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Abstract

In cancer biology, it is very important to understand the phenotypic changes of the patients and discover new cancer
subtypes. Recently, microarray-based technologies have shed light on this problem based on gene expression profiles
which may contain outliers due to either chemical or electrical reasons. These undiscovered subtypes may be
heterogeneous with respect to underlying networks or pathways, and are related with only a few of interdependent
biomarkers. This motivates a need for the robust gene expression-based methods capable of discovering such subtypes,
elucidating the corresponding network structures and identifying cancer related biomarkers. This study proposes a
penalized model-based Student’s t clustering with unconstrained covariance (PMT-UC) to discover cancer subtypes with
cluster-specific networks, taking gene dependencies into account and having robustness against outliers. Meanwhile,
biomarker identification and network reconstruction are achieved by imposing an adaptive L1 penalty on the means and
the inverse scale matrices. The model is fitted via the expectation maximization algorithm utilizing the graphical lasso. Here,
a network-based gene selection criterion that identifies biomarkers not as individual genes but as subnetworks is applied.
This allows us to implicate low discriminative biomarkers which play a central role in the subnetwork by interconnecting
many differentially expressed genes, or have cluster-specific underlying network structures. Experiment results on simulated
datasets and one available cancer dataset attest to the effectiveness, robustness of PMT-UC in cancer subtype discovering.
Moveover, PMT-UC has the ability to select cancer related biomarkers which have been verified in biochemical or
biomedical research and learn the biological significant correlation among genes.
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Introduction

With the increasingly accumulation of genome-wide expression

profiles, microarray-based method becomes a key technique for

identifying cancer related genes (biomarkers) and discovering new

cancer subtypes [1]. Compared with clinical and pathological risk

factors, such as patient age, tumor size, and steroid receptor status,

understanding the underlying genes can gain insight into cancer

physiology [2–4], and is more effective for detection of new cancer

subtypes, such as breast cancer [5,6], ovarian cancer [7], colon

cancer [8]. These subtypes may have differences in gene or protein

expression, gene regulatory or protein signalling networks [9].

Predicting these subtypes from gene expression profiles can be

viewed as a clustering problem, and finding the genes for

prediction can be regarded as a problem of variable selection

from high-dimensional unlabeled data.

One challenge of cancer subtype discovery is that the differences

in network or pathway level across these subtypes may make the

conventional clustering approaches based on gene expression

profiles differences inadequate [9]. The discovery of these

networks and pathways is very important in understanding the

collective biological function of genes and their impact on the

phenotypic changes of the patients [9–12]. In addition, biomarkers

are often selected independently based on their discriminative

abilities [13]. However, the genes often need to interact with

others to participate in some biological processes or molecular

functions [14–17]. Some of them may be not differentially

expressed, but belong to a subnetwork which has overall

discriminative activity or is a useful pathway for a specific subtype

[3,9,18]. Therefore, the task of discovering the subtypes,

elucidating their corresponding network structures, and picking

out network-based biomarkers is still very important in biomedical

fields.

There are various clustering methods applied on gene

expression datasets for partitioning biological samples [19]. The

model-based clustering which has a solid probabilistic framework

is widely used in biomarker and cancer subtype discovering due to

its good performance, interpretability and ease of implementation

[20]. At present, the gene selection process of most approaches are

designed by imposing penalty constraints on the likelihood to

achieve a sparse solution.

For the penalized model-based clustering, in order to reduce the

number of parameters, one common assumption is that each

cluster has a diagonal covariance matrix, so the genes are assumed

to be independent. Each cluster is often modeled as random

variable drawn from mixture Gaussian distribution, and combined

with several penalties, such as L1 penalty, adaptive L1 penalty and
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group L1 penalty [21,22]. Since the log-probability of Gaussian

distribution decays quadratically with distance from the center, it

is sensitive to outliers which are commonly observed in microarray

experiments due to either chemical or electrical reasons [23]. A

more robust penalized model-based Student’s t clustering with

diagonal covariance (PMT-DC) is introduced in [24] to deal with

the noise and extreme genes. They also provide a way for ranking

genes according to their contributions to the clustering process

with a bootstrap procedure. However, the above methods ignore

dependencies among genes within cancer subtypes. A regularized

Gaussian mixture model is proposed to take various dependencies

into account by permitting a treatment of general covariance

matrices. An expectation maximization (EM) algorithm utilizing

the graphical lasso is used for parameter estimation, and achieves

better subtype discovering performance and gene selection [20].

As an intermediate between a diagonal and a general covariance

matrix, another idea that modeling a covariance matrix using

some latent variables as done in the mixture of factor analyzers is

introduced [25]. It has more constrains and is more complex than

the method based on an unconstrained covariance matrix.

However, it is more effective if some latent variable-induced

covariance assumption holds in the gene expression dataset. Both

methods have difficult to deal with the outliers due to their

Gaussian assumption. These conventional penalized model-based

methods only select genes based on the mean response, and ignore

their implications for the underlying networks or pathways which

are very important in understanding the collective biological

function.

Motivated by the challenges posed by the underlying networks

or pathways and outliers observed in high-dimensional gene

expression dataset, and the limitations of the above methods, this

study proposes a penalized model-based Student’s t clustering with

unconstrained covariance (PMT-UC) for cancer subtype discovery

and biomarker identification. The new proposed method is based

on multivariate Student’s t distribution which makes the algorithm

not be affected by extreme or unusual genes. Unlike PMT-DC

with the independent assumption, in order to consider the

relationship between genes and discover the cancer subtypes

which differ in terms of underlying network structures, a cluster-

specific unconstrained covariance is used instead of diagonal

covariance. The development of the algorithms for estimating

sparse graphs by applying an L1 penalty to the inverse covariance

matrix [26,27] make the idea that taking gene dependence into

account feasible. We impose an adaptive L1 penalty on the means

and the inverse scale matrices to achieve network-based biomarker

identification and network reconstruction. The model is fitted via

an EM algorithm by utilizing the graphical lasso. A new gene

selection criterion is introduced to find the following informative

genes: the genes that have cluster-specific means, the genes that

are not differentially expressed but interact with some discrimi-

native genes to form a collective biological function, and the genes

which have class-specific underlying network structures. By

applying the new model to simulated datasets and one publicly

available cancer dataset, we show that the algorithm is robust

against outliers on clustering, gene selection and network

reconstruction processes simultaneously, and gives competitive

results with the state-of-the-art algorithms on detecting new cancer

subtypes. Many identified biomarkers have been verified in

biochemical or biomedical research. The Gene Ontology (GO)

analysis shows that the genes in the same subnetwork selected by

the new proposed method have significant biological and

functional correlation.

Methods

This section introduces the penalized model-based Student’s t

clustering with unconstrained covariance (PMT-UC) to select a

few number of genes, that can be used to classify the n samples into

naturally occurring groups, and to discover the relationship

between the genes.

The Framework of PMT-UC
Suppose that there are n independent p-dimensional samples

X~fx1, � � � ,xng, where xi~½xi1 � � � xip� represents the gene

expression of p genes. The genes have been standardized to have

a mean 0 and variance 1 across observations.

Each sample xi is supposed to come from a mixture distribution

with K components of which the probability density function is

g(xi;Y)~
XK

k~1

pkfk(xi; hk), ð1Þ

where Y~fp1, � � � ,pk,h1, � � � ,hkg includes all the parameters in

the model, pk is the nonnegative mixing proportion for component

k with
PK

k~1 pk~1, and hk is the unknown parameters set

corresponding to fk.

Each component fk is specified as multivariate Student’s t

distribution T(mk,
P

k,nk) with the parameters set

hk~fmk,
P

k,nkg, where mk~½mk1mk2 � � � mkp� is the location

parameter,
P

k~(sk,jq)p|p is the scale matrix and nk is the

degrees of freedom. It has the probability density

fk(xi; hk)~
C(

nkzp

2
)D
P

k D
{1

2

C(
nk
2

)(pnk)p=2f1zd(xi; mk,
P

k)=nkg(nkzp)=2
, ð2Þ

where C(:) is the gamma function, and d(xi; mk,
P

k)

~(xi{mk)’
P{1

k

(xi{mk) denotes the Mahalanobis squared dis-

tance between xi and mk. The mean and the covariance matrix of

each Student’s t distribution is mk and
nk

nk{2

X
k

, respectively. In

general, the parameter set Y can be estimated by maximizing the

log-likelihood function.

However, since the number of genes is often much more than

the number of samples, the maximum likelihood estimation of
P

k

is probably singular. The inverse scale matrix
P{1

k

is denoted as Wk

with the elements Wk,jq. In the last few years, a number of authors

introduce many approaches to yield a positive-definite covariance

by increasing the sparsity of Wk [26,27]. The structure of a

network is usually constructed based on correlation or partial

correlation [28]. In this paper, the partial correlation

rk,jq~{
Wk,jqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Wk,jjWk,qq

p can be derived from the inverse scale

matrix. The partial correlation is used instead of correlation to

present the relationship between two genes due to its ability of

factoring out the influence of other genes. Therefore, Wk can

reflect the relationship between the genes for cluster k and can be

regarded as the networks or pathways for genes. The statement

that most genes (gene products) only interact with a few genes

(gene products) indicates the sparsity of Wk in terms of biological

interpretation [15]. We impose an adaptive L1 penalty on the off-

diagonal elements of Wk to deal with the sparsity of Wk [29].

Cancer Subtype Discovery and Biomarkers
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In addition, the sparsity of the mean mkj is considered, which is

often used for gene selection. The mean-based discriminative gene

is defined to have cluster-specific means, no matter whether it has

a common or cluster-specific variances [20]. Specifically, it has at

least one nonzero mkj since the samples have been standardized to

have mean 0 for each gene. Therefore, we impose an adaptive L1

penalty on each mkj to shrink it to zero [29].

Then based on the penalized log-likelihood function which

consists of log-likelihood function l(Y) and penalty term penl(W),
the objective function of PMT-UC to be maximized is as follows:

lpen(Y)~l(Y){penl(W)

~
Xn

i~1

log
XK

k~1

pkfk(xi; hk)

" #
{l1

XK

k~1

Xp

j~1

vkj Dmkj D

{l2

XK

k~1

Xp

q~1

Xp

j~1,j=q

uk,jqDWk,jqD,

ð3Þ

where W~fm1, � � � ,mK ,W1, � � � ,WKg, and l~fl1,l2g includes the

non-negative regularization parameters l1 and l2 for mks and Wks

respectively. The regularization parameters control the sparsity of

the model. The larger the values of l1 and l2, the more genes will

be noninformative and independent. The adaptive L1 penalty is a

weighted version of the L1 penalty with a weight vkj or uk,jq for

each component. It achieves the three desirable properties

simultaneously that can produce sparse solutions, ensure consis-

tency of model selection, and result in unbiased estimates for large

coefficients [30].

Inference Algorithm
This study uses the expectation maximization (EM) algorithm

[31] for optimizing the objective function lpen(Y) for Y given fixed

K and l. As in [20,24], each sample xi is assumed to have a

corresponding unobserved indicator vector zi~½zi1zi2 � � � ziK �,
specifying the mixture component that xi belongs to. If xi comes

from component k then zik~1, otherwise zik~0. Given zik~1, xi

follows a Student’s t distribution with the probability density

function fk(xi; hk). According to the fact that the Student’s t

distribution can be written as a multivariate Gaussian distribution

with the covariance matrix scaled by the reciprocal of a Gamma

random variable, the additional missing data ui~½ui1ui2 � � � uiK � is

introduced, where each element uik of ui follows the Gamma

distribution [32]. Then the penalized complete-data log-likelihood

of the complete data xc
i ~(xi,zi,ui) is

lc,pen(Y)~
Xn

i~1

XK

k~1

zik log pkfk(xi; hk)½ �{penl(W), ð4Þ

where fk(xi; hk) can be expressed as the product of the probability

density functions of Gaussian and Gamma distributions (see Text

S1 for details).

The EM algorithm iteratively applies an expectation (E) step to

calculate the expected value Q(Y; Y(t)) of lc,pen(Y) with respect to

the current estimation Y(t) of the parameters at the tth iteration,

and a maximization (M) step to find the updated parameters

Y(tz1) by maximizing Q(Y; Y(t)), until achieving a stopping

criterion Dlpen Y(tz1)
� �

{lpen Y(t)
� �

Dv10{4.

E step. The value of Q(Y; Y(t))~EY(t)flc,pen(Y)DXg depends

on the following three expectations (see Text S2 for details).

Since zi follows the Multinomial distribution and xi comes from

the mixture distribution with probability density function

g(xi; Y), the value of EY(t) (zik Dxi) is given by

E
Y(t) (zik Dxi)~

p
(t)
k fk(xi; h

(t)
k )

g(xi;Y
(t))
¼D t

(t)
ik : ð5Þ

t
(t)
ik can be regarded as the posterior probability of xi belonging to

the kth cluster. Seeing that the Gamma distribution is conjugate to

itself (self-conjugate) with respect to a Gaussian likelihood function,

we have

E
Y(t) (uik Dxi,zik~1)~

n
(t)
k zp

n(t)
k zd(xi; m(t)

k ,
P(t)

k )
¼D u

(t)
ik , ð6Þ

and

E
Y(t) ( log uik Dxi,zik~1)

~ log u
(t)
ik zy

n
(t)
k zp

2

 !
{ log

n
(t)
k zp

2

 !
, ð7Þ

where y(s)~fLC(s)=Lsg=C(s) is the Digamma function [32].

M step. Firstly, the update of p is given by the equation

p(tz1)~ arg max
p

Xn

i~1

XK

k~1

t
(t)
ik log pk

with the constraint
PK

k~1 pk~1 as

p(tz1)
k ~

Xn

i~1

t(t)
ik =n,k~1, � � � ,K : ð8Þ

Secondly, the value of nk at the (tz1)th iteration is a solution of

the equation

{y
nk

2

� �
z log

nk

2

� �
z1z

1

n
(t)
k

Xn

i~1

t(t)
ik log u

(t)
ik {u

(t)
ik

� �

zy
n

(t)
k zp

2

 !
{ log

n
(t)
k zp

2

 !
~0,

ð9Þ

where n
(t)
k ~

Pn
i~1

t
(t)
ik . In this paper, since the solution of (9) is in

non-closed form, the R function ‘‘nlminb’’ is used to find the

numerical solution for nk [24].

Thirdly, the aim is to maximize

Q3,pen(W; Y(t))~
Xn

i~1

XK

k~1

t(t)
ik {

p

2
log (2p)z

1

2
log DWk D

�
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z
p

2
log u

(t)
ik {

u
(t)
ik

2
(xi{mk)’Wk(xi{mk)

#
{penl(W): ð10Þ

to obtain the update for W~fm1, � � � ,mK ,W1, � � � ,WKg. In the

tz1 step, the adaptive weights are defined to be

v(t)
kj ~

1

Dm(t)
kj DzE

and u(t)
k,jq~

1

DW (t)
k,jqDzE

: ð11Þ

The parameter E is introduced in order to provide stability and to

ensure that a zero-valued component can escape from zero in the

next iteration [33]. When E is too small, the zero-valued

component still has so large weight that it will remain zero in

the next iteration. When E is too large, it makes the difference

between the Dmkj Ds or DWk,jqDs not significant and allows many

nonzero-valued components, resulting in a complex and inaccu-

rate model. It has been assigned several values during the

experiment procedure. It is shown that E~0:1 is appropriate. The

initial estimates m(0)
kj and W

(0)
k,jq are chosen as the results estimated

by the L1 penalty.

By considering the differentiability of Q3,pen(W; Y(t)) with

respect to mkj for two cases that mkj=0 and mkj~0, the updating

estimate m
(tz1)
kj is as follows (see Text S3 for details) [20]: if

1

v
(t)
kj

Xn

i~1

t
(t)
ik u

(t)
ik

Xp

q~1,q=j

(xiq{m
(t)
kq)W

(t)
k,jqzxijW

(t)
k,jj

 !�����
�����ƒl1, ð12Þ

then m(tz1)
kj ~0; otherwise

Xn

i~1

t
(t)
ik u

(t)
ik

 !
m

(tz1)
kj W

(t)
k,jjzl1v

(t)
kj sign m

(tz1)
kj

� �

~
Xn

i~1

t
(t)
ik u

(t)
ik xiW

(t)
k,:j{m

(t)
k W

(t)
k,:j{m

(t)
kj W

(t)
k,jj

� �
:

ð13Þ

After dropping the terms unrelated to Wk in Q3,pen(W; Y(t)), we

have

W
(tz1)
k ~ arg max

Wk

log½det(Wk)�{tr(eSSkWk)

{
X
j=q

~llk,jqDWk,jqD,
ð14Þ

where

eSSk~

Pn
i~1

t
(t)
ik u

(t)
ik (xi{m

(t)
k )’(xi{m

(t)
k )

Pn
i~1

t
(t)
ik

, ~llk, jq~
2l2u

(t)
k,jqPn

i~1

t
(t)
ik

:

This optimization problem can be solved using the graphical

lasso of which the corresponding R package ‘‘glasso’’ is available

on CRAN [27]. The graphical lasso is designed to consider the

problem of estimating sparse graphs by a lasso penalty applied to

the inverse covariance matrix [27]. It is first proposed for the

maximization of the Gaussian log-likelihood of the data with

respect to the covariance matrix. The new proposed method takeseSSk into account instead of the sample covariance matrix, where t
(t)
ik

contains a posteriori information of the sample, and u
(t)
ik can

reduce the effect of the outliers on this optimization problem.

Model Selection
There are three parameters that need to be estimated before the

PMT-UC algorithm, including the number of clusters K , the

penalization parameters l1 and l2. In this paper, the following

approximate weight of evidence (AWE) criterion based on an

approximation to the classification log-likelihood is used for model

selection:

AWE~{2l(Y)z2de 3=2z log (n)ð Þ, ð15Þ

where de~K{1zKzKp{q1zKpzKp(p{1)=2{q2=2 is the

effective number of parameters in the model with

q1~#f(k,j)Dmkj~0g and q2~#f(k,j,q)DWk,jq~0g [34,35]. It

imposes a higher penalty on more complex model than BIC and

is able to identify the correct number of clusters even when the

component densities are misspecified [36,37]. A grid search is

applied to find the optimal (K ,l1,l2) which has the minimum

AWE.

Subtype Discovering via Clustering
After the estimation of the parameters in PMT-UC, clusters can

then be defined as samples following the similar distribution which

is determined by the value of the posterior probability tik. Given a

sample, PMT-UC predicts the cancer subtype G(xi) of the gene

expression profile xi by that which gives the largest posterior

probability tik, that is G(xi)~ arg maxktik.

Elucidating the Underlying Network Structures
We can then elucidate the cluster-specific underlying network

structures based on the inverse scale matrix Wk. A cluster-specific

network can be represented as undirected graph, with the genes as

the vertices and edges as their relationships based on Wk. Edges

connect those genes whose partial correlations derived from Wk

are larger than 10{5. Then a subnetwork is defined as a set

containing genes and edges that induces a single connected

component in this network. These cluster-specific subnetworks

indicate the different relationships among genes with various

cancer subtypes and are regarded as the underlying network

structures.

Network-based Biomarker Identification
Due to that the genes in a cell seldom act alone, but form a

network of interactions [14], the biomarkers are identified as

subnetworks of interacting genes instead of individual genes in this

paper. Specifically, we firstly pick out the subnetworks defined

above. Secondly, in consideration of the fact that the noisy gene

and the informative gene are uncorrelated with each other

[20,38], the subnetworks that have at least one mean-based

discriminative gene are chosen as subnetwork biomarkers. This

gene selection criterion can identify genes that are not differen-

tially expressed but interact with some discriminative genes to

form a collective biological function. Finally, the remaining

subnetworks of which the internal structure (the relationship

between the genes) are different among W1, � � � ,WK are also

Cancer Subtype Discovery and Biomarkers
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regarded as biomarkers to elucidate the cluster-specific underlying

network structures.

The Final Algorithm for PMT-UC
Figure 1 summarizes the detailed algorithm for discovering

cancer subtypes, underlying network structures, and network-

based biomarkers via PMT-UC. For any given (K ,l1,l2), the

result of K-means is used as the initialization for the EM

algorithm. In order to avoid the local optimum of K-means, we

run the entire algorithm five times with random K-means

initialization, and choose the result that gives the highest value

of objective function (3).

Results and Discussion

Simulations
A dataset with redundant genes is simulated to evaluate the

clustering, gene selection and network reconstruction performance

of the method. The dataset has n samples and m informative genes

with input dimension p. p is taken to be higher than sample size of

each cluster so that the sample covariance of each cluster is not

reversible. The first m informative genes come from a m-

dimensional multivariate Student’s t distribution T(mk,Sk,n) for

the kth cluster. The remaining p{m noisy genes which are

independent of the informative genes are independently and

identically distributed from univariate Student’s t distribution

T(0,1,n) for all clusters. The degrees of freedom n will affect the

noise level of the dataset. The lower the degrees of freedom the

fatter tails the dataset will have.

Firstly, the dataset with two clusters is simulated, having n
2

samples for each cluster. Three cases n~20,10,6 are considered in

the next experiments to explore the effects of the outliers on the

performance of the method [24]. When n~20, the distribution of

the simulated dataset is approximate to Gaussian distribution. For

each of the three cases, the following four set-ups are considered:

N set-up 1 has cluster-specific means with m1~½1, � � � ,1� and

m2~½{1, � � � ,{1�, and common diagonal scale matrix withP
1~
P

2~Imm, where Imm is a m-dimensional identity

matrix.

N set-up 2 has cluster-specific means with m1~½1, � � � ,1,0,0� and

m2~½{1, � � � ,{1,0,0�, and common non-diagonal scale

matrix with
P

1~
P

2~
P

. S is a sparse symmetry matrix

that has the diagonal elements Sii~1 and the non-diagonal

Figure 1. Summary of PMT-UC for discovering cancer subtypes, underlying network structures, and biomarkers.
doi:10.1371/journal.pone.0066256.g001

Cancer Subtype Discovery and Biomarkers
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elements Sij~0 with the exception of S3m~Sm3~{0:95,

S4(m{1)~S(m{1)4~0:95.

N set-up 3 has cluster-specific means with m1~½1, � � � ,1� and

m2~½{1, � � � ,{1�, and uses two general sparse scale matrices

generated by the similar procedure described in [9,26]. A

diagonal matrix with same positive diagonal entries is

generated firstly, then a given number of nonzeros are

randomly inserted in the non-diagonal locations of specified

section D of the matrix symmetrically. The number of nonzero

non-diagonal entries is set to m|g. A multiple of the identity is

adding to the matrix to ensure the positive definiteness. Finally,

each element is divided by the corresponding diagonal element

to generate the inverse scale matrix. In this set-up,

D~f(a,b)Da[(1,2, � � � ,m),b[(1,2, � � � ,m)g and g~1.

N set-up 4 has cluster-specific means with m1~½1,1,1,1,1,0, � � � ,0�
and m2~½{1,{1,{1,{1,{1,0, � � � ,0�, and similar non-

diagonal scale matrices as set-up 3 with g~1 and

D~f(a,b)Da[(5, � � � ,m),b[(5, � � � ,m)g.

Under the simulated pattern stated above, we set p~100,

m~10 and n~80 similar to that introduced in [20]. For each set-

up, the simulation is repeated 50 times and fitted with K~2,3,4,5,

l1~2,4,6,8,10,15,20, and l2~2,4,6,8,10,15,20.

PMT-UC is compared with penalized model-based Gaussian

clustering with unconstrained covariance (PMG-UC) and penal-

ized model-based Student’s t clustering with diagonal covariance

(PMT-DC) in terms of the following evaluation criterions. The

Rand Index (RI), the adjusted Rand Index (aRI) and the

frequencies of the selected numbers (N) of clusters (K) are used

to assess the ability of the method for clustering [20]. In order to

quantify the ability of the method for network reconstruction, the

structural hamming distance (SHD) between true and inferred

networks is computed, which is the number of edge differences to

transform one network to another network [9]. The smaller SHD

indicates the closer approximation to the true network. The

following two indexes are used for evaluation of the gene selection

performance, the number of informative variables incorrectly

selected to be noninformative (false negatives, FN) and the number

of noninformative variables correctly selected (true negatives, TN)

[20].

Effect of the parameter E. The effect of the parameter E
which is designed for the stability of the algorithm on the

performance of PMT-UC is discussed in terms of the five measures

introduced above (RI, aRI, SHD, FN and TN). Particularly, we

run PMT-UC on a fixed dataset under the set-up 4 with n~6 of

which the dataset has higher noise level, a fewer genes with cluster-

specific means and some genes with cluster-specific network

structures, with different values of E (E[f10{10,0:001,0:01,0:1,1g).
Table 1 shows the averages and standard deviations of five

measures in 50 simulations with respect to various values of E on

this set-up. When E is not too large, the algorithm performance

tends to be fairly robust to the choice of E. Since the results with

E~0:1 show some improvement over the other situations, E is set

to 0.1 in the following experiments.

Effect of the initialization. The convergence of PMT-UC is

studied by considering the corresponding results with respect to

different initializations using K-means. This study also depends on

the set-up 4 with n~6. A simulated dataset is fixed and the entire

procedure is applied ten times of which each time uses five K-

means initializations. The standard deviations of the selected

parameters and experiment results of these ten experiments can be

regarded as the evaluation indexes for the convergence of PMT-

UC. To reduce the variability, five datasets are generated, and the

averages and standard deviations of results for each dataset are list

in Table 2. It is shown that the clustering and gene selection results

do not have significant change with different initializations.

However, the complete PMT-UC algorithm has a certain variance

in terms of the parameter l2 and the results SHD that correspond

to network reconstruction.

Clustering results. The experiment clustering results of the

four set-ups with n~20 are shown in Table 3. Since the datasets

come from an approximate distribution of Gaussian distribution,

both PMT-UC and PMG-UC always correctly identify the two

clusters. For set-ups 1, 2, 3, PMT-UC works slightly better than

PMG-UC in identifying clustering structures, as summarized by

the RI or aRI in Table 3. For set-up 4, with the presence of more

noise variables based on the mean, RI and aRI of PMG-UC

decrease dramatically to 0.734 and 0.47. For set-up 1 with the true

model with a diagonal covariance matrix, both PMT-UC and

PMT-DC have similar clustering performances. The stronger the

correlations among variables, the more likely for the PMT-DC to

get more clusters by mistake and have poor clustering perfor-

mance. Especially, for PMT-DC with the independence assump-

tion, the dataset in set-up 4 only has five informative genes, which

results in high clustering error rate.

To investigate the effect of the outliers, we use the smaller

degrees n~10 and n~6. Table 3 also gives the results for the four

set-ups with these two cases. As expected, PMG-UC performs

poorly with smaller degrees, and it is more sensitive to extreme

observations. For set-up 1, the clustering results of PMT-DC do

not change significantly with the decreasing of degrees for its

robustness and independence assumption. However, it often can

not find the true clustering structures in the other three set-ups. In

summary, the results for set-ups 1–4 when n~20,10,6 demonstrate

Table 1. The effect of the parameter E on the performance of PMT-UC.

EE RI aRI SHD1 SHD2 FN TN

10–10 0.918 (0.045)1 0.836 (0.090) 5.000 (0.798) 4.565 (1.727) 2.870 (1.792) 89.609 (0.583)

0.001 0.923 (0.048) 0.846 (0.095) 4.913 (0.949) 4.826 (1.072) 2.174 (1.557) 89.565 (0.590)

0.01 0.914 (0.049) 0.828 (0.098) 5.435 (1.472) 5.043 (1.107) 2.609 (2.210) 89.174 (1.029)

0.1 0.937 (0.034) 0.873 (0.068) 2.652 (1.229) 2.522 (1.344) 0.870 (0.968) 90.000 (0.000)

1 0.689 (0.192) 0.380 (0.383) 5.000 (0.000) 5.261 (0.864) 6.913 (2.575) 88.478 (1.702)

The effect of the parameter E on the performance of PMT-UC is discussed in terms of the five measures RI, aRI, SHD, FN and TN, where SHD1 and SHD2 are the results for
the first and second clusters respectively, FN is the number of informative variables incorrectly selected to be noninformative and TN is the number of noninformative
variables correctly selected. In the true case, FN~0, TN~90.
1c(d): c and d are the average and standard deviation of corresponding results in 50 simulations, respectively.
doi:10.1371/journal.pone.0066256.t001
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that PMT-UC has better clustering performance than PMG-UC

and PMT-DC for the datasets with independent or correlated

informative genes, and is robust to the outliers.

Network reconstruction. Figure 2 shows the boxplots of

cluster-specific SHD between estimated and true networks over 50

simulations for the above four set-ups of the three cases when K is

set to 2. In addition, we plot the average sparsity pattern which is

the relative frequency matrix for PMG-UC and PMT-UC. Since

PMT-DC assumes a diagonal covariance, it is not plotted here.

The relative frequency matrix is comprised of the relative

frequency of nonzero estimated of each element of the inverse

scale matrix Wk over the 50 repetitions. Figure 3 shows the

cluster-specific results of the first m informative genes (see Text S4

for the results of the total p genes). We make the following

observations based on the results given in Figures 2 and 3. At all

the cases, PMT-UC provides smallest SHD relative to the other

two approaches. When n~20 with which the Student’s t

distribution is similar to Gaussian distribution, both PMT-UC

and PMG-UC are able to recover the sparse inverse covariance

structure for set-up 1. It is shown that although both PMT-UC

and PMG-UC have non-diagonal assumption, they can get the

diagonal covariance as the truth by a sufficiently large penalty on

the off-diagonal elements of the inverse covariance matrices. For

set-up 2, PMT-UC can accurately identify the location of the

nonzeros almost every simulation. Meanwhile, with the high value

of the off-diagonal nonzeros of covariance, PMG-UC can also

recover the inverse covariance pattern sometimes. However, when

the partial correlations of the genes are not high in the set-up 3,

with the L1 penalty, PMG-UC does not have good network

reconstruction performance different from that of PMT-UC. For

the set-up 4, with the increasing of the noise in terms of the mean,

the result of PMG-UC is obscure. When n~10 or with which the

dataset has higher noise level, PMG-UC is unable to recover

network structure. However, PMT-UC can still discover the

relationship between genes under the network.

Gene selection. The two gene selection evaluation indexes

FN and TN are also summarized in Table 3. For the four set-ups,

PMG-UC tends to picks out more genes which are uninformative

than PMT-UC and PMT-DC. In set-ups 1 and 3, the informative

genes have cluster-specific means and can be selected by all the

three methods when the dataset has low noise level. For set-ups 2

and 3, there are two genes which are not differentially expressed

but interact with some discriminative genes, and five genes which

are also not differentially expressed but have different underlying

network structures, respectively. Table 3 shows that among the

three methods only PMT-UC can discover these genes.

The dataset with multiple thin-tailed clusters. For

n~20, an additional dataset with more thin-tailed clusters is

taken account into, where the number of clusters is assumed to be

5. The first two clusters are generated using the simulated pattern

of set-up 4, where the values of relevant settings are not changed.

The other three clusters contain more mean-based discriminative

genes with 15 samples for each cluster, having m3~30|B,

m4~15|B, and m5~5|B, where B~½1,1, � � � ,1�, and common

diagonal scale matrix. The model is fitted with K~2,3,4,5,6,

l1~2,4,6,8,10,15,20, and l2~2,4,6,8,10,15,20. Table 4 presents

the average results of the three algorithms in 50 simulations,

including the RI and aRI with respect to the first two clusters and

the other three ones. When the dataset has many thin-tailed

clusters, PMT-UC tries to explain the first two clusters whose

means are not too different by fat tails. Therefore, unlike the good

clustering performance when the dataset has only two clusters,

PMT-UC can not identify the true clustering structures of these

two clusters although the informative genes are selected correctly.

Since the model selection criterion of PMT-UC tends to select the

sampler model with less nonzero parameters, it can not pick out

the model with four or five clusters as PMT-DC does. Due to the

bad initializations using K-means, PMG-UC also regards these

two clusters as one although it is not so flexible as PMT-UC. The

superiority of PMT-UC can not be reflected in the simulation

having many thin-tailed clusters of which some clusters do not

have enough mean-based discriminative genes. The good perfor-

mance of algorithm may need more genes having cluster-specific

means with the increasing of the number of clusters.

Application to Real Dataset
In order to evaluate clustering capability, gene selection and

network reconstruction performance of PMT-UC, experiments

are carried out on one publicly available cancer dataset. This

dataset is the expression profiles of 7129 genes on 72 acute

leukemia samples described by Golub et al. [39]. It includes 47

samples of acute lymphoblastic leukemia (ALL) and 25 samples of

acute myeloid leukemia (AML). ALL samples consist of two

subtypes: 38 B-cell ALL and 9 T-cell ALL. The following two

preprocessing steps are applied to dataset as in [40] 1) threshold-

ing, the gene expression xij is set to 100 if xijv100 and set to

16000 if xijw16000; 2) filtering, the gene with max=minƒ5 or

max{minƒ500 is excluded, where max and min are the

maximum and minimum expression levels for a particular gene

across all the samples transformation.

For the leukemia dataset, a preliminary gene screening is used

that the top 300 genes with the largest sample variances across all

Table 2. The convergence of PMT-UC with respect to different initializations.

dataset 1 2 RI aRI SHD1 SHD2 FN TN

1 4.0 (0.0)1 3.6 (0.5) 0.91 (0.04) 0.83 (0.07) 3.00 (1.58) 2.00 (1.73) 0.40 (0.89) 90.00 (0.00)

2 4.0 (0.0) 4.0 (0.0) 0.97 (0.01) 0.94 (0.02) 3.20 (1.48) 3.00 (1.58) 0.80 (0.45) 90.00 (0.00)

3 4.0 (0.0) 3.8 (0.4) 0.95 (0.01) 0.89 (0.02) 1.80 (0.45) 3.60 (0.55) 1.20 (0.45) 90.00 (0.00)

4 4.0 (0.0) 4.0 (0.0) 0.95 (0.02) 0.89 (0.04) 6.40 (1.34) 4.00 (0.71) 1.60 (0.89) 89.80 (0.45)

5 4.0 (0.0) 4.0 (0.0) 0.95 (0.00) 0.90 (0.00) 1.40 (0.55) 3.60 (0.55) 1.00 (0.00) 90.00 (0.00)

The convergence of PMT-UC is explored by considering the selected parameters l1 and l2 , and the experiment results RI, aRI, SHD, FN and TN, with respect to different
initializations using K-means. SHD1 and SHD2 are the results for the first and second clusters respectively, FN is the number of informative variables incorrectly selected
to be noninformative and TN is the number of noninformative variables correctly selected. In the true case, FN~0, TN~90.
1c(d): c and d are the average and standard deviation of corresponding results in 10 experiments with a fixed dataset, respectively.
doi:10.1371/journal.pone.0066256.t002
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Table 3. Comparison of performance of PMT-UC, PMG-UC and PMT-DC applied on binary-clusters simulated datasets.

n Set-up K PMT-UC PMG-UC PMT-DC

N RI aRI FN TN N RI aRI FN TN N RI aRI FN TN

20 1 2 50 0.994 0.988 0.00 90.00 50 0.983 0.975 0.00 84.36 45 0.990 0.979 0.00 89.09

3 0 – – – – 0 – – – – 5 0.978 0.956 0.00 86.20

4/5` 0 – – – – 0 – – – – 0 – – – –

A{ 50 0.994 0.988 0.00 90.00 50 0.983 0.975 0.00 84.36 50 0.988 0.977 0.00 88.80

2 2 50 0.998 0.995 0.00 89.80 50 0.971 0.941 1.86 84.42 40 0.981 0.962 2.00 89.47

3 0 – – – – 0 – – – – 10 0.960 0.919 2.00 84.80

4/5 0 – – – – 0 – – – – 0 – – – –

A 50 0.998 0.995 0.00 89.80 50 0.971 0.941 1.86 84.42 50 0.977 0.953 2.00 88.54

3 2 50 0.995 0.990 0.00 89.80 50 0.987 0.975 0.00 84.72 23 0.995 0.989 0.00 89.35

3 0 – – – – 0 – – – – 22 0.929 0.857 0.00 85.59

4/5 0 – – – – 0 – – – – 5 0.861 0.721 0.00 76.60

A 50 0.995 0.990 0.00 89.80 50 0.987 0.975 0.00 84.72 50 0.952 0.904 0.00 86.42

4 2 50 0.944 0.889 0.00 90.00 50 0.734 0.470 7.22 88.84 39 0.883 0.767 5.51 89.64

3 0 – – – – 0 – – – – 11 0.841 0.681 5.00 87.64

4/5 0 – – – – 0 – – – – 0 – – – –

A 50 0.944 0.889 0.00 90.00 50 0.734 0.470 7.22 88.84 50 0.874 0.748 5.40 89.20

10 1 2 50 0.983 0.966 0.00 89.92 41 0.942 0.884 0.78 83.24 28 0.976 0.952 0.36 88.89

3 0 – – – – 9 0.881 0.761 0.00 76.33 19 0.943 0.885 0.00 79.21

4/5 0 – – – – 0 – – – – 3 0.891 0.782 0.00 87.33

A 50 0.983 0.966 0.00 89.92 50 0.931 0.862 0.64 82.00 50 0.958 0.917 0.20 85.12

2 2 50 0.988 0.976 0.00 89.92 46 0.867 0.734 2.70 82.13 36 0.943 0.887 2.28 89.11

3 0 – – – – 4 0.797 0.593 1.50 72.50 13 0.943 0.887 1.92 80.31

4/5 0 – – – – 0 – – – – 1 0.882 0.764 4.00 85.00

A 50 0.988 0.976 0.00 89.92 50 0.861 0.723 2.60 81.36 50 0.942 0.885 2.22 86.74

3 2 50 0.992 0.984 0.00 88.88 33 0.922 0.845 0.00 82.52 16 0.873 0.747 1.63 88.19

3 0 – – – – 17 0.853 0.706 0.00 55.53 28 0.942 0.884 0.00 82.96

4/5 0 – – – – 0 – – – – 6 0.758 0.516 1.67 80.50

A 50 0.992 0.984 0.00 88.88 50 0.899 0.798 0.00 73.34 50 0.898 0.796 0.72 84.34

4 2 50 0.949 0.899 0.00 89.50 50 0.499 0.000 8.80 76.70 42 0.681 0.368 7.02 86.64

3 0 – – – – 0 – – – – 5 0.796 0.593 4.80 85.40

4/5 0 – – – – 0 – – – – 3 0.644 0.284 8.33 84.33

A 50 0.949 0.899 0.00 89.50 50 0.499 0.000 8.80 76.70 50 0.691 0.385 6.88 86.38

6 1 2 50 0.961 0.922 0.00 89.70 40 0.619 0.240 6.88 74.75 32 0.957 0.914 0.63 89.75

3 0 – – – – 10 0.868 0.735 0.00 81.50 13 0.872 0.743 0.92 84.77

4/5 0 – – – – 0 – – – – 5 0.503 0.008 4.00 90.00

A 50 0.961 0.922 0.00 89.70 50 0.669 0.339 5.50 76.10 50 0.889 0.779 1.04 88.48

2 2 50 0.980 0.961 0.00 90.00 45 0.550 0.101 8.82 78.20 46 0.672 0.351 4.59 83.00

3 0 – – – – 5 0.863 0.726 2.00 75.00 0 – – – –

4/5 0 – – – – 0 – – – – 4 0.501 0.001 10.00 88.50

A 50 0.980 0.961 0.00 90.00 50 0.581 0.163 8.14 77.88 50 0.659 0.323 5.02 83.44

3 2 50 0.952 0.904 0.10 89.80 45 0.502 0.006 9.89 88.33 27 0.542 0.094 7.85 80.93

3 0 – – – – 5 0.500 0.004 9.00 82.00 15 0.749 0.500 2.00 73.07

4/5 0 – – – – 0 – – – – 8 0.617 0.232 7.50 78.75

A 50 0.952 0.904 0.10 89.80 50 0.502 0.006 9.80 87.70 50 0.616 0.238 6.04 78.22

4 2 50 0.935 0.870 0.40 90.00 50 0.498 0.002 9.90 87.10 39 0.495 0.000 8.10 76.44

3 0 – – – – 0 – – – – 7 0.507 0.019 5.86 67.71

4/5 0 – – – – 0 – – – – 4 0.619 0.234 1.00 67.00
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Table 3. Cont.

n Set-up K PMT-UC PMG-UC PMT-DC

N RI aRI FN TN N RI aRI FN TN N RI aRI FN TN

A 50 0.935 0.870 0.40 90.00 50 0.498 0.002 9.90 87.10 50 0.506 0.021 7.22 74.46

The clustering and gene selection results for the four set-ups with n~20,10,6, in terms of the average frequencies (N) of the selected numbers of clusters (K), and the
average of RI, aRI, FN, and TN in 50 simulations, where FN is the number of informative variables incorrectly selected to be noninformative and TN is the number of
noninformative variables correctly selected. In the true case, K~2, FN~0, TN~90. The table indicates in bold all results that perform best or that are not significantly
different from each other.
`: K~4=5 denotes that K can be 4 or 5.
{: K~A denotes that K can be any element of the set f2,3,4,5g which contains the predefined numbers of clusters.
doi:10.1371/journal.pone.0066256.t003

Figure 2. Boxplots of structural hamming distance (SHD) between correct and inferred networks. On each box, the central mark is the
median, the edges of the box are the 25th and 75th percentiles, the whiskers extend to the most extreme data points not considered outliers, and
outliers are plotted individually. Results shown for PMT-UC, PMG-UC and PMT-DC in the four set-ups of three cases n~20,10,6. SHD1 and SHD2 are
the results for the first and second clusters, respectively.
doi:10.1371/journal.pone.0066256.g002
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the samples are selected [40]. The model is fitted with K~2,3,4,5,

l1~3,4, � � � ,10,15,20, and l2~4,6,8,10,15,20.

Cancer subtype discovery. The clustering results of PMT-

UC are compared with PMG-UC and PMT-DC. By a grid search,

the optimal clustering results of three methods are shown in

Table 5. PMT-DC can identify the 25 AML samples from all the

72 samples correctly. However, it cannot recognize the differences

between two subtypes of ALL with the possible reason that PMT-

DC assumes a diagonal covariance. Both PMT-UC and PMG-UC

have better clustering performance than PMT-DC. The results in

Table 5 clearly indicate that the robustness of PMT-UC make it

perform better in identifying true clustering structures and gives a

fewer errors in cancer subtype discovery.

Network structure analysis. Figure 4 shows some example

subnetworks based on the inverse scale matrices estimated by

PMT-UC for ALL-B and AML. Each gene is labeled by its Gene

Symbol. If the shape of the gene is circle, then it will have cluster-

specific means, otherwise it will not have. For the ALL-T subtype,

Figure 3. Network reconstruction for simulated datasets with n~20,10,6. TRUE:1 and TRUE:2 are the parts of the original W1 and W2

corresponding to the first m informative genes for the first and second clusters, respectively. PMT-UC:1 and PMT-UC:2 are the estimation of those
parts of the inverse scale matrices using PMT-UC. PMG-UC:1 and PMG-UC:2 are the estimation of those parts of the inverse covariance matrices using
PMG-UC.
doi:10.1371/journal.pone.0066256.g003

Table 4. Comparison of performance of PMT-UC, PMG-UC and PMT-DC applied on simulated datasets with multiple thin-tailed
clusters.

Method K N FN TN RI aRI RI1 aRI1 RI2 aRI2

PMT-UC 2 – – – – – – – – –

3 50 0.00 90.00 0.639 0.347 1.000 1.000 0.494 0.000

4 – – – – – – – – –

5 – – – – – – – – –

6 – – – – – – – – –

A{ 50 0.00 90.00 0.639 0.347 1.000 1.000 0.494 0.000

PMG-UC 2 – – – – – – – – –

3 – – – – – – – – –

4 8 0.00 89.00 0.794 0.445 1.000 1.000 0.495 0.000

5 42 0.00 89.62 0.793 0.489 0.993 0.984 0.497 0.000

6 – – – – – – – – –

A 50 0.00 89.52 0.793 0.482 0.995 0.987 0.497 0.000

PMT-DC 2 – – – – – – – – –

3 – – – – – – – – –

4 39 0.00 88.77 0.794 0.564 1.000 1.000 0.496 0.000

5 11 0.00 88.00 0.797 0.506 1.000 1.000 0.502 0.000

6 – – – – – – – – –

A 50 0.00 88.60 0.794 0.551 1.000 1.000 0.495 0.000

The comparison of performance of PMT-UC, PMG-UC and PMT-DC applied on simulated datasets with multiple thin-tailed clusters, in terms of the average frequencies
(N) of the selected numbers of clusters (K), and the average of RI, aRI, FN, and TN in 50 simulations. RI1 and RI2 are the RI with respect to the first two clusters and the last
three clusters, respectively. aRI1 and aRI2 are the aRI with respect to the first two clusters and the last three clusters, respectively. In the true case, K~5, FN~0,
TN~90.
{: K~A denotes that K can be any element of the set f2,3,4,5,6g which contains the predefined numbers of clusters.
doi:10.1371/journal.pone.0066256.t004
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the related biomarkers identified by PMT-UC are all independent.

It is shown that there are overlaps between some subnetworks

corresponding to ALL-B and AML. However, these same genes

interact with other different biomarkers under various cancer

subtypes. Further more, the functional and biological relationships

of the selected genes of each subnetwork are analyzed based on the

Table 5. Optimal clustering results for the leukemia dataset.

PMT-UC PMG-UC PMT-DC

Clusters (#Samples) 1 2 3 1 2 3 1 2 3

ALL-B(38) 37 1 0 37 2 0 24 14 0

ALL-T(9) 0 8 1 0 8 1 8 0 1

AML(25) 1 0 24 2 0 24 0 0 25

doi:10.1371/journal.pone.0066256.t005

Figure 4. The subnetworks for ALL-B and AML of leukemia dataset estimated by PMT-UC. Nodes represent human genes, and they are
connected by a link if their partial correlation derived from Wk is larger than 10{5 . Each gene is labeled by its Gene Symbol (see Text S5 for the
detailed information of the genes in each subnetwork). The shape of each node indicates whether the gene has cluster-specific means (circle) or not
(diamond).
doi:10.1371/journal.pone.0066256.g004
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Table 6. The Gene Ontology results of the subnetwork for ALL-B of leukemia dataset.

Subnetwork Elements GO Number Ontology Description P-value

ALL-B-1 HLA-F HLA-DRB1 HLA-DRB5 GO:0071556 integral to lumenal side of endoplasmic 1.1610–20

CD74 HLA-DPB1 HLA-DPA1 reticulum membrane

HLA-DQA1 HLA-DRB1 GO:0012507 ER to Golgi transport vesicle membrane 1.1610–19

ALL-B-1 CD74 HLA-DMA HLA-DRB1 GO:0019886 antigen processing and presentation of 2.8610–19

HLA-DRB5 HLA-DPB1 HLA-DPA1 exogenous peptide antigen via MHC class II

HLA-DQA1 HLA-DRB1 GO:0005765 lysosomal membrane 6.4610–18

ALL-B-2 IGKC IGLC3 IGHG3 IGHA1 GO:0003823 antigen binding 6.2610–10

ALL-B-2 IGKC IGLC3 IGHG3 GO:0006958 complement activation, classical pathway 1.6610–6

ALL-B-3 The entire subnetwork GO:0002474 antigen processing and presentation 1.3610–10

of peptide antigen via MHC class I

ALL-B-4 HBB SLC4A1 GO:0015701 bicarbonate transport 6.8610–6

ALL-B-4 ALAS2 BLVRB GO:0042168 heme metabolic process 1.5610–5

ALL-B-4 SLC4A1 NEFL GO:0008022 protein C-terminus binding 8.0610–5

ALL-B-5 EEF1B2 RPL35A GO:0044444 cytoplasmic part 1.3610–4

ALL-B-5 COX7C COX4I1 GO:0004129 cytochrome-c oxidase activity 1.9610–5

ALL-B-6 The entire subnetwork GO:0050832 defense response to fungus 1.5610–8

GO:0042742 defense response to bacterium 1.1610–5

ALL-B-6 S100A9 S100A8 GO:0070488 neutrophil leukocyte aggregation 1.7610–7

GO:0002523 leukocyte migration involved in inflammatory response 3.7610–6

ALL-B-7 DUSP1 FOS GO:0051592 response to calcium ion 1.6610–3

GO:0051591 response to cAMP 1.6610–3

ALL-B-8 The entire subnetwork GO:0015671 oxygen transport 2.3610–6

GO:0031720 haptoglobin binding 2.1610–8

GO:0004601 peroxidase activity 4.3610–5

The first column (Subnetwork) reports the name of the subnetwork introduced in Figure 4. The second column (Elements) presents the elements of subnetwork of
which the functional and biological relationship are analyzed based on the GO annotation.
doi:10.1371/journal.pone.0066256.t006

Table 7. The Gene Ontology results of the subnetwork for AML of leukemia dataset.

Subnetwork Elements GO Number Ontology Description P-value

AML-1 IGKC IGLC3 IGHG3 GO:0006958 complement activation, classical pathway 1.6610–6

AML-2 FOSB JUNB GO:0071277 cellular response to calcium ion 4.3610–5

AML-3 IFI30 FCER1G GO:0019886 antigen processing and presentation of 2.0610–4

exogenous peptide antigen via MHC class II

GO:0042590 antigen processing and presentation of 3.8610–4

exogenous peptide antigen via MHC class I

AML-3 FCER1G CTSB GO:0009897 external side of plasma membrane 4.0610–4

AML-3 IFI30 CTSB GO:0043202 lysosomal lumen 6.2610–5

AML-4 The entire subnetwork GO:0008009 chemokine activity 1.4610–5

AML-5 SLC4A1 HBB GO:0015701 bicarbonate transport 6.1610–6

AML-6 CCL3 CCL4 GO:0031730 CCR5 chemokine receptor binding 1.6610–7

GO:0031726 CCR1 chemokine receptor binding 1.6610–7

AML-7 The entire network GO:0070488 neutrophil leukocyte aggregation 1.7610–7

GO:0002523 leukocyte migration involved in inflammatory response 3.7610–6

The first column (Subnetwork) reports the name of the subnetwork introduced in Figure 4. The second column (Elements) presents the elements of subnetwork of
which the functional and biological relationship are analyzed based on the GO annotation.
doi:10.1371/journal.pone.0066256.t007
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GO annotation [41]. The P-value of a specific GO annotation is

calculated using the hypergeometric distribution by the software

GO::TermFinder [42–44]. Tables 6 and 7 list the GO analysis

results for the subnetworks shown in Figure 4 of ALL-B and AML,

respectively. The small P-value shows that the genes in each

subnetwork have significant biological and functional correlation,

and the common GO functions they share are often related to the

subtypes of leukemia.

Specifically, for ALL-B, the smallest P-value is 1:1|10{20

corresponding to GO:0071556 which is related to integral to

lumenal side of endoplasmic reticulum membrane. All the genes in

the subnetwork ALL-B-1 except HLA-DMA share this common

GO function, including HLA-DQA1 and HLA-F which do not

have cluster-specific means. HLA-DMA has high correlation with

the genes in the same subnetwork in term of GO:0019886 and

GO:0042613. The first term is also reported to be a significant

GO function for leukemia in [45], which shows the general

importance of antigen presentation and antigen processing for

ALL. The second term is shown to be related with B-cells [46].

The subnetwork ALL-B-2 contains all the elements of the

subnetwork AML-1. The genes IGKC, IGLC3, IGHG3, IGHA1

share the common GO function GO:0003823 which is related

with B cell receptor activity. In addition, the IGLL1 gene encodes

Lambda5, a component of the pre-B cell receptor (pre-BCR)

which plays an important role in acute lymphoblastic leukemia

[47,48]. The genes IGKC, IGLC3, IGHG3 shared by two

subnetworks have the common GO function GO:0006958 which

is inferred to be part of GO:0002443 (leukocyte mediated

immunity). In ALL-B-2, SELL is also associated with leukocyte

that mediates leukocyte rolling and leukocyte adhesion to

endothelium at sites of inflammation [49]. The term

GO:0002474 shared by the subnetwork ALL-B-3 is related to

antigen presentation and has been reported to be highly

statistically significant in subtypes of ALL [50].

Next, the subnetworks of which all the elements are not mean-

based discriminative genes are taken account into. In subnetwork

ALL-T-5, COX7C and COX4I1 which have common GO

function cytochrome-c oxidase activity are indirectly connected by

other elements. The genes are essential for maintaining the

integrity of the subnetwork. HBB and HBA2 in ALL-T-8 have the

function of binding with oxygen molecules and transporting them

to the blood stream. They are shown to be correlated with various

kinds of cancers [51]. The genes ZFP36, FOSB, JUNB belonging

to AML-2 are transcription factors whose dysregulation is essential

for leukemic stem cell function and that are targets for therapeutic

interventions [52].

Biomarker identification. The gene selection results and

biological meanings of the biomarkers selected by PMT-UC are

presented in this section (see Text S6 for the detailed information

of all the selected biomarkers). There are 210 genes selected as

informative, including 161 mean-based discriminative genes. Most

of identified biomarkers are considered to have diagnostic values

for leukemia. For example, CST3 is identified as a validated target

for investigating the basic biology of ALL and AML [53]. CD74

has been shown to be associated with B cell lymphocytic leukemia

cell survival [54]. MPO is a lysosomal enzyme highly expressed in

bone marrow cells and has been reported to be associated with risk

of acute lymphoblastic leukemia [55]. TCL1A expression has been

shown to delineate biological and clinical variability in B-cell

lymphoma and can be regarded as a potential therapeutic target

[56]. It has been shown that increased levels of LYZ in urine and

serum are diagnostic indicators for some kinds of leukemia [57].

Unlike conventional penalized model-based clustering, our

network-based gene selection criterion can implicate disease-

related genes with low discriminative potential, such as MIF,

ANP32B, METAP2, SOX4. MIF is shown to recognize the CD74

extracellular domain as a cell surface receptor, and also be

associated with B cell lymphocytic leukemia cell survival as CD74

[54]. ANP32B is acted as a negative regulator for leukemic cell

apoptosis and may serve as a potential therapeutic target for

leukemia treatment [58,59]. METAP2 has been detected to have

high levels in B-cell acute lymphoblastic leukemia derived from

germinal center B cells [60]. SOX4 has been proven to enable

oncogenic survival signals in acute lymphoblastic leukemia

recently [61].

Conclusions
A new robust penalized model-based network clustering for

cancer subtype discovery, underlying network reconstruction and

network-based biomarker identification is proposed. The multi-

variate Student’s t distribution used for the components of the

mixture model results in robust clustering assignment. It permits a

treatment of unconstrained covariance matrices to take gene

dependencies into account. The network-based gene selection

criterion we proposed can find the genes which have low

discriminative potential, but interact with discriminative genes or

have cluster-specific underlying network structures. This property

is important for the discovery of disease-causing genes, because the

phenotypic changes for some cancers do not regulate the level of

expression.

The results for binary-clusters simulation studies have demon-

strated the utility of the proposed method and its superior

clustering and gene selection performance over penalized model-

based Gaussian clustering with unconstrained covariance (PMG-

UC) and penalized model-based Student’s t clustering with

diagonal covariance (PMT-DC). Compared with PMG-UC, the

network reconstruction results show that our algorithm can still

discover the relationship between genes under the network even if

the datasets have high noise.

The algorithm has been also applied for the analysis of a large

data set consisting of leukemia cancer subtypes. The comparison

of the clustering results for the three methods demonstrates that

our method can handle the outliers and identify the cancer

subtypes with different underlying networks or pathways. The

most selected biomarkers have biological meanings and are proven

to be related with leukemia. The functional and biological

correlation of the genes in the same subnetwork is analyzed based

on the GO annotation. The significant interaction between the

genes can provide basis for the establishment of large relational

network database.

Since the EM algorithm for PMT-UC is based on graphical

lasso which is not feasible with high dimension, we need to apply

preprocessing steps to filter some genes, which may result in the

missing of the informative biomarkers. Therefore, in the future

work, more efficient algorithms that can handle high-dimensional

dataset are needed for the accuracy of gene selection. Moreover,

the multiple-clusters simulation experiment indicates that PMT-

UC should be used with caution when the dataset has more thin-

tailed clusters of which some ones may do not have enough mean-

based discriminative genes. The flexibility of PMT-UC may make

it explain the extra clusters by fat tails. With the availability of

genetic pathways or networks for genes under various conditions,

we can incorporate these sources as prior information into

building gene expression-based clustering and variable selection

methods. They will facilitate the discovery of the true underlying

clusters and biomarkers.
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