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Background: Sepsis-associated encephalopathy (SAE) is defined as diffuse

brain dysfunction associated with sepsis and leads to a high mortality rate.

We aimed to develop and validate an optimal machine-learning model based

on clinical features for early predicting sepsis-associated acute brain injury.

Methods: We analyzed adult patients with sepsis from the Medical Information

Mart for Intensive Care (MIMIC III) clinical database. Candidate models

were trained using random forest, support vector machine (SVM), decision

tree classifier, gradients boosting machine (GBM), multiple layer perception

(MLP), extreme gradient boosting (XGBoost), light gradients boosting machine

(LGBM) and a conventional logistic regression model. These methods were

applied to develop and validate the optimal model based on its accuracy and

area under curve (AUC).

Results: In total, 12,460 patients with sepsis met inclusion criteria, and 6,284

(50.4%) patients suffered from sepsis-associated acute brain injury. Compared

other models, the LGBM model achieved the best performance. The AUC

for both train set and test set indicated excellent validity (Trainset AUC 0.91,

Testset AUC 0.87). Feature importance analysis showed that glucose, age,

mean arterial pressure, heart rate, hemoglobin, and length of ICU stay were

the top 6 important clinical factors to predict occurrence of sepsis-associated

acute brain injury.

Conclusion: Almost half of patients admitted to ICU with sepsis had sepsis-

associated acute brain injury. The LGBM model better identify patients with

sepsis-associated acute brain injury than did other machine-learning models.

Glucose, age, and mean arterial pressure were the three most important

clinical factors to predict occurrence of sepsis-associated acute brain injury.
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Introduction

Sepsis-associated encephalopathy (SAE) is defined by
diffuse cerebral dysfunction, which is associated with
sepsis in the absence of direct central nervous system
(CNS) infection, structural abnormality or other types of
encephalopathy (1). Patients with SAE have a higher intensive
care unit (ICU) mortality than those suffering from sepsis
alone (2–4). SAE might dramatically be aggravated by
metabolic disturbances, use of antibiotics with significant
neurotoxicity, and complications such as acute renal failure
and hypoglycemia (5–7). In the clinic surroundings, SAE
is diagnosed cognitive and neuropsychiatric disorders that
documented by medical staff trained to identification, as
well as a Glasgow coma score (GCS) < 15 or manifestations
of delirium (including inattention, disorientation, altered
thinking, decreased psychomotor activity and so on), and
need to exclude sedative-related cognitive effects, primary
CNS disease, metabolic encephalopathy, and toxicosis (8).
Due to the lack of an early diagnosis system, diagnosis and
management of SAE are often delayed, leading to significant
morbidity and mortality. Early diagnosis and treatment for
brain injury are crucial for the survival and prognosis of
sepsis patients.

There are only limited data on the prediction for septic
patients developing SAE. Some risk scores and biomarkers,
including nomogram, calcium-binding protein A8 (S100A8),
tumor necrosis factor receptor-associated factor 6 (TRAF6),
and S100B, were recently used to predict SAE (9–11).
However, these biomarkers are not always applicable in
clinical practice, and these methods lacks both sensitivity
and specificity for prediction of SAE. Therefore, new
predictors such as clinical indicators are needed to assist in
prediction.

It is generally accepted that machine learning is helpful
for the early surveillance and identification of sepsis (9,
12, 13). Although nomograms have been used for the
prediction of SAE, the sensitivity and specificity are relatively
low (9, 14). Few interpretable machine-learning methods
have been used for clinical practice of SAE. Therefore,
an understanding algorithm are crucial to enhance the
sensitivity of prediction. Machine learning is an excellent
mathematical model for solving the complex relationship
between diseases and potential risk factors because it can
learn from sample data, instead of assuming a global
relationship between them based on all samples by human
experts. This study aims to develop machine-learning
(ML) models for early prediction of sepsis-associated acute
brain injury. The best performing model was selected for
further prediction.

Materials and methods

Study design

In this large dataset, the final ML model was developed
in three steps. First, we developed the models using a
conventional logistic regression and seven machine-learning
methods. Second, the evaluation of model performance in a
validation cohort were compared. Finally, the best-fitting model
was selected and constructed.

Source of data

The data of this retrospective study came from MIMIC-
III, an openly available US-based critical care database. The
description of MIMIC-III can be found in the literature (15).
The MIMIC III database includes clinical information relating
to patients admitted to the ICUs of Beth Israel Deaconess
Medical Center (single) in Boston from 2001 to 2016, which
is approved by the Massachusetts Institute of Technology
Institutional Review Boards. Patients were selected using the
PostgreSQL 9.6 software from the latest version (MIMIC-
III v1.4), which was released on 2 September 2016. After
successfully completing the Collaborative Institutional Training
Initiative Program course (Record ID 35897056), we were
allowed to utilize the data from MIMIC-III.

Participants and data extraction

Structure query language (SQL) was used to extract data
from the MIMIC III database by PgAdmin (version 4.1, Bedford,
USA). The study inclusion criteria included: (1) If a patient
had multiple ICU admissions, only the first admission was
included, (2) patients with a diagnosis of Sepsis (Sepsis-3) based
on the code and method established by Angus et al. (16) and
the Sequential Organ Failure Assessment (SOFA) score ≥ 2.
Exclusion criteria included the following: (1) age < 18 years; (2)
without an evaluation of Glasgow Coma Scale (GCS); (3) length
of ICU stay > 100 days.

For the final study, the data on the first day of ICU admission
were collected from the MIMIC III database: including age,
gender, weight, comorbidity, mean value of vital signs, baseline
laboratory data (the first measurement on the first day), SOFA
score, simplified acute physiology score II (SAPSII), use of
vasopressors, renal replacement therapy (RRT), mechanical
ventilation, infection sites, microorganisms, length of ICU stay,
length of hospital stay.
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Sepsis-associated acute brain injury

According to the previous literature reports, sepsis-
associated acute brain injury were defined as sepsis
accompanying GCS score ≤ 14 at ICU admission or subacute
delirium (icd9_code = 2,931) or delirium due to conditions
classified elsewhere (icd9_code = 2,930) (9, 17, 18). The delirium
caused by dementia, alcohol or drug abuse, mental illness, and
other primary neurological disorders are excluded. For sedated
and postoperative patients, GCS score were extracted before any
administration of sedative drug or surgery. Those patients had
to be excluded as well: (1) Primary brain injury (subarachnoid
hemorrhage, intracerebral hemorrhage, traumatic brain
injury, cerebral infarction, epilepsy, or intracranial infection);
(2) dementia; (3) depression; (4) psychoses;(5) alcohol or
drug abuse; (6) hypertensive encephalopathy, metabolic
encephalopathy, hepatic encephalopathy, and other disease
affecting consciousness; (7) severe acid-base disturbance
or electrolyte imbalance, including PaCO2 > 80 mmHg,
hyponatremia (<120 mmol/l), hyperglycemia (>180 mg/dl), or
hypoglycemia (<54 mg/dl).

Model development

The dataset was split into two groups to develop the
models a training set with 70% of the individuals and a
test set of the size of 30%. Predictive models-based machine
learning were built with (1) logistic regression (2) support
vector machine (SVM); (3) decision tree classifier; (4) random
forest; (5) gradients boosting machine (GBM); (6) multiple layer
perception (MLP); (7) extreme gradient boosting (XGBoost); (8)
light gradients boosting (LGBM). SVM and logistic regression
are classic machine learning algorithms, which play a key
role in formulating the base line for the establishment of
the model. SVM is a binary classification technique that uses
the training dataset to predict an optimal hyperplane in an
n-dimensional space (19). Logistic regression can describe
a relationship between the categorical variable with one or
more nominal, ordinal, interval variables, which has a wide
range of applications in traditional medical statistics. MLP is
a simple neural network with some layers network of hidden
neurons, whose parameters we chosen is “solver = “lbfgs,”
max_iter = 100.” Among them, decision tree, random forest,
GBM, XGBoost and LGBM are the class tree models using
ensemble learning idea. Ensemble learning is a general meta-
approach to machine learning that seeks better predictive
performance by combining the predictions from multiple
models. The LGBM and XGBoost are both asymmetric trees
and developed methods recently, but LGBM grows leaf-wise
while Xgboost grows level-wise (20, 21). Firstly, in the model-
comparison phase, we tested and compared the performances of
the seven predictive models by the area under curves (AUCs) of

the receiver operating characteristic curves (ROC). The cross-
validation procedure was repeated five times (fivefold cross-
validation). Then, we selected the model that achieved the
highest AUC value for further optimizing the parameters using
the grid tuning method. The classification results of the final
model are then shown as a confusion matrix. With the test set
combined with the best model, we formed calibration curves,
and the accuracy of the calibration validated. Finally, all features
used by the model were ranked by measured Gini impurity.
The machine learning-based classifiers are implemented using
python version 3.6 library “Sklearn,” “xgboost,” “lightgbm.” The
workflow (Figure 1) code about development models is available
and open source (MIT license) on Github.1

Statistical analysis

Continuous variables are presented as median with
interquartile range (IQR) due to their non-normal distribution.
Categorical variables are presented as frequency and
percentage. Differences of continuous variables between
independent groups have been analyzed using Mann-Whitney
U-test. The Chi-square test was used to compare categorical
variables between groups.

Missing values for all screening variables were less than
5%. Single imputation (Simple Linear Regression) was used
for these variables with missing values, which included
mean temperature, mean SpO2, platelet, hemoglobin, glucose,
potassium, sodium, and creatinine (Supplementary Table 1).
Statistical analysis was carried out using software Stata 15.12 and
R 4.0.03 for the Windows operative system. P-values < 0.05 were
considered statistically significant.

Results

Participants and baseline
characteristics

Of 46,520 critically ill patients with the first ICU admission
obtained from the MIMIC-III database, 12,884 with sepsis were
included. Of these, 424 were excluded according to the exclusion
criteria. Finally, a total of 12,460 individuals were included
into the analysis, and sepsis-associated acute brain injury was
observed in 6,284 (50.4%) patients (Figure 2).

Characteristics at baseline of all participants were described
in Table 1. The median age was 72 years (IQR, 59–82 years),
and 3,218 of 6,284 patients (51.2%) were male in sepsis-
associated acute brain injury. Acute kidney injury (AKI) was

1 https://github.com/BboyT/SAE/tree/main

2 https://www.stata.com/

3 https://www.r-project.org/

Frontiers in Medicine 03 frontiersin.org

https://doi.org/10.3389/fmed.2022.962027
https://github.com/BboyT/SAE/tree/main
https://www.stata.com/
https://www.r-project.org/
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-09-962027 October 1, 2022 Time: 13:7 # 4

Ge et al. 10.3389/fmed.2022.962027

FIGURE 1

A flow chart of the study. AUC, area under the curve, SVC, support vector classification; MLP, multi-layer perceptron; XGB, extreme gradient
boosting; LGBM, light gradient boosting machine.

FIGURE 2

Flowchart of patient screening and selection. ICU, intensive care unit; MIMIC-III, Medical Information Mart for Intensive Care III; SOFA,
sequential organ failure assessment; GCS, Glasgow Coma Scale; SAABI, sepsis-associated acute brain injury.

the most common (4,554 of 6,284, 72.5%) comorbidities,

followed by cardiovascular diseases (4,048 of 6,284, 64.4%)

and hypertension (3,256 of 6,284, 51.8%) in SAE. Patients

with sepsis-associated acute brain injury at admission were

more critically ill indicated by higher SOFA score [6 (IQR

4–8) vs. 4 (IQR 3–6), p < 0.001] and SAPS II score [43

(IQR 34–53) vs. 37 (IQR 29–45), p < 0.001], had a higher

proportion of medical treatments, such as vasopressor use (50.4

vs. 36.1%, P < 0.001) and ventilation use (66.2 vs. 44.9%,

P < 0.001), and had longer ICU stay time, than those who
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did not. Compared with non- sepsis-associated acute brain
injury patients, patients with sepsis-associated acute brain injury
were more likely to suffer from fungal infection (10.5 vs. 7.5%,
P < 0.001).

Model development and validation

A total of 52 clinical variables collected during the first
24 h after ICU admission. We have constructed a conventional
logistic regression and seven machine learning binary classifiers
in predicting the risk of the sepsis-associated acute brain
injury: SVM, Decision Tree, Random Forest, GBM, MLP,
Xgboost, LGBM, most of which are tree-like models that
can filter the features by themselves using the conception of
ensemble learning. Figure (AUC) depicts the performance of
these predictive models and shows that the LGBM (AUC: 0.78)
model can provide relatively better model fitting performance
compared to other ML models (AUC in train set: Logistic
Regression: 0.74, SVM: 0.72, Decision Tree: 0.71, RF: 0.75, GBM:
0.77, MLP: 0.76, Xgboost: 0.77). After adjusting and optimizing
the parameters of the LGBM algorithm through grid search,
the calibration curve for the LGBM model showed that the
predicted risk is in good agreement with the actual risk. The
predicted value of the model is close to the actual probability
of the outcome. Therefore, LGBM was selected for further
prediction in this study.

Model performance

The area under receiver operating characteristic curve (AU-
ROC) was used to evaluate the model performance. The LGBM
had a significantly greater area under the ROC curve (AUC)
than other models (Figure 3). Figure 4 describes the AU-
ROC and calibration for the LGBM model. The AUC for both
trainset and testset indicated excellent validity (Figure 4A:
Trainset AUC 0.91, Testset AUC 0.87). The calibration plot
shows good agreement between the observed and predicted
values (Figure 4B).

Model explanation

Feature importance was calculated using Gini impurity
method for LGBM, which had the best performing ability in the
validation cohort. Figure 5A shows the top 15 clinical features
based on the mean Gini impurity value. Notably, besides GCS
score, the features specific to sepsis-associated acute brain
injury included glucose, age, and mean arterial pressure (MAP).
Additionally, heart rate, hemoglobin, and length of ICU stay also
supported a prediction of sepsis-associated acute brain injury.
Figure 5B shows the confusion matrix.

Discussion

In this retrospective analysis of a large critical care database,
we found that 50.4% of sepsis-associated acute brain injury
were identified at admission to the ICU. The 28-day mortality
of sepsis-associated acute brain injury was 24.1%. Seven ML
models and a conventional logistic regression model have
been created and validated, according to 52 baseline variables
included in the first 24 h after ICU admission, to predict the
occurrence of SAE admitted to ICU. The LGBM model showed
the best performance (Figure 4A: Trainset AUC 0.91, Testset
AUC 0.87). Feature importance analysis of the LGBM model
suggested that besides the GCS score, glucose, age, MAP, heart
rate, hemoglobin, and length of ICU stay were the top 6 features,
with the strongest impact on the prediction of sepsis-associated
acute brain injury.

In recent years, machine learning-based methods are widely
used in predicting sepsis-associated diseases. For instance,
Layeghian Javan et al. (13) reported that machine learning
techniques, especially ensemble algorithms have high potentials
to be used in prognostic systems for sepsis-associated cardiac
arrest. Zhao et al. (22) developed Categorical Boosting
(CatBoost) model which was able to dynamically predict the
risk of sepsis-induced coagulopathy (SIC) in septic patients
better than conventional Logistic Regression and SIC scores.
Reports on the prediction of SAE are relatively rare in the
literature. Yang et al. (9) developed a nomogram method to
predict 30-day mortality of patients with SAE, and found that
the nomogram showed better discrimination with AU-ROC of
0.763 and 0.753 in the training and validation sets, respectively.
Zhao et al. (14) concluded that predictors of SAE included age,
quick sequential organ failure assessment (qSOFA), and the use
of drugs including antibiotics, steroids, sedative medication,
H2-antagonist, and heparin sodium injection by individualized
prediction nomograms. The AUC was 0.743. However, it should
be noted that the AUC was not sufficiently high, and the AUC
value did not exceed 0.75. In this study, we demonstrated
that ML methods were more accurate in predicting sepsis-
associated acute brain injury than nomograms among patients
with sepsis (Figure 4A: Trainset AUC 0.91, Testset AUC 0.87).
Meanwhile, we compared various conventional ML and deep
learning models. The result showed that the LGBM model could
effectively enhance the prediction of sepsis-associated acute
brain injury.

In our study, the importance of variables showed that
glucose, age, MAP, heart rate, hemoglobin, and length of ICU
stay were the most important risk factors that contribute to the
predicted occurrence of sepsis-associated acute brain injury. In
patients with severe sepsis, approximately 40% of them have
baseline hyperglycemia and glycemic control improves patient
outcomes (23). Recently it has been found that glycemic control
with insulin attenuates SAE by inhibiting glial activation in
septic rats (24). However, hypoglycemia is also independently

Frontiers in Medicine 05 frontiersin.org

https://doi.org/10.3389/fmed.2022.962027
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-09-962027 October 1, 2022 Time: 13:7 # 6

Ge et al. 10.3389/fmed.2022.962027

TABLE 1 Baseline characteristics of patients at ICU admission.

Variables All patients Non-SAABI SAABI P-value

n = 12,460 n = 6,176 n = 6,284

Demographics

Male, n (%) 6,559 (52.6) 3,341 (54.1) 3,218 (51.2) 0.001

Age (y), median [Q1, Q3] 69 [56, 80] 66 [53, 78] 72 [59, 82] < 0.001

Weight (kg), median [Q1, Q3] 77 [65, 91] 77 [66, 93] 76 [63, 90] < 0.001

Comorbidity, n (%)

Cardiovascular diseases 7,544 (60.5) 3,496 (56.6) 4,048 (64.4) < 0.001

Peripheral vascular diseases 1,055 (8.5) 511 (8.3) 544 (8.7) 0.462

Hypertension 6,524 (52.4) 3,268 (52.9) 3,256 (51.8) 0.226

Chronic pulmonary diseases 2,975 (23.9) 1,494 (24.2) 1,481 (23.6) 0.427

Diabetes 869 (7.0) 448 (7.3) 421 (6.7) 0.238

AKI 8,344 (67.0) 3,790 (61.4) 4,554 (72.5) < 0.001

Liver disease 1,743 (14.0) 1,114 (18.0) 629 (10.0) < 0.001

ARDS 100 (0.8) 71 (1.1) 29 (0.5) < 0.001

Coagulopathy 2,215 (17.8) 1,190 (19.3) 1,025 (16.3) < 0.001

Obesity 687 (5.5) 345 (5.6) 342 (5.4) 0.755

Anemia 712 (5.7) 382 (6.2) 330 (5.3) 0.027

History of TBI 11 (0.1) 5 (0.1) 6 (0.1) 1

History of stroke 261 (2.1) 133 (2.2) 128 (2.0) 0.695

Other neurological diseases 1,667 (13.4) 842 (13.6) 825 (13.1) 0.423

Severe score, median [Q1, Q3]

SOFA 5 [3, 7] 4 [3, 6] 6 [4, 8] < 0.001

SAPSII 40 [31, 49] 37 [29, 45] 43 [34, 53] < 0.001

Vital signs, median [Q1, Q3]

Mean heartrate (min−1) 87 [76, 99] 86 [75, 99] 87 [76, 99] 0.011

Mean arterial pressure (mmHg) 75 [68, 82] 75 [69, 83] 74 [68, 81] < 0.001

Mean respiratory rate (min−1) 19 [16, 22] 19 [17, 22] 19 [16, 22] < 0.001

Mean temperature (◦C) 36 [36, 37] 36 [36, 37] 36 [36, 37] 0.047

Mean SpO2 (%) 97 [95, 98] 97 [95, 98] 97 [96, 98] < 0.001

Laboratory tests, median [Q1, Q3]

WBC (K/µl) 11.3 [7.9, 15.8] 10.9 [7.6, 15.4] 11.7 [8.2, 16.2] < 0.001

Platelet (K/µl) 197 [135, 273] 195 [129, 268] 198 [140, 278] < 0.001

Hemoglobin (g/dl) 10.6 [9.3, 12.2] 10.7 [9.4, 12.4] 10.5 [9.3, 12] < 0.001

Glucose (mg/dl) 126 [104, 160] 123 [102, 156] 128 [106, 163] < 0.001

Sodium (mmol/l) 139 [136, 142] 138 [135, 141] 139 [136, 142] < 0.001

Creatinine (K/µl) 1.2 [0.8, 1.8] 1.1 [0.7, 1.7] 1.2 [0.7, 1.9] 0.448

Bilirubin (EU/dl) 0.7 [0.4, 1.6] 0.7 [0.3, 1.5] 0.8 [0.4, 1.7] 0.001

Lactate (mmol/l) 1.9 [1.3, 2.5] 1.9 [1.4, 2.5] 1.9 [1.3, 2.6] 0.106

PO2 (mmHg) 154 [91, 205] 154 [93, 198] 154 [90, 218] 0.01

PCO2 (mmHg) 41 [36, 47] 41 [36, 46] 41 [36, 48] < 0.001

PH 7.36 [7.33, 7.40] 7.36 [7.34, 7.40] 7.36 [7.31, 7.41] <0.001

Metabolic acidosis, n (%) 461 (3.7) 183 (3) 278 (4.4) < 0.001

Medical treatments, n (%)

RRT 622 (5.0) 297 (4.8) 325 (5.2) 0.374

Vasopressor 5,392 (43.3) 2,228 (36.1) 3,164 (50.4) < 0.001

Ventilation 6,936 (55.7) 2,773 (44.9) 4,163 (66.2) < 0.001

Infection site, n (%)

Intestinal infection 909 (7.3) 468 (7.6) 441 (7.0) 0.243

(Continued)
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TABLE 1 (Continued)

Variables All patients Non-SAABI SAABI P-value

n = 12,460 n = 6,176 n = 6,284

Urinary infection 4,426 (35.5) 2,166 (35.1) 2,260 (36.0) 0.306

Lung infection 4,481 (36.0) 2,163 (35.0) 2,318 (36.9) 0.032

Catheter related 1,042 (8.4) 507 (8.2) 535 (8.5) 0.561

Skin soft tissue 1,504 (12.1) 731 (11.8) 773 (12.3) 0.442

Abdominal cavity 1,462 (11.7) 683 (11.1) 779 (12.4) 0.022

Microorganisms, n (%)

Gram-positive 2,986 (24.0) 1,404 (22.7) 1,582 (25.2) 0.002

Gram-negative 2,080 (16.7) 987 (16.0) 1,093 (17.4) 0.037

Fungus 1,124 (9.0) 464 (7.5) 660 (10.5) < 0.001

Virus 47 (0.4) 15 (0.2) 32 (0.5) 0.023

Other microorganisms 191 (1.5) 98 (1.6) 93 (1.5) 0.68

Length of stay, median [Q1, Q3]

LOS in ICU (days) 3.2 [1.8, 7.7] 2.9 [1.6, 6.4] 3.80 [1.9, 8.7] < 0.001

LOS in hospital (days) 10.6 [6.0, 18.8] 10.0 [5.9, 17.7] 11.20 [6.3, 19.7] < 0.001

Mortality, n (%)

28-day mortality 2,623 (21.1) 1,106 (17.9) 1,517 (24.1) < 0.001

ICU mortality 1,710 (13.7) 659 (10.7) 1,051 (16.7) < 0.001

Hospital mortality 2,293 (18.4) 944 (15.3) 1,349 (21.5) < 0.001

Non-parametric continuous data are presented as median (interquartile ranges), whereas categorical data are presented as frequency (percentage). SAABI, sepsis-associated acute brain
injury; AKI, acute kidney injury; CKD, chronic kidney disease; ARDS, acute respiratory distress syndrome; TBI, traumatic brain injury; WBC, white blood cell; IQR, interquartile range;
SOFA, sequential organ failure assessment; SAPSII, simplified acute physiology score; RRT, renal replacement therapy; LOS, length of stay.

FIGURE 3

(A) ROCs of eight machine learning models to predict sepsis-associated acute brain injury in train set. (B) ROCs of eight machine learning
models to predict sepsis-associated acute brain injury in the test set. ROC, Receiver operator characteristic curves; AUC, area under the curve;
SVC, support vector classification; MLP, multi-layer perceptron; XGB, extreme gradient boosting; LGBM, light gradient boosting machine.
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FIGURE 4

(A) ROCs of the LGBM after adjusting and optimizing the parameters; (B) Calibration curves of the LGBM after adjusting and optimizing the
parameters. ROC, Receiver operator characteristic curves; GBM, gradient boosting machine.

FIGURE 5

(A) Feature importance from the LGBM model; (B) Confusion matrix from the LGBM model. meanbp_mean, mean arterial pressure is presented
as mean daily values; heartrate_mean, mean heart rate; los_icu, length of stay in ICU; plt, platelet; wbc, white blood cell; los_hosiptal, length of
saty in hospital; resprate_mean, mean respiratory rate.

associated with SAE (18). Thus, to prevent the occurrence
of SAE, glycemic control should be more aggressive in the
initial stage of sepsis. Our study also found that the age was
closely related to sepsis-associated acute brain injury. This result
is in accordance with previous reports (9, 14). Age-related
reconstruction of the brain tissue with senescence of astroglia
results in SAE progression and neurological deficits (25). MAP
was another important risk factor in predicting SAE. Magnetic
resonance imaging (MRI) of patients with SAE showed cerebral
ischemic lesions, indicating that a reduction in cerebral blood
flow may cause SAE (26). According to the latest Surviving
Sepsis Campaign guidelines, to maintain organ perfusion, fluid
resuscitation and vasopressors should be introduced as early
as possible to meet MAP target of greater than 65 mm Hg
(27). Tissue perfusion is essential for septic patients, and the
maintenance of cerebral perfusion may be critical to improving
outcomes in SAE (28).

The heart rate was also another important effector in
predicting occurrence for sepsis-associated acute brain injury,

which is consistent with our previous study (2). Heart rate
variability to predict sepsis have also been explored. Continuous
heart rate variability monitoring contributes to rapid diagnosis
and early intervention for severe sepsis, altering the occurrence
of sepsis associated disease (29). Additionally, we found that
the level of hemoglobin was associated with sepsis-associated
acute brain injury. Our results suggested that low hemoglobin
was found to be more likely observed in patients with sepsis-
associated acute brain injury. A recent work by Wu et al. (30)
suggests that lncRNA Neat1 regulates neuronal dysfunction via
stabilization of hemoglobin subunit beta in SAE. Following from
this, hemoglobin is an important risk factor for SAE. Finally, we
also observed a significant association between length of ICU
stay and sepsis-associated acute brain injury. As is well known,
delirium is associated with prolonged ICU stay and hospital
stay (31). Therefore, shorter ICU stay may help prevent the
occurrence of sepsis-associated acute brain injury.

Alternatively, in the present study, we found that the most
common complication following sepsis-associated acute brain
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injury was AKI with an incidence of 72.5%. Firstly, sepsis was
assumed to be the leading cause of AKI in critically ill patients
(32), given that up to 67% of the patients with AKI were septic
in this study. Secondly, the kidney and brain closely interact
in many regulation loops such as sodium and water balance or
blood pressure regulation (33). After the development of sepsis-
associated acute brain injury, there are two pathophysiological
processes that may lead to AKI, one is the neuroendocrine
pathway such as atrial natriuretic peptide secretion, the other
is the inflammatory and immune pathway such as IL-6 (34).

Our study has some limitations. First, a causal relationship
between the predictors and SAE cannot be established from this
observational study. Second, there is not a specific diagnostic
method for SAE. SAE remains a rule-out definition, which
may result in a high sensitivity, but relatively low specificity.
However, several factors causing impaired conscious level,
including hypoglycemia, history of psychoactive drugs or
alcohol, and other primary neurological disorders are excluded.
Third, the assessment tool for ICU delirium is not clear
in the MIMIC-III database, which is difficult in formally
establishing the presence of SAE. Therefore, we described a
patients-cohort with and without sepsis-associated acute brain
injury. Furthermore, for GCS score were extracted before any
administration of sedative drug, the use of sedative drug at ICU
admission was not included in this study. Many unmeasured
confounders may contribute to the impact on the prediction of
sepsis-associated acute brain injury. Finally, external validation
from other regions or other countries is missing, thus our results
require further validation.

Conclusion

In conclusion, we found that almost half of patients
admitted to the ICU with sepsis had sepsis-associated acute
brain injury. The LGBM model better identify patients with
sepsis-associated acute brain injury than did other machine-
learning prediction models. In addition to GCS score, glucose,
age, and MAP were the three most important clinical factors
to predict occurrence of sepsis-associated acute brain injury.
Potentially modifiable factors associated with sepsis-associated
acute brain injury at ICU admission included heart rate,
hemoglobin, and length of ICU stay. These factors are likely to
play a pivotal role in SAE pathophysiology, but the true causal
relationship remains to be further validated.
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