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Abstract: Ultra-precision measurement systems are important for semiconductor manufacturing
processes. In a phase grating sensing alignment (PGA) system, the measurement accuracy largely
depends on the intensity of the diffraction signal and its signal-to-noise ratio (SNR), both of which
are associated with the grating structure. Although an equally segmented grating structure could
increase the signal of a high odd order, it could also strengthen the signals at the zeroth and even
orders which are the main contributors of stray light. This paper focuses on the practical problem
of differently responding diffraction orders but in one grating structure. An analytical relationship
has been established between the diffraction efficiency and the segment structure of phase grating.
According to this analytic model, we then propose a design method to increase the diffraction signal
at high odd orders and, meanwhile, to decrease it at the zeroth and even orders. The proposed
method provides a fast and effective way to obtain the globally optimal grating structure in the
valid scope. Furthermore, the design examples are also verified by means of numerical simulation
tool–rigorous coupled-wave analysis (RCWA) software. As a result, the proposed method gives
insight into the diffraction theory of segmented grating and the practical value to greatly improve
the design efficiency.

Keywords: phase grating; alignment system; diffraction efficiency

1. Introduction

Ultra-precision measurement systems play an essential role in cutting-edge technology
and industrial process quality control [1]. In semiconductor manufacturing, an alignment
sensing system has been applied to measure wafer positions, which is a prerequisite to
meet the stringent overlay budget [2–5]. One type of alignment sensing system uses
optical microscopy to illuminate the target, e.g., grating, with broadband spatial incoherent
light. The magnified image of grating is captured by a CCD or CMOS array detector [6].
Then, the exact location is analyzed by image processing algorithms. However, a few
challenges will be encountered when applying it in practice. One of the big challenges is
the negative impact of lens aberration [7,8]. Position error caused by lens aberration often
accumulates to 1 nm which consumes a large part of the 4 nm overlay requirements of
today’s alignment [5]. This kind of problem can be effectively solved by the other type
of alignment sensing system, i.e., phase grating alignment (PGA). The principle of PGA
is that incident light irradiates uniformly at the grating surface and produces diffraction
light with different orders. The targeted position can be extracted by the phases of the
diffraction signals [9,10].

In general, the PGA sensors can detect nine diffraction orders of phase grating [9,10].
The diffraction light of the odd orders (DLO) is useful to calculate the measurement
positions. However, the diffraction light of the zeroth and the even orders (DLZE) is the
main contributor of stray light which greatly deteriorates the signal quality. The diffraction
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light of the lower odd orders (L-DLO), such as the 1st and the 3rd, are often used to
determine the measurement range, while the diffraction light of the higher odd orders
(H-DLO), such as the 5th, the 7th, and the 9th, are often used to improve measurement
accuracy [10]. In practice, the intensity of H-DLO is usually very low [11,12]. For a typical
integrated circuit chip (IC) manufacturing process, deformation of phase grating happens
at many steps, such as etching, polishing, and deposition, and thus will further reduce
the intensity of H-DLO, finally leading to wrong positioning and product failures [11,12].
Besides this, DLZE should be restrained in order to increase the signal-to-noise ratio
(SNR) of the measurement signal [12]. Although the unwanted DLZE can be polarized or
covered, it is still hard to eliminate completely. Therefore, designing a grating structure
with enhanced H-DLO and reduced DLZE at the same time is an interesting challenge for
alignment sensing systems used in the IC industry.

The common basic period of phase grating is 16 µm in a PGA system [5]. For a phase
grating with a duty cycle of 0.5, the diffraction efficiency decreases while the order number
increases [5]. In this case, the diffraction efficiency supported by the 5th order light signal
is rather inadequate for a robust positioning. A segmented phase grating structure is
designed to improve the light signals received at high odd orders [13–17]. For the 5th
order, the grating ridge is further equally divided into five parts, as three ridges and two
grooves, which is labeled as AH53 by taking the naming rule in [15] (p. 854). Likewise,
AH74 is defined with seven equally segmented parts, including four ridges and three
grooves, to improve the 7th order. Unfortunately, these equally segmented designs not
only enhance the efficiency of the H-DLO but also magnify the efficiency of the DLZE.
To avoid this, numerical simulation has been performed by using commercial software
tools such as COMOSL to search for better structure parameters [18–24]. However, it is
still very hard to find the overall optimal solution because the numerical method is quite
sensitive to the initial conditions. Furthermore, tuning parameters numerically is a lengthy
and costly process that requires a high-powered processor to deal with multiple variables
simultaneously. The simulation complexity will be further increased and hence the design
efficiency drops dramatically when multi-wavelength illumination is implemented to
improve the physical signal robustness and to reduce the impact of asymmetric grating
distortion, e.g., in some alignment systems using 532 nm and 633 nm wavelengths [5],
some using 532 nm, 633 nm, 780 nm, and 852 nm wavelengths [10], and some even using a
white light source [25]. A lot of research has been done on phase gratings based on scalar
diffraction theory [26–28], especially in the field of Dammann grating [29,30]. A Dammann
grating is a pure phase modulation grating in which phase transition points are optimized
to produce equal-intensity spots at diffractive orders with high efficiency [29]. To realize
even-numbered spot arrays, Morrison introduced a translation symmetry method for the
effect with all the even-number spectra suppressed [31,32], which could be further applied
to an alignment sensor system with all the even orders eliminated.

In this paper, we propose a design method for a phase grating structure based on
scalar diffraction theory. This method provides a fast and reliable way to find the most
effective strategy that can tackle the practical problems of both H-DLO and DLZE at the
same time. Firstly, we construct an analytic model to describe the relationship between the
diffraction efficiency and the structure parameters of segmented phase grating. Based on
the relationship, a design strategy of grating structures is then developed with diffraction
efficiency of the H-DLO increased and that of the DLZE decreased. In order to apply the
design in the practical case of the IC industry, multi-wavelength illumination, 532 nm and
633 nm, was chosen to illustrate the effect. By this method, we easily obtain alternative
design options with the 5th order specifically enhanced or the 7th order specifically en-
hanced. Finally, the design results are validated and compared with the numerical software
tool RCWA.
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2. Analytical Model
2.1. Diffraction Efficiency of Standard Phase Grating

Here, one ridge in one period is called a standard phase grating. Figure 1 illustrates
the profile of a standard phase grating in 3D and a cross-section case at the x-z plane by
shifting a standard one. In Figure 1, d is the period length, l is the ridge width, g is the
groove width, h is the groove depth, the duty cycle f is defined as f = l/d, and w is defined
as w = g/d.
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Figure 1. (a) The profile of a standard phase grating; (b) a cross-section in one period. 

Suppose a grating structure extends infinitely along the y-axis and has an infinite 
number of periods along the x-axis. In the coordinate system defined in Figure 1, the pro-
file of the standard phase grating is described by the function z(x): 

( )
 + < ≤ +=  ≤ +

0, if 2 2
, if 2

fd nd x d nd
z x

h x fd nd
 (1)

where n is non-negative integers. The structure shown by the function z(x) represents a 
phase grating. Hence, its reflection function R(x) is represented as follows: 

( ) ( )λ
 + < ≤ +=  − ≤ +

, if 2 2
exp j4π , if 2  

r fd nd x d nd
R x

r h x fd nd
 (2)

where r is the reflection coefficient of the grating material. It depends on the grating ma-
terial and wavelength, assuming that the incident light is a plane wave with amplitude A0 
= 1 and is perpendicular to the grating surface. Based on the scalar diffraction theory, the 
diffraction field of the mth order is then defined as: 

( )
−

 = − 
 


20
/ 2
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A mU R x x x
d d
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Figure 1. (a) The profile of a standard phase grating; (b) a cross-section in one period.

Suppose a grating structure extends infinitely along the y-axis and has an infinite
number of periods along the x-axis. In the coordinate system defined in Figure 1, the profile
of the standard phase grating is described by the function z(x):

z(x) =

{
0, if f d/2 + nd < |x| ≤ d/2 + nd
h, if |x| ≤ f d/2 + nd

(1)

where n is non-negative integers. The structure shown by the function z(x) represents a
phase grating. Hence, its reflection function R(x) is represented as follows:

R(x) =

{
r, if f d/2 + nd < |x| ≤ d/2 + nd

r exp(−j4πh/λ), if |x| ≤ f d/2 + nd
(2)

where r is the reflection coefficient of the grating material. It depends on the grating
material and wavelength, assuming that the incident light is a plane wave with amplitude
A0 = 1 and is perpendicular to the grating surface. Based on the scalar diffraction theory,
the diffraction field of the mth order is then defined as:

Um =
A0

d

∫ d/2

−d/2
R(x) exp

(
−j

2mπ

d
x
)

dx, (3)

Substituting Equation (2) into Equation (3), the diffraction field Um would be:

Um =

 r
{

1 + f
[
exp

(
−j 4πh

λ

)
− 1
]}

, if m = 0

r sin(mπ f )
mπ

[
exp

(
−j 4πh

λ

)
− 1
]
, if m = ±1,±2 · · ·

(4)
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According to Equation (4), the diffraction efficiency ηm of standard phase grating
is obtained:

ηm =
|Um|2

|A0|2
=

 r2
[
1− 4 f (1− f ) sin2

(
2πh

λ

)]
, if m = 0

r2 4 sin2(mπ f )
(mπ)2 sin2

(
2πh

λ

)
, if m = ±1,±2 · · ·

(5)

2.2. Diffraction Efficiency of Segmented Phase Grating

Phase grating with more than one ridge in one period is called segmented phase grat-
ing [15]. Figure 2 illustrates the profile of segmented phase grating, where fid is the width
of the ith ridge, xi is the center position of the ith ridge, and wid is the width of the ith groove.
In the following sections, a superscript ” indicates the identity of segmented grating.
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Figure 2. (a) The profile of a segmented phase grating; (b) a cross-section in one period. 
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When the segmented phase grating contains two ridges in one period, the length of
each part is dk, as shown in Figure 2b. According to Equation (3), the diffraction field Udk

m
of each part is obtained by integration, and the diffraction field U′′m of the mth order is
given by:

U′′m =
5
∑

k = 1
Udk

m = U(m,i) + U(m,i+1) − 1
d

∫ d/2
−d/2 exp(−j2mπx/d)dx

=

{
U(0,i) + U(0,i+1) − 1, if m = 0

U(m,i) + U(m,i+1), if m = ±1,±2, . . .

(6)

where U(m,i) is the diffraction field of the ith grating ridge which can be considered as
a standard phase grating as defined in Section 2.1, m denotes the order number, and i
represents the ith grating ridge. Assuming the total number of ridges is N, U′′m becomes:

U′′m =


N
∑

i = 1
U(0,i) − (N − 1), if m = 0

N
∑

i = 1
U(m,i), if m = ±1,±2, . . .

(7)

To obtain U′′m, U(m,i) is calculated. According to Equation (4) and the Fourier shift
theorem [33], U(m,i) can be expressed as:

U(m,i) =

 r
[
1− fi + fi exp

(
−j 4πh

λ

)]
, if m = 0

r sin(mπ fi)
mπ

[
exp

(
−j 4πh

λ

)
− 1
]

exp
(
−j 2mπ

d xi
)
, if m = ±1,±2 · · ·

(8)
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Substituting Equation (8) into Equation (7) yields:

U′′m =


r
{

1 +
N
∑

i = 1

[
fi exp

(
−j 4πh

λ

)
− fi

]}
, if m = 0

r
N
∑

i = 1

sin(mπ fi)
mπ

[
exp

(
−j 4πh

λ

)
− 1
]

exp
(
−j 2mπ

d xi
)
, if m = ±1,±2 · · ·

(9)

Hence, the diffraction efficiency η
′′
m of segmented phase grating is given by:

η
′′
m =


r2
[

1− 4 sin2( 2π
λ h
)(

1−
N
∑

i = 1
fi

)
N
∑

i = 1
fi

]
, if m = 0

r2 4
(mπ)2 sin2( 2π

λ h
)∣∣∣∣ N

∑
i = 1

sin(mπ fi) exp
(
−j 2mπ

d xi
)∣∣∣∣2, if m = ±1,±2 · · ·

(10)

3. Method of Segmented Phase Grating Design
3.1. Eliminating the Zeroth Order and Improving Efficiency of Odd Orders

To eliminate the diffraction light of the zeroth order, from Equation (9), the real and
imaginary parts of the diffraction field U′′0 of the zeroth order should be zero. Hence, h = (2n

− 1)λ/4 and
N
∑

i = 1
fi = 0.5, and they define a substantial structure, as shown in Figure 3. It

demonstrates a segmented grating structure with the zeroth order eliminated.
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Except for the zeroth order, according to Equation (7), the diffraction field U′′m can be
taken as the sum vector of the diffraction fields U(m,i) with different phase angles, as shown
in Figure 4. According to Equation (8) and Equation (4), U(m,i) is obtained by rotating Um

through an angle θi
m = 2mπxi/d. The angle ∆θi

m between U(m,i) and U(m,i+1) is:

∆θi
m =

2mπ

d
(xi+1 − xi), (11)

Hence, to improve the diffraction efficiency η
′′
m, Um needs to have the maximum

amplitude and all U(m,i) have the same direction.



Sensors 2021, 21, 3805 6 of 22

Sensors 2021, 21, x FOR PEER REVIEW 6 of 23 
 

 

Hence, to improve the diffraction efficiency η′′m , Um needs to have the maximum am-
plitude and all U(m,i) have the same direction.  

Im

Re

( )+1 ,m iU f h

( ),m iU f h

mU

θΔ i
m

θ i
m

θ +1i
m

′′mU
θ i

m

θ +1i
m
θΔ i

m

 
Figure 4. Schematic diagram of diffraction field vector superposition of segmented phase grating. 

Firstly, conditions are analyzed when Um has the maximum amplitude based on 
Equations (4) and (5). Figure 5 illustrates the diffraction efficiency ηm as a function of duty 
cycle f and groove depth h. As shown in Figure 5a–j, when h is a multiple of a half wave-
length, the diffraction efficiency η0 of the zeroth order is r2, and the diffraction efficiency 
ηm of other orders is equal to zero. When the product of m and f is an integer, the mth order 
is absent. For example, when f is 1/5, η5 = 0. When h and f meet the following conditions at 
the same time: 

λ−= = 2 1 ,     if 1,  2,
4

nh n  (12)

= − 1 ,     if =1, 2,
2

mf n n  (13)

Um has the maximum amplitude as: 

( )=max 2 π ,mU r m  (14)

From Equation (13), the value sin(mfiπ) may be positive or negative. These two cases 
will be analyzed to investigate the influence of the sign of the sin(mfiπ) value on the groove 
width gi. 

When the signs of the sin(mfiπ) and sin(mfi+1π) values are the same, to make directions 
of U(m,i) and U(m,i+1) consistent, θΔ i

m  must be: 

( )θ +Δ = −1
2 π =2 π,i

m i i
m x x n
d

 (15)

The distance Δxi between the ith and (i+1)th ridges should be: 

+Δ = − =1 ,i i i
nx x x d
m

 (16)

As shown in Figure 2, Δxi is defined by the ridge width li and the groove width gi. In 
this case, according to Equations (13) and (16), the groove width gi should be (2n–1)d/(2m). 
For example, for the 5th order, when both of fi and fi+1 are 1/5, gi should be (2n–1)d/10 to 
ensure that U(m,i) and U(m,i+1) have the same direction. 

When the signs of the sin(mfiπ) and sin(mfi+1π) values are opposite, to make directions 
of U(m,i) and U(m,i+1) consistent, i

mθΔ  must be: 

Figure 4. Schematic diagram of diffraction field vector superposition of segmented phase grating.

Firstly, conditions are analyzed when Um has the maximum amplitude based on
Equations (4) and (5). Figure 5 illustrates the diffraction efficiency ηm as a function of
duty cycle f and groove depth h. As shown in Figure 5a–j, when h is a multiple of a
half wavelength, the diffraction efficiency η0 of the zeroth order is r2, and the diffraction
efficiency ηm of other orders is equal to zero. When the product of m and f is an integer, the
mth order is absent. For example, when f is 1/5, η5 = 0. When h and f meet the following
conditions at the same time:

h =
2n− 1

4
λ, if n = 1, 2, · · · (12)

m f = n− 1
2

, if n= 1, 2, · · · (13)

Um has the maximum amplitude as:

|Umax
m | = 2r/(mπ), (14)

From Equation (13), the value sin(mf iπ) may be positive or negative. These two cases
will be analyzed to investigate the influence of the sign of the sin(mf iπ) value on the groove
width gi.

When the signs of the sin(mf iπ) and sin(mf i+1π) values are the same, to make directions
of U(m,i) and U(m,i+1) consistent, ∆θi

m must be:

∆θi
m =

2mπ

d
(xi+1 − xi) = 2nπ, (15)

The distance ∆xi between the ith and (i+1)th ridges should be:

∆xi = xi+1 − xi =
n
m

d, (16)

As shown in Figure 2, ∆xi is defined by the ridge width li and the groove width gi. In
this case, according to Equations (13) and (16), the groove width gi should be (2n–1)d/(2m).
For example, for the 5th order, when both of fi and fi+1 are 1/5, gi should be (2n–1)d/10 to
ensure that U(m,i) and U(m,i+1) have the same direction.
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When the signs of the sin(mf iπ) and sin(mf i+1π) values are opposite, to make directions
of U(m,i) and U(m,i+1) consistent, ∆θi

m must be:

∆θi
m =

2mπ

d
(xi+1 − xi) = (2n− 1)π, (17)

The distance ∆xi between the ith and (i+1)th ridges should be:

∆xi = xi+1 − xi =
2n− 1

2m
d, (18)
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In this case, according to Equations (13) and (16), the groove width gi should also be
(2n–1)d/(2m). For example, for the 5th order, when fi and fi+1 are 1/5 and 3/5, respectively,
gi should also be (2n−1)d/10 to ensure that U(m,i) and U(m,i+1) have the same direction.

Whether the signs of the sin(mf iπ) and sin(mf i+1π) values have the same or opposite
sign, gi should be (2n−1)d/(2m) to make directions of U(m,i) and U(m,i+1) consistent. Thus,
we obtain: ∣∣∣∣∣ N

∑
i = 1

sin(mπ fi) exp
(
−j

2mπ

d
xi

)∣∣∣∣∣ = N, (19)

Substituting Equations (12) and (19) into Equation (10), the enhanced diffraction
efficiency η

′′
m of the mth order is expressed as:

η
′′
m = r2

(
2N
mπ

)2
, (20)
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Figure 6 illustrates a segmented grating structure with high odd order m enhanced.
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3.2. Eliminating Diffraction of Even Orders

When increasing the efficiency of a certain odd order, the efficiency of even orders is
never zero. As shown in Figure 7, grating C with duty cycle f of 0.5 is composed of grating
A and grating B. According to Equation (7), the diffraction field UC

m of grating C can be
expressed as:

UC
m = UA

m + UB
m, (21)

where UA
m is the diffraction field of the mth order of grating A, UB

m is the diffraction field of
the mth order of grating B, and then m cannot be zero. According to Equation (4), since f of
grating C is 0.5, the diffraction field UC

2m is identically zero. Therefore, from Equation (21),
the relationship between the diffraction field of grating A and grating B at even orders is
given by:

UA
2m = −UB

2m, (22)
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As shown in Figure 8, grating D consists of grating A and grating B shifted along the
x-axis with d/2. From Equation (9), the diffraction field UD

m can be expressed as:

UD
m = UA

m + UB
m exp

(
−j

2mπ

d
× d

2

)
, (23)
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Figure 8. Grating D consists of grating A and grating B shifted along the x-axis with d/2.

Substituting Equation (22) into Equation (23) yields:

UD
2m = 0, (24)

Hence, when the segmented grating is divided into two parts in one period as grating
A and grating B defined in Figure 8, even orders are eliminated. The conclusion is the
same as the one obtained by Morrison with a different starting point [31,32]. In this work,
the conclusion is derived from the diffraction field of the grating with a duty cycle of
0.5. Morrison derived it from the diffraction field of the Dammann grating. Hence, the
conclusions are not new, but strongly supported by each other, and both further prove the
practical value of the classical theory.

These two structures are defined as complementary to each other in this paper. Fur-
thermore, the two parts must be symmetrical to each other according to the principle
of alignment technology [1]. Therefore, the two parts can be divided into four parts by
two lines x = ±d/4, as shown in Figure 9. G1 and G2 are complementary with respect to
x = –d/4. Similarly, G3 and G4 are complementary with respect to x = d/4. G2 and G3 are
symmetric around the z-axis, and so are G1 and G4.
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When the number of ridges N = 3 and the groove depth h = λ/4, the grating structure
is shown in Figure 10, and its structural parameters satisfy the following requirements.{

f2 = 0.5− 2 f1, f3 = f1;
x1 = −0.25− f1/2, x2 = 0, x3 = −x1;

(25)
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According to Equation (10), the diffraction efficiency is expressed as:

η
′′
m =

{
0, m = 0,±2,±4 · · ·

4r2

(mπ)2

∣∣1− 4 sin2(mπ f1)
∣∣2, m = ±1,±3,±5 · · · (26)

When N = 5 and h = λ/4, the grating structure is shown in Figure 11, and its structural
parameters satisfy the following requirements.{

f3 = 0.5− 2× ( f1 + f2), f4 = f1, f5 = f2;
x1 = −0.25− f2 − f1/2, x2 = −0.25 + f2/2, x3 = 0, x4 = −x1, x5 = −x2;

(27)
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According to Equation (10), the diffraction efficiency is expressed as:

η
′′
m =

{
0, m = 0,±2,±4 · · ·

4r2

(mπ)2 |1− 4 sin(mπ f1) sin[mπ( f1 + 2 f2)]|2, m = ±1,±3,±5 · · · (28)

3.3. Optimizing the Groove Depth

All previous cases are discussed in terms of one illumination wavelength λ. In
this section, multiple wavelengths {λ1, . . . , λn} are considered. When there is only one
illumination wavelength λ, groove depth h should be equal to λ/4 in order to reduce
the diffraction efficiency η

′′
0 of the zeroth order and enhance the diffraction efficiency η

′′
m

of the odd order m. However, there is no h that can satisfy this for all wavelengths at
once. On the other hand, from Equations (13) and (16), ridge width l, groove width g
are not affected by the multiple wavelengths. Here, we introduce the concept of average
diffraction efficiency over different wavelengths which are to be minimized as η

′′
0 and to be
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maximized as η
′′
m in order to get reasonable h overall wavelengths. A further discussion on

the average efficiency for more than on odd orders will be addressed in much more detail
in our future work.

When l and g meet enhancement and elimination requirements (Equations (20) and (24)),
we call the grating enhanced grating. In this case, from Equation (10), η

′′
0 and η

′′
m can be

expressed as:

η
′′
0 =

1
4

n

∑
i = 1

ri
2 cos2

(
2πh
λi

)
, (29)

η
′′
m =

1
4

n

∑
i = 1

ri
2 sin2

(
2πh
λi

)∣∣∣∣∣ N

∑
i = 1

sin(mπ fi)

mπ
exp

(
−j

2mπ

d
xi

)∣∣∣∣∣
2

, (30)

where ri is the reflection coefficient of grating illuminated by the wavelength λi, n is the
number of wavelengths. The derivatives of η

′′
0 and η

′′
m with respect to h are given by:

∂η
′′
0

∂h
= −π

2

n

∑
i = 1

ri
2

λi
sin
(

4πh
λi

)
, (31)

∂η
′′
m

∂h
=

π

2

n

∑
i = 1

ri
2

λi
sin
(

4πh
λi

)∣∣∣∣∣ N

∑
i = 1

sin(mπ fi)

mπ
exp

(
−j

2mπ

d
xi

)∣∣∣∣∣
2

, (32)

The optimal groove depth h is defined by:

g(h) =
n

∑
i = 1

ri
2

λi
sin
(

4πh
λi

)
= 0, (33)

Figure 12a illustrates that if h is less than 500 nm and ri is equal to 1, there are four
critical points at h = 0 nm, 143.5 nm, 287.7 nm, and 429.4 nm, for wavelengths of both
532 nm and 633 nm. Figure 12b shows η

′′
0 and η

′′
5 as a function of the parameter h for the

5th order enhanced grating with three segmented ridges. In Figure 12b, as η
′′
0 increases

with h, η
′′
5 decreases with h. Conversely, as η

′′
0 decreases with h, η

′′
5 increases with h. When

h = 143.5 nm, η
′′
0 reaches the minimum in the validate scope, while η

′′
5 reaches the maximum

in the scope. Hence, h should be 143.5 nm at the illumination wavelengths of 532 nm and
633 nm.
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3.4. Design Process of Segmented Grating

As a summary of the previous sections, Figure 13 describes the design process of a
segmented grating with enhanced H-DLO as well as reduced DLZE. The detailed steps are
illustrated as follows:

1. Choosing groove depth h: For a single wavelength λ, the groove depth h should be an
odd multiple of the quarter wavelength to eliminate the zeroth order and to have the
diffraction efficiency of other orders enhanced.

2. Choosing ridge width {li}: In the case of the high odd order m and the grating period
d, the ridge width li should be (2n–1)d/(2m) to improve the diffraction efficiency of
the order m. Furthermore, the sum of all ridge widths should be half of the grating
period to satisfy the requirement of the zeroth order elimination.

3. Choosing groove width {gi}: The groove width gi should be (2n–1)d/(2m) to enhance
the diffraction efficiency of the odd order m. In addition, to eliminate even orders, the
groove widths gi should make the segmented grating structure complementary and
symmetrical about the z-axis.

4. Optimizing groove depth h: For multiple wavelengths {λ1, . . . , λn}, the groove depth
h is optimized to decrease the average diffraction efficiency of the zeroth order. The
optimal groove depth is defined by the material of the grating and illumination
wavelengths. Finally, the structure of the segmented grating is obtained for all
the requirements.
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4. Designed Examples and Verification

Using the proposed method, as shown in Figure 13, we designed the grating with the
5th order enhanced and the grating with the 7th order enhanced. Meanwhile, the RCWA
method was applied to calculate the efficiency of these segmented gratings to verify our
design results. In the simulation, silicon was chosen as the material of the grating, and the
period was defined as 16 µm. When the illumination wavelength is 633 nm and the light is
perpendicular to the grating surface, the refractive index of silicon is 3.88 and the refractive
index of the peripheral material is 1. Hence, the reflectance of the grating is 34.83% at
633 nm.

4.1. Comparison with RCWA Method

For the 5th order, AH53_opt was designed by the proposed method, and AH53_opt’
was obtained by VirtualLab Fusion software (RCWA). Table 1 compares the structure
parameters of AH53_opt and AH53_opt’. Obviously, AH53_opt and AH53_opt’ have
the same parameters. Table 1 describes the structure for both AH53_opt and AH53_opt’.
Figure 14 illustrates the structure of the AH52_opt and AH53_opt’ in one period.

Table 1. The structure parameters of AH53_opt and AH53_opt’.

Item/Grating AH53_opt AH53_opt’

Groove depth h (nm) 158.25 158.25
Number of ridges N 3 3

Ridge width/Period {fi} 1/10, 3/10, 1/10 1/10, 3/10, 1/10
Sum ridge widths/Period f 1/2 1/2
Groove width/Period {wi} 1.5/10, 1/10, 1/10, 1.5/10 1.5/10, 1/10, 1/10, 1.5/10
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During the design process, four parameters needed to be optimized simultaneously in
RCWA. At the same time, the target objective was to minimize η

′′
0 and η

′′
2m, and maximize

η
′′
5 . Even with a 32-core processor, the multi-objective optimization took three days to

obtain satisfactory results. With the proposed method, it only took two hours to obtain the
structure of Figure 14. Hence, the proposed method greatly improved the design efficiency.

4.2. The 5th Order Enhancement Case

For the 5th order enhancement, when the structure satisfies eliminating the zeroth
order, {fi} should be {1/10, 3/10, 1/10}. Figure 15 illustrates that when {fi} is {1/10, 3/10,
1/10}, the diffraction efficiency is a function of w2 for orders 1–9. Structure AH53_opt
(w2 = 1/10) enhances the 5th order and eliminates even orders. AH53_opt was compared
to the equally segmented grating AH53 [15]. Table 2 compares the structure parameters of
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AH53 and AH53_opt. Figure 16 illustrates the profiles of AH53 with a period of 16 µm [15].
Table 3 compares the diffraction efficiency of them for the different orders 0–9. It can be
found that all of their structure parameters satisfy the enhancement requirement of the 5th
order, and they have the same number of segmented ridges N. Hence, both gratings have
the same η

′′
5 of 5.0%. However, for AH53, the sum of all ridge widths is not half period,

and the structure does not meet the elimination requirement of the zeroth and even orders.
Therefore, η

′′
0 and η

′′
2m are not zero. For AH53_opt, η

′′
0 and η

′′
2m are identical to zero.
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Table 2. The structure parameters of AH53 and AH53_opt.

Item/Grating AH53 AH53_opt Design
Requirements

Groove depth h (nm) 158.25 158.25 (2n − 1)λ/4
Number of ridges N 3 3 ≥3

Ridge width/Period {fi} 1/10, 1/10, 1/10 1/10, 3/10, 1/10 (2n − 1)/10
Sum ridge widths/Period f 3/10 1/2 1/2

Groove width/Period {wi} 1/4, 1/10, 1/10, 1/4 1.5/10, 1/10, 1/10,
1.5/10 (2n − 1)/10
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Table 3. Comparison the efficiency of each order for AH53 and AH53_opt.

Grating/Order 0 1 2 3 4 5 6 7 8 9

AH53 5.0% 3.8% 0.5% 0.4% 2.1% 5.0% 0.9% 0.1% 0.0% 0.0%
AH53_opt 0.0% 5.4% 0.0% 4.1% 0.0% 5.0% 0.0% 0.7% 0.0% 0.1%

4.3. The 7th Order Enhancement Case

For the 7th order enhancement, when the structure satisfies eliminating the zeroth
order, {fi} should be {3/14, 1/14, 3/14}, {1/14, 5/14, 1/14}, and {1/14, 1/14, 3/14, 1/14,
1/14}. In this case, Figures 17–19 illustrate the diffraction efficiency as a function of w2
for orders 0–9. Three structures, AH74_opt1 (w2 = 3/14), AH74_opt2 (w2 = 1/14), and
AH74_opt3 (w2 = 1/14), enhance the 7th order and eliminate even orders. Compared with
AH74 [15], Table 4 lists the structure parameters of four gratings. Figure 20 shows the
profiles of these gratings with a period of 16 µm. Table 5 compares the diffraction efficiency
of these gratings for the different orders 0–9. The groove depth h, the ridge widths li, and
the groove widths gi of these gratings all satisfy the requirements of enhancing the 7th order.
Hence, η

′′
7 depends on the number N of segmented ridges. AH74_opt3 has the maximum N,

so AH74_opt3 has a maximum η
′′
7 . Moreover, except for AH74, other structures all eliminate

the zeroth and even orders. Therefore, for AH74_opt1, AH74_opt2, and AH74_opt3, η
′′
0

and η
′′
2m are equal to zero, while η

′′
0 is up to 5.9% for AH74. Furthermore, AH74_opt2 has

the highest η
′′
5 and η

′′
9 , which are 28 and 9 times higher than AH74, respectively.
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Figure 17. The diffraction efficiency of orders as a function of w2 when {fi} is {3/14, 1/14, 3/14}. (a) The odd orders, (b) the
even orders.
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Figure 18. The diffraction efficiency of orders as a function of w2 when {fi} is {1/14, 5/14, 1/14}. (a) The odd orders, (b) the
even orders.
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Figure 20. The structures of AH74 and AH74_opt in one period. (a) AH74, (b) AH74_opt1, (c) AH74_opt2, (d) AH74_opt3. 
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(b) the even orders.
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Figure 20. The structures of AH74 and AH74_opt in one period. (a) AH74, (b) AH74_opt1, (c) AH74_opt2, (d) AH74_opt3. 
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Table 4. The structure parameters of AH74, AH74_opt1, AH74_opt2, AH74_opt3.

Item/Grating AH74 AH74_opt1 AH74_opt2 AH74_opt3 Design Re-
quirements

Groove depth h (nm) 158.25 158.25 158.25 158.25 (2n − 1)λ/4
Number of ridges N 4 3 3 5 ≥3

Ridge width/Period
{fi}

1/14, 1/14,
1/14, 1/14

3/14, 1/14,
3/14

1/14, 5/14,
1/14

1/14, 1/14,
3/14, 1/14,

1/14
(2n − 1)/14

Sum ridge
widths/Period f 4/14 1/2 1/2 1/2 1/2

Groove
width/Period {wi}

1/4, 1/14,
1/14, 1/14,

1/4

0.5/14,
3/14, 3/14,

0.5/14

2.5/14,
1/14, 1/14,

2.5/14

1.5/14,
1/14, 1/14,
1/14, 1/14,

1.5/14

(2n − 1)/14

Table 5. Comparison of the efficiency of each order for AH74, AH74_opt1, AH74_opt2, AH74_opt3.

Grating/Order 0 1 2 3 4 5 6 7 8 9

AH74 5.9% 3.7% 0.2% 0.4% 0.3% 0.1% 2.0% 4.6% 1.0% 0.1%
AH74_opt1 0.0% 4.4% 0.0% 7.9% 0.0% 0.4% 0.0% 2.6% 0.0% 0.1%
AH74_opt2 0.0% 9.1% 0.0% 0.5% 0.0% 2.8% 0.0% 2.6% 0.0% 0.9%
AH74_opt3 0.0% 2.8% 0.0% 2.4% 0.0% 1.8% 0.0% 7.2% 0.0% 0.6%

4.4. Multi-Wavelength Case

For the wavelength of 532 nm and 633 nm, optimizing groove depth h decreased η
′′
0

and increased η
′′
m of other orders. Figures 21a, 22a, 23a and 24a illustrate the diffraction

efficiency of AH53, AH53_opt, AH74, and AH74_opt3 with h = 158.25 nm for wavelengths
532 nm and 633 nm. According to the design method, h has a critical point which has
the lowest η

′′
0 and the largest η

′′
m. The optimal h of AH53_opt and AH74_opt3 is equal

to 143 nm. The optimal h is defined by the material of the grating and the illumination
wavelength, and has nothing to do with the structures of these gratings according to (33).
Figures 21b, 22b, 23b and 24b illustrate the diffraction efficiency of AH53, AH53_opt, AH74,
and AH74_opt3 with h = 143 nm. It can be found that η

′′
0 dramatically decreases when

h = 143 nm. Moreover, at the same time, η
′′
m increases to some extent. For AH53_opt and

AH74_opt3, η
′′
m increases more than AH53 and AH74, and η

′′
2m are still equal to zero.
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Figure 23. Diffraction efficiency of AH74. (a) AH74 with the groove depth of 158.25 nm; (b) AH74 with the groove depth of
143 nm.
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Thus far, one odd order has been considered as the major target for optimization, such
as the 5th or the 7th order. In future work, optimizing over the 5th, the 7th, and the 9th
orders simultaneously can be discussed in depth, especially for multi-wavelength cases.

4.5. Comparing the Design Time with RCWA

Multi-parameter optimization is quite sensitive to the initial conditions. There is
always a risk that no structures are produced to meet the complex requirements. Besides
that, it is a lengthy and costly process to calculate multiple variables simultaneously with a
high-powered computing processor. For example, the starting point and the target function
are demonstrated in Figure 25, and the structure of AH53_opt (designed in Section 4.1)
is not able to be obtained by means of RCWA, as shown in Figure 26. After adjusting
the parameters several times, the starting point and the target function are demonstrated
in Figure 27, and the Ah53_opt structure is obtained, as shown in Figure 28. Table 6
summarizes the time when multi-parameter optimization is applied. It is worth mentioning
that it took only 2 h to obtain AH53 by means of our method.
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Table 6. The time spent designing AH53_opt’ with VirtualLab Fusion software.

Item Number of Times to
Change the Initial Value

Average Number of
Iterations per Initial Value

Time per
Iteration (S)

Total Time
(Days)

Value 20 5000 3 3.5

5. Conclusions

In this paper, we propose a design method for segmented phase grating with increas-
ing intensity of the measurement signal and limited stray light to improve the SNR in a
PGA sensing system. An analytical model has been constructed to describe the relationship
between the diffraction field and the structure of the segmented grating. This model has
provided insight into the diffraction theory of the segmented phase grating and has helped
to find the most effective approach to design a required grating structure. Compared with
numerical simulation methods, the simulation results demonstrate the effectiveness and
efficiency of the proposed method. It also reduces the design time from several days to
a few hours. By means of this method, a grating structure with the 5th order enhanced
has been designed and analyzed, as well as three structures with the 7th order enhanced.
Compared with an equally segmented grating structure, the diffraction efficiency of the
diffraction light of the zeroth and the even orders (DLZE) has been dramatically inhibited
while the diffraction efficiency of the diffraction light of the high odd orders (H-DLO) has
been enhanced. These designed structures can be applied to alignment marks, which are
widely used in PGA sensors and greatly improve the measurement accuracy. Furthermore,
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this design method can be applied to not only the alignment system but also other systems
with grating-based measurement such as spectrometers, wavelength division multiplexing,
visual display technology, etc.
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