectin: a target gene of miR-2467 [61]

Placenta miR-140-3p Relate to defective placental IR signaling [62]

Blood miRNA-223 — [63]

Serum miR-195-5p
Inhibit cell viability and proliferation and promote apoptosis

by targeting EZH2
[64]

Blood miR-330-3p INS-1 cell dysfunction [65]

Peripheral blood miR-770-5p Influence pancreatic β-cell function [66]

Placental
macrophages

miR-657
Regulate macrophage proliferation, migration and

polarization
[67]

Serum miRNA-19a and miRNA-19b — [68]

Placenta-derived
mononuclear
macrophages

miR-657
Influence inflammatory response via IL-37/NF-κB signaling

axis
[69]

Plasma miR-137 HG-induced VEC dysfunction [70]

Whole blood cells miRNA-340 PAIP1: a miRNA-340 target gene [71]

Placenta tissue miR-503
Regulate pancreatic β-cell function by targeting the mTOR

pathway
[72]

Plasma miR-16-5p, miR-17-5p, and miR-20a-5p Correlate with IR [35]

Placenta miR-98 Link to the global DNA methylation by targeting Mecp2 [73]

HUVECs circ_0074673
Regulate the proliferation, migration and angiogenesis of

HG-HUVECs via the miR-1200/MEOX2 axis
[74]

Plasma circ_0008285
circ_0008285 may maintain the HTR-8/SVneo trophoblast

cell function by the PI3K/Akt signaling pathway
[45]

Placental tissues Circ-PNPT1
Promoted HG-induced trophoblast cell biological

dysfunction through miR-889-3p/PAK1 axis
[52]

Peripheral blood
ERMP1, TSPAN32, MRPL38, and

RPL13P5
RPL13P5 involved in insulin resistance via the PI3K-AKT

and insulin signaling pathways
[75]

Umbilical cord
blood exosomes

Lnc-RXYLT1-3 : 2, lnc-TFDP2-7 : 2,
lncCOX17-2 : 3, and lnc-ZBTB46-3 : 6

Most of the exosomal lncRNAs harbored miRNA binding
sites

[16]

Plasma MEG8 — [76]

Placental tissues MALAT1
Associate with inflammation and the proliferation, invasion,
and migration of placental trophoblastic cells via modulating

the TGF-β/NF-κB signaling pathway
[77]

Blood and
placental villous
tissues

MEG3
miR-345-3p: a target; inhibit HTR-8/SVneo cell viability,
and prevent cell migration and invasion in addition to

inducing cell apoptosis
[78]

Serum MALAT1 — [79]

Plasma SOX2OT — [80]

Abbreviations: IRS: insulin receptor substrate; CXCR4: C-X-C chemokine receptor type 4; IR: insulin resistance; EZH2: enhancer of zeste homolog 2; IL:
interleukin; NF-κB: nuclear factor κB; HG: high glucose; VEC: vascular endothelial cell; mTOR: mammalian target of rapamycin; Mecp2: methyl CpG
binding protein 2; HUVECs: human umbilical vein endothelial cells; PI3K: phosphatidylinositol 3-kinase; Akt: protein kinase B; PAK1: p21 activated
kinase 1; TGF-β: tumor growth factor β; MEG3: maternally expressed gene 3.
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Table 2: The downregulated expression levels of RNAs in GDM and the possible mechanism involved in GDM.

Sample Downregulated Related mechanism Publication

Plasma miR-574-5p and miR-3135b Associate with insulin signaling pathway [81]

Placenta tissues miR-362-5p
Promote cell proliferation and inhibited apoptosis
via targeting GSR and activating PI3K/Akt pathway

[82]

Placenta miR-30d
Affect trophoblast cell functions by targeting

RAB8A
[83]

Placenta and
plasma

miR-96-5p Increased the viability of trophoblasts [84]

Placenta-derived
macrophages

miR-6869-5p
Prevent from inflammation and inducing M2

macrophages
[85]

Placenta villous miR-9 and miR-22
Alter placental glucose metabolism by targeting

GLUT1 and HK2
[86]

Blood leukocytes miR-4646 — [87]

Placental tissue
and peripheral
blood

miR-345-3p
Inhibit HTR8-/SVneo cell apoptosis and promote
cell proliferation and migration by targeting BAK1

[88]

Leukocytes miR-155-5p — [89]

Peripheral blood miR-193b
Inhibit autophagy and apoptosis by targeting

IGFBP5
[90]

Serum miR-29a/b — [91]

Serum and
placenta

miR-21
Inhibit cell growth and infiltration by upregulating

PPAR-α
[92]

Placenta miR-29b HIF3A: a direct target of miR-29b [93]

Serum and
placenta

miR-185 HOMA-IR ↓ [94]

Serum and
placenta

miR-132 Enhance the trophoblast cell proliferation [95]

Placental of rats miRNA-221
Regulate proliferation, apoptosis and insulin

secretion in islet β cells through targeting PAK1
[96]

Placenta tissues miR-96
Regulate PAK1 expression, insulin secretion, and β-

cell function
[97]

Blood miR-494
Improve pancreatic β-cell dysfunction by targeting

PTEN
[98]

Plasma hsa_circRNA_102893 — [99]

Plasma circ_0001173 — [45]

Placenta and
plasma

hsa_circ_0005243
Induce trophoblast cell dysfunction and

inflammation by the β-catenin and NF-κB signal
pathways

[100]

Placenta circ_5824, circ_3636, and circ_0395 — [101]

Plasma SNHG17 — [102]

Umbilical cord
blood exosomes

Lnc-TBC1D30-4:1, ENST00000596839.1,
lncZNF800-1 : 1, lnc-EIF4ENIF1-1 : 1, and lnc-

ATP8B3-3 : 1

Most of the exosomal lncRNAs harbored miRNA
binding sites

[16]

Placenta PVT1
Disrupt the function of trophoblast cells through

PI3K/Akt pathway
[103]

Blood leukocytes Pax8-AS1 — [87]

Abbreviations: GSR: glutathione-disulfide reductase; PI3K: phosphatidylinositol 3-kinase; Akt: protein kinase B; BAK1: BCL2-antagonist/killer 1; IGFBP5:
insulin-like growth factor-binding protein 5; HOMA: homeostasis model assessment; IR: insulin resistance; PAK1: p21-activated kinase 1; PTEN:
phosphatase and tensin homolog; NF-κB: nuclear factor κB; Pax8-AS1: paired box 8 antisense 1.
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could reverse the increase of L-arginine uptake by GDM.
This is helpful to understand the mechanism of foetoplacen-
tal endothelial dysfunction in GDM [115]. The above studies
suggest that exosomes from patients with GDM may play a
potential role in fetal circulation and induce foetoplacental
endothelial dysfunction.

3.3. Exosomes and Inflammation. GDM is associated with
inflammation [116]. Placental-derived EVs of GDM have
biological activity, releasing a large amount of tumor necro-
sis factor α (TNF-α), granulocyte macrophage colony-
stimulating factor (GM-CSF), interferon-γ (IFN-γ), IL,-6
and IL-8 [17]. In addition, others studies also demonstrated
that HG can trigger the release of EVs by trophoblast cells
and placental EVs has biological activity, which in turn
increase the release of proinflammatory cytokines such as
GM-CSF, IL-6, IL-8, IL-10, and TNF-α from endothelial
cells [5, 18] and promote the proinflammatory state of preg-
nant women with GDM.

3.4. Exosomes and Oxidative Stress. GDM is characterized by
hyperglycemia. Under the condition of hyperglycemia, the
body produces more reactive oxygen species (ROS), which
leads to oxidative stress. It is suggested that in patients with
GDM, hyperglycemia and oxidative stress may induce exo-
somes production, affect its transport in the fetal-placental
vascular system, and contribute to endothelial dysfunction
and activation [115]. Exosomes affect oxidative stress. Exo-
somes from different tissues have been shown to induce tar-
get cells to produce ROS. Exposure of normal pregnant
HUVECs to HUVECs exosomes of GDM can induce
GDM phenotype and increase eNOS total protein and syn-
thesis of NO [115]. On the other hand, exosomes of
HUVECs in normal pregnancy can also reverse the func-
tional abnormalities of these cells induced by HG [117]. It
is worth noting to mention that clinical trials of common
antioxidants in patients with GDM have shown that this
method is ineffective in reducing oxidative stress [118,
119]. Exosomes from HUVECs from normal pregnancy
and GDM did not affect the production of ROS in GDM
HUVECs [115], while in a previous study, GDM increased
ROS production in primary HUVECs culture [120]. In addi-
tion, some studies have suggested that the increase in exo-
somes release may be an adaptive response of cells to
oxidative stress [121, 122].

3.5. Exosomes and Insulin Resistance. Insulin resistance is
involved in the development of GDM. Adipose tissue plays
a major role in the development of insulin resistance during
pregnancy [123, 124], and adipose tissue-derived exosomes
have been shown to affect biological processes such as
metabolism, inflammation, regulation of glucose homeosta-
sis, and insulin sensitivity [125]. A study [23] analyzed and
compared the protein expression of exosomes from adipose
tissue. It was found that the differentially expressed proteins
in adipose tissue of GDM were related to mitochondrial dys-
function and targeting SIRT, OXPHOS, and EIF2 signaling
pathways, which may be involved in the pathophysiological
process of GDM; mTOR, eIF4, and p70S6K were also found.

This suggested that this exosomal protein may be involved in
the pathophysiological process of GDM by regulating the
maternal environment [23]. The normal function of mito-
chondria is critical to cell metabolism because it controls
ATP production and disposal of reactive oxygen species
through OXPHOS. In addition, mitochondria have been
shown to be associated with insulin resistance [126]. SIRT
enhances mitochondrial metabolism and plays a synergistic
role by regulating mitochondrial gene expression and post-
translational modifications of mitochondrial enzymes [127,
128]. Another study reported that the downregulation of SIRT
in adipose tissue was associated with decreased insulin sensi-
tivity [129]. The activation of placental mTOR signal pro-
motes mitochondrial function, protein synthesis, and the
transport of nutrients such as amino acids, thus increasing
the utilization of fetal nutrients. Compared with exosomes
derived from normal glucose tolerance, proteins targeting
the mTOR signaling pathway are enriched in exosomes
derived from GDM. Therefore, exosomes derived from
GDMmay regulate placental nutritional capacity by activating
placental mTOR signal [23]. In addition, it has been suggested
that insulin resistance in pregnant women with GDM and
their newborns may be due to decreased signals of protein
kinase B/Akt (Akt) and mammalian target of rapamycin
(mTOR) in human placental endothelial cells [130]. In addi-
tion, exosomes-derived placental of patients with GDM carry
a specific set of miRNAs associated with skeletal muscle insu-
lin signal transduction and insulin resistance [19].

Two proteins related to the regulation of insulin sensitivity
were identified. It was found that the expression of PAPP-A
was downregulated and the expression of CaMK2β was upreg-
ulated in exosomes of patients with GDM [131]. PAPP-A is a
glycoprotein mainly synthesized by villous and extravillous
cytotrophoblasts [132]. The concentration of PAPP-A inmater-
nal circulation increases throughout pregnancy and decreases
after birth. Low concentrations of PAPP-A in maternal circula-
tion are associated with adverse pregnancy outcomes, including
GDM [133]. It is worth noting that PAPP-A levels in the first
trimester of pregnancy are associated with insulin resistance
later in pregnancy [133, 134]. The low expression of PAPP-A
in exosomes may play an important role in the intercellular
communication between placenta and maternal environment,
which mediates the change of insulin sensitivity. CaMK2β reg-
ulates a range of processes, including metabolism and insulin
sensitivity [135]. The role of CaMK2 β in the pathophysiology
of GDM needs to be further studied. Another study found that
there were different protein expressions of spectrin alpha eryth-
rocytic (SPTA)-1, CAMK2β, PAPP-A, perilipin 4, fatty acid
binding protein (FABP) 4, and hexokinase-3 in peripheral
blood of patients with GDM compared with normal controls.
Interestingly, these proteins have previously been shown to be
expressed differently in insulin resistance [131].

4. Conclusions and Prospect

In recent years, interest has been emerging in the research of
exosomes during pregnancy. Exosomes play a crucial role in
normal physiological pregnancy, from exosomal loading to
maternal-fetal interface communication in pathological
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pregnancies such as GDM. A study found that visceral fat
thickness in early pregnancy is more accurate in predicting
GDM than BMI [136]. Another prospective study found that
visceral fat thickness may predict GDM by regulating the
miRNA-148 family of adipose-derived exosomes [137]. This
suggests that the assessment of changes in exosomal content
and composition may be the basis for the identification of
potential diagnostic markers for GDM. In addition, further
investigation of the mechanism of exosomes in normal preg-
nancy and GDM will increase our understanding of the func-
tion of circulating exosomes in patients with GDM and the
pathophysiological mechanism of GDM, providing the basis
for improving pregnancy outcome.
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