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ABSTRACT

Damaged DNA-binding protein (DDB), consisting of
DDB1 and DDB2 subunits recognizes a wide spec-
trum of DNA lesions. DDB is dispensable for in vitro
nucleotide excision repair (NER) reaction, but stimu-
lates this reaction especially for cyclobutane pyrimi-
dine dimer (CPD). Here we show that DDB directly
interacts with XPA, one of core NER factors, mainly
through DDB2 subunit and the amino-acid residues
between 185 and 226 in XPA are important for the
interaction. Interestingly, the point mutation causing
the substitution from Arg-207 to Gly, which was pre-
viously identified in a XP-A revertant cell-line XP129,
diminished the interaction with DDB in vitro and
in vivo. In a defined system containing R207G
mutant XPA and other core NER factors,
DDB failed to stimulate the excision of CPD,
although the mutant XPA was competent for the
basal NER reaction. Moreover, in vivo experiments
revealed that the mutant XPA is recruited to
damaged DNA sites with much less efficiency com-
pared with wild-type XPA and fails to support
the enhancement of CPD repair by ectopic expres-
sion of DDB2 in SV40-transformed human cells.
These results suggest that the physical interaction
between DDB and XPA plays an important role
in the DDB-mediated NER reaction.

INTRODUCTION

Nucleotide excision repair (NER) is the major mechanism
for removing helix-distorting DNA lesions induced by
sunlight and chemical mutagens (1–4). Defects in the
NER pathway give rise to xeroderma pigmentosum (XP),

an autosomal recessive disease characterized by photosen-
sitivity, pigment changes and a predisposition to skin
cancer and in some cases neurological abnormalities
(1,5). In human cells, the early process of NER from
damage recognition to dual incision is accomplished by
six core NER factors, XP complementation group A
(XPA), RPA, XPC-RAD23B, TFIIH, XPF-ERCC1 and
XPG in vitro (6,7).

Damaged DNA-binding protein (DDB) is a heterodi-
meric complex comprising DDB1 and DDB2 subunits and
binds to a wide spectrum of DNA lesions including a
UV-induced (6–4) photoproduct (6-4PP) and cyclobutane
pyrimidine dimer (CPD) (8–11). However, DDB is dispen-
sable for in vitro NER reaction in the reconstituted sys-
tems with purified proteins (6,12). The DDB2 gene is
responsible for XP complementation group E (13) and
the cells derived from XP-E patients show a lack of
DDB activity (14–16) and a partial deficiency in NER
(17,18). DNA lesions induced in transcriptionally inactive
DNA regions or the non-transcribed strand of expressed
genes are repaired by a global genome repair (GGR) sub-
pathway of NER, whereas those in the transcribed strand
of expressed genes are repaired by a transcription-coupled
repair (TCR) sub-pathway. DDB2-deficient cells exhibit
normal TCR activity but significantly or slightly reduced
GGR activity for CPD or 6-4PP, respectively (17,18). The
accessory roles of DDB in GGR have been suggested from
different aspects.

We found using an in vitro excision repair assay that
DDB greatly stimulates the excision of CPD by cell-free
extracts (CFEs) (19) or purified NER factors (20),
although the excision of 6-4PP was rather inhibited
under the same conditions and weakly stimulated by a
less amount of DDB. Interestingly, the DDB-mediated
stimulation of CPD excision was further enhanced by
the addition of XPA and/or RPA to CFEs (19). More-
over, in an electrophoretic mobility shift assay, DDB was
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found to strikingly elevate the binding of XPA to DNA
substrates containing a single CPD and to make a ternary
complex with XPA and the DNA substrate. These results
suggest that there is some link between DDB and
XPA on damaged DNA sites, although there was an
argument about the stimulatory role of DDB in NER
reaction (21).

Local UV irradiation experiments have revealed a sig-
nificant role of DDB in recruiting core NER factors to
damaged DNA in vivo. DDB rapidly accumulates at
damaged DNA sites in the absence of core NER factors
(20,22), suggesting that DDB can bind to UV lesions
before other core NER factors. Moreover, the ectopic
overexpression of DDB2 in SV40-transformed human
cell lines, which exhibit a low endogenous DDB2 level
due to p53 inactivation by SV40 large T antigen, enhances
the recruitment of XPC (22,23). A more detailed study
using XP-A cells stably expressing CPD- or 6-4PP-specific
photolyase showed that DDB activates the recruitment of
XPC to CPD rather than 6-4PP (24).

A recent finding that DDB is a component of E3 ubi-
quitin ligase complex together with Cullin4A and Roc1
has given a new insight into the accessory role of DDB
in NER (25). The E3 ligase complex was demonstrated to
polyubiquitinate XPC and DDB2, leading to the altera-
tion of DNA binding properties of XPC-RAD23B and
DDB, respectively (26). The polyubiquitination appears
to be required for cell-free NER reaction when DDB is
bound to 6-4PP. Furthermore, it has been shown that
XPC is modified by SUMO-1 and ubiquitin following
UV irradiation and these modifications require DDB2
and XPA (27).

DDB has been also suggested to function in recognizing
the lesions in the context of chromatin and/or remodeling
chromatin to facilitate repair (28). DDB2 subunit shares
homology with chromatin reorganization proteins (29)
and DDB heterodimer has been shown to interact with
histone acetyltransferases, CBP/p300 and GCN5 (30,31).
Moreover, the E3 ubiquitin ligase complex containing
DDB was reported to ubiquitinate histone H2A, H3 and
H4 (32,33). DDB seems to be involved in several reactions
at different levels during NER, but those still remain to be
fully understood.

In this study, we have focused on the stimulatory role of
DDB in an early step of NER and on a molecular link
between DDB and core NER factors. We have found that
DDB2 physically interacts with XPA in vitro as well as
in vivo, and identified a DDB2-interactive domain in
XPA. Functional analyses of a binding-defective XPA
mutant indicate that the interaction between DDB2 and
XPA is required for the stimulatory role of DDB in NER
reaction especially for CPD.

MATERIALS AND METHODS

Plasmid constructs

The pGEX18/XPA construct for expressing glutathione
S-transferase (GST)-XPA fusion protein and its deletion
derivatives have been described (34). The mammalian
expression plasmids for myc-XPA were constructed by

subcloning the XPA cDNA from pRSET/XPA into the
pCMV-myc vector (Clontech) (pCMV-myc/XPA). To
express the fusion protein of maltose-binding protein
(MBP) and DDB2, pMAL/DDB2 was generated by sub-
cloning the DDB2 cDNA from pTB13 (35) into the
pMAL-c2 vector (New England Biolabs). The DDB2
cDNA was also subcloned into the p3xFLAG-CMV-10
vector (Sigma) to express DDB2 tagged with three conse-
cutive Flag epitopes in mammalian cells (p3xFLAG-
CMV/DDB2). For establishing a human cell line that
conditionally expresses 3xFlag-DDB2 in the presence of
doxycycline, pTRE2/3xF-DDB2 was generated by sub-
cloning 3xFlag sequences generated by PCR and the
DDB2 cDNA into the pTRE2 vector (Clontech).

Preparation of repair factors

Various GST-XPA fusion proteins or MBP-DDB2 were
expressed in Escherichia coli DR153 or BL21(DE3)plys,
respectively, under the optimal conditions and the cells
were resuspended in buffer-A [1M Tris–HCl (pH 7.4),
5M NaCl, 10% sucrose] and quickly frozen. After thaw-
ing on ice, the cell suspension was sonicated and centri-
fuged at 35 000 rpm at 48C for 30min, and aliquots of the
supernatant were stored at –808C until their use. Wild-
type or R207G mutant (His)6-XPA was expressed and
purified as described previously (19). Other core NER
factors for the reconstituted NER reaction were prepared
as described (20). Flag-DDB1 was co-overexpressed with
Flag-DDB2 in a baculovirus/insect cell system and DDB
heterodimer was purified by sequential column steps of
SP-sepharose, heparin-sepharose (GE Healthcare) and
anti-FLAG M2 affinity gels (Sigma) as described pre-
viously (20). It should be noted that the heparin-sepharose
purification step is critical for higher DDB activity of CPD
binding and NER stimulation. Flag-DDB1 or Flag-DDB2
alone was also expressed in insect cells and partially pur-
ified by SP-sepharose and anti-FLAG M2 affinity gels
(19). Biotin-labeled ERCC1 was prepared with a TNT
quick coupled transcription/translation system using
Transcend tRNA according to the manufacture’s instruc-
tion (Promega).

Pull-down assay

The protein–protein interactions between DDB subunits
and XPA or its deletion mutants were analyzed using a
pull-down assay. Appropriate amounts of lysates from
E. coli overexpressing each factor fused with GST or
MBP were incubated with 50 ml of glutathione–sepharose
4B beads (GE Healthcare) or amylose beads (New
England Biolabs), respectively, in 500 ml of buffer-B
[50mM Tris–HCl (pH 7.4), 1mM EDTA, 0.1M KCl,
20% glycerol, 1mM dithiothreitol (DTT)] at 48C over-
night with gentle rocking. The beads were washed with
the same buffer thrice and equilibrated in IP buffer
[20mM Tris–HCl (pH 7.4), 0.1M KCl, 4mM MgCl2,
0.5mM EDTA. 0.1% NP-40, 1mM DTT]. The GST- or
MBP-fusion proteins bound to each beads were incubated
with other factors at 48C for 1 h with gentle rocking. After
extensive washing with IP buffer, the bound proteins were
eluted in SDS-sample buffer (Bio-Rad) by boiling for
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5min and analyzed by SDS–PAGE followed by western
blotting using specific antibodies.

In vitro excision repair assay

The substrate for an in vitro excision repair assay was a
136-bp duplex-DNA containing a 6-4PP or CPD in the
center and 32P-label at fourth phosphodiester bond 50 to
the lesion (19,36). CFEs were prepared from HeLa S3 and
XP12ROSV cell lines according to the method of Manley
et al. (37). Three femtomoles of substrates were incubated
at 308C for 45min with 50 mg of CFEs in 25 ml of reaction
buffer [32mM Hepes–KOH (pH 7.9), 64mM KCl,
6.44mM MgCl2, 0.16mM of DTT, 2mM ATP, 4% gly-
cerol]. In a reconstituted system, 6 fmol of substrates
were incubated with six core NER factors (60 ng of
XPA, 150 ng of RPA, 20 ng of XPC-RAD23B, 150 ng of
TFIIH, 10 ng of XPG and 20 ng of XPF-ERCC1) in the
presence or absence of 50 ng of DDB in 25 ml of reaction
buffer. DNAs were extracted with phenol:chloroform and
separated on 8% denaturing polyacrylamide gels. The
excision products were visualized by autoradiography
and quantitated with a Fuji Bas 2000 Bio-Imaging
Analyzer.

Cell lines and culture

Tet-on U2OS/3xF-DDB2 cells were established by
cotransfecting pTRE2/3xF-DDB2 and pTK-Hyg
(Clontech) into Tet-on U2OS cells (Clontech) according
to the manufacturer’s instructions. The XP2YOSV (XP-F)
cell line was provided by Dr Takashi Yagi (Osaka
Prefecture University) and its derivative cell line stably
expressing FLAG-tagged DDB2 (XP2YOSV/F-DDB2)
was generated as described previously (20). The XP-A
revertant cell line XP129 was transfected with p3xFlag-
CMV/DDB2 using the Effectene transfection reagent
(Qiagen) to generate a stable cell line expressing 3xF-
DDB2 (XP129/3xF-DDB2). Those cells were cultured in
Dulbecco’s modified Eagle’s medium supplemented with
10% fetal bovine serum and gentamicin in a 5% CO2

incubator at 378C.

Transient overexpression and immunoprecipitation

For transient expression, typically, 2 mg of pCMV-myc/
XPA or pCMV-myc/XPA(R207G) were transfected into
Tet-on U2OS/3xF-DDB2 cells in a 90 mm plastic dish by
Effectene transfection reagent. After incubation for 40 h in
the presence or absence of doxycycline, cells were lyzed in
650ml of NP40 buffer [10mM Tris–HCl (pH 8.0), 150mM
NaCl, 1mM EDTA, 1% NP40, 1mM DTT]. The lysates
were incubated for 1.5 h with anti-FLAG M2 agarose
(Sigma) or anti-myc antibody (Clontech) followed by pro-
tein A/G plus agarose (Oncogene Science). The beads were
collected by centrifugation and washed with NP40 buffer
thrice. Proteins retained on the beads were boiled at 1008C
for 5min and analyzed by western blotting using antibo-
dies against the corresponding epitope tag.

Micropore UV irradiation and immunostaining

XP2YOSV or XP2YOSV/F-DDB2 cells were transfected
with 50 ng of pCMV-myc/XPA (wild-type or R207G
mutant) using the Fugene HD transfecting reagent
(Roche). In some experiments, 50 ng of p3xFlag-CMV/
DDB2 were co-transfected into XP2YOSV cells. Two
days after the transfection, cells were briefly rinsed twice
with Dulbecco’s phosphate-buffered saline (�) and irra-
diated with 20 J/m2 of UV-C light (254 nm) through an
isopore polycarbonate membrane filter (Millipore Corp.,
pore size 5 mm in diameter). Following 30min incubation,
cells were fixed with 4% formaldehyde (Wako) at room
temperature for 15min and permeabilized with 0.2%
Triton X-100 in 10mM phosphate-buffered saline on ice
for 5min. After blocking the non-specific antibody-bind-
ing sites with 20% fetal bovine serum in 10mM phos-
phate-buffered saline, cells were sequentially stained with
anti-myc polyclonal antibody (Santa Cruz Biotechnology)
and Alexa Fluor 488 goat anti-rabbit IgG (H+L) conju-
gate (Invitrogen) to visualize the localization of myc-XPA.
For the co-detection of UV-induced CPD, the stained cells
were refixed with 2% formaldehyde and treated with 2M
HCl for 10min at 378C to denature the DNAs. The cells
were incubated with anti-CPD monoclonal antibody
(TDM-2) (38) and subsequently with Alexa Fluor 594
goat anti-mouse IgG conjugate (Invitrogen). To obtain
fluorescence images, a Leica DMIRBE microscope
equipped with a cooled CCD camera (CoolSNAP HQ,
Photometrics) was used.

In vivo repair assay

Human cells cultured in 90mm plastic dishes were irra-
diated with 10 J/m2 of UV-C from germicidal lamps
(Toshiba, GL-10) and incubated for various periods.
Genomic DNAs were purified with the DNeasy kit
(Qiagen), and the amounts of CPD were measured by
an enzyme-linked immunosorbent assay with TDM-2
antibody (38).

RESULTS

Physical interaction between DDB and XPA

As we previously found that DDB markedly elevates the
binding of XPA to damaged DNA and makes a ternary
complex with XPA and damaged DNA (19), we tested
whether DDB physically interacts with XPA using a
pull-down assay with recombinant GST-XPA and DDB
heterodimer. As shown in Figure 1A, DDB specifically
bound to GST-XPA but not GST. To determine which
subunit of DDB is responsible for XPA binding, a similar
experiment was conducted with individual subunits and
revealed that DDB2 binds to XPA, although DDB1 also
binds to XPA with less efficiency (Figure 1B). In a reci-
procal pull-down experiment, MBP-DDB2 specifically
pulled down His-tagged XPA (Figure 1C), leading us to
conclude that DDB physically interacts with XPA, mainly
through DDB2 subunit.
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Identification of a DDB2-interactive domain in XPA

In order to determine a DDB2-interactive domain in
XPA, a series of N-terminal deletion mutants of XPA
fused with GST (Figure 2A) were prepared and used
for pull-down experiments with the lysates from SF21
insect cells overexpressing Flag-tagged DDB2. A typical
result from repeated experiments is shown in Figure 2B.
N-terminal deletion up to 184 amino-acids from XPA did
not significantly affect its binding ability to DDB2, but
additional 41 amino-acid deletion greatly diminished the
interaction. The similar binding properties were obtained
with purified DDB heterodimer (data not shown, see sum-
mary in Figure 2A), consistent with the notion that XPA
binds to DDB heterodimer by interacting with DDB2.
These results indicate that the amino-acid domain between
185 and 225 is required for DDB2 interaction.

R207Gmutation in XPA affects its interaction with DDB

We searched various XP-A patients for naturally occur-
ring missense mutations within the DDB2-interactive

domain, but we could not find such mutations. However,
we noticed that the XP129 UV-resistant revertant cell line
obtained by mutagenizing XP12ROSV cells with methyl
methane sulfonate contains a missense mutation in this
domain, which causes Arg-207 to Gly substitution
(39,40). The repair kinetics data of this cell line (39) is
reminiscent of that of XP-E and Chinese hamster V79
cells lacking DDB2, characterized by a specific deficiency
in GGR of CPD (17,41). We prepared R207G-type
mutant XPA protein fused with GST and tested for the
binding to DDB heterodimer (Figure 3A). As we expected,
the binding ability of GST-XPA(R207G) to DDB was
significantly impaired, whereas the mutant XPA showed
normal binding to ERCC1 that interacts with XPA
through a different domain (residues 75–114) (42).
To examine whether the effect of this mutation is

observed in vivo as well, we ectopically expressed myc-
tagged XPA (wild-type or R207G mutant) in Tet-on
U2OS/3xF-DDB2 cells in the presence of doxycycline
and conducted the immunoprecipitation with anti-myc
or anti-Flag antibody. DDB2 was specifically coprecipi-
tated with wild-type XPA, indicating their physical
association in vivo, whereas R207G mutant XPA copreci-
pitated DDB2 only marginally as seen in control lane
(Figure 3B). A reciprocal experiment exhibited the consis-
tent result that mutant XPA was less efficiently (10.0%)
coprecipitated with DDB2 compared to wild-type XPA
(Figure 3C). These results indicate that R207G mutation
affects the ability of XPA to interact with DDB in vitro as
well as in vivo.

R207Gmutant XPA fails to support the stimulation of CPD
excision by DDB in vitro

Having given that R207G mutant XPA shows a defect in
interacting with DDB but not ERCC1, we wished to know

Figure 1. DDB directly binds to XPA through DDB2 subunit. Purified
DDB heterodimer (A) or each DDB subunit (B) was incubated with
GST alone (lane 2) or GST-XPA (lane 3) coupled to glutathione–
sepharose 4B beads. The bound proteins were separated on a SDS–
polyacrylamide gel and analyzed by western blotting with anti-Flag
antibody for detecting DDB1 and DDB2. (C) Purified (His)6-XPA pro-
tein was incubated with MBP alone (lane 2) or MBP-DDB2 (lane 3)
coupled to amylose beads. The bound proteins were analyzed by wes-
tern blotting with anti-His antibody.

Figure 2. Domain mapping of XPA responsible for the binding to
DDB2. (A) Schematic diagram of various XPA deletion mutants and
summary of pull-down experiments with these mutants. (B) The lysates
from insect cells overproducing DDB2 were incubated with GST alone
(lane 1) or various GST-XPA derivatives (lanes 2–7) coupled to glu-
tathione–sepharose 4B beads. The bound proteins were analyzed by
western blotting with anti-Flag antibody.
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whether the mutant XPA is able to support the excision
reaction in vitro. First, we conducted an in vitro comple-
mentation assay with the substrate containing a 6-4PP, in
which (His)6-XPA or (His)6-XPA(R207G) was mixed with
XP-A CFEs showing no excision activity (Figure 4A,
lane 2). R207G mutant XPA gave a comparable signal
of 6-4PP excision to wild-type XPA (Figure 4A, lanes 3
and 4), indicating no or little effects of this mutation on
complementing the repair defect of XP-A CFEs. We next
examined the excision of CPD in a reconstituted system
containing either wild-type or R207G mutant (His)6-XPA
and other five NER factors. The substrate containing a
CPD was incubated with the purified proteins in the pre-
sence or absence of recombinant DDB. As shown in
Figure 4B, under DDB-free conditions, R207G mutant

XPA was competent for excising CPD in vitro with
other NER components (lane 1 versus lane 3). However,
the addition of DDB to the reaction containing R207G
mutant XPA exhibited no stimulation (lane 4), whereas
DDB did stimulate the excision of CPD �5-fold in the
presence of wild-type XPA (lane 2) as reported previously
(20). These results strongly suggest that the interaction
between DDB and XPA is required for the DDB-mediated
stimulation of CPD excision in vitro.

R207Gmutation in XPA affects its recruitment to locally
UV-damaged subnuclear regions in vivo

We next asked whether R207G mutation also affects the
recruitment of XPA to damaged DNA sites in vivo follow-
ing local UV irradiation. For this experiment, we used a
SV40-transformed XP-F cell line lacking 50 endonuclease
of dual incision, in which the accumulation of XPA at
locally damaged DNA sites can be observed more
clearly and persistently than in NER-proficient cells (43,
our unpublished data). XP2YOSV or its derivative cell
line stably expressing Flag-tagged DDB2 (XP2YOSV/F-
DDB2) was transiently transfected with a plasmid expres-
sing myc-XPA (wild-type or R207G mutant) and exposed
to UV light through a 5 mm isopore membrane filter.
The expression levels of wild-type and R207G mutant
XPA were verified to be comparable by immunoblotting
(Supplementary Figure 1S). As shown in Figure 5A and
Supplementary Figure 2S, the accumulation of myc-XPA
at locally UV-damaged regions (indicated by CPD stain-
ing) was more significant in XP2YOSV/F-DDB2 cells
compared with its parental XP2YOSV cells, indicating
that DDB enhances the recruitment of XPA to damaged
DNA sites. On the other hand, myc-XPA(R207G) exhib-
ited poor accumulation even in the presence of F-DDB2.
To verify the co-localization of XPA and DDB at
damaged DNA sites, myc-XPA and 3xFlag-DDB2
were transiently co-expressed in XP2YOSV cells and
detected by each epitope-tag-specific antibody following
micropore UV irradiation (Figure 5B). The cells harboring
3xFlag-DDB2 signals showed clear co-localization of
myc-XPA, whereas myc-XPA(R207G) mutant exhibited
only marginal accumulation at 3xFlag-DDB2 sites
(Supplementary Figure 2S). These results suggest that
the DDB2–XPA interaction is also required for the
recruitment of XPA to damaged DNA sites in vivo.

R207Gmutant XPA fails to support the enhancement
of CPD repair by ectopic DDB2 expression in SV40-
transformed human cells

To further ascertain our model, we transfected WI38VA13
and XP129 cell lines with p3xFlag-CMV/DDB2 and gen-
erated stable cell lines expressing 3xF-DDB2, WI38VA13/
3xF-DDB2 and XP129/3xF-DDB2, respectively, since
SV40-immortalized human cell lines show reduced
GGR activity of CPD (44). We compared CPD repair in
WI38V13 (wild-type XPA) and XP129 (R207G mutant
XPA) cells with or without stable expression of 3xF-
DDB2 (Figure 6). The repair kinetics of CPD is signifi-
cantly slower in WI38VA13 compared to primary diploid
human fibroblasts (45), and indistinguishable from that

Figure 3. R207G mutation reduces XPA binding to DDB. (A) Purified
DDB heterodimer or in vitro translated ERCC1 was incubated with
GST alone (lane 2), GST-XPA (lane 3) or GST-XPA(R207G) (lane 4)
coupled to glutathione–sepharose 4B beads. The bound proteins
were analyzed by western blotting with either anti-Flag followed by
anti-mouse IgG conjugated with alkaline phosphatase (for DDB1 and
DDB2) or streptavidin conjugated with alkaline phosphatase (for
ERCC1). (B) and (C) myc-tagged XPA protein, wild-type or R207G
mutant, was expressed in Tet-on U2OS/3xF-DDB2 cells in the presence
of doxycycline and cell lysates were prepared after 40-h incubation. One
or 0.3mg of the lysates were incubated for 1.5 h with anti-FLAG M2
agarose (B) or anti-myc antibody followed by protein A/G plus agarose
(C), respectively. Proteins retained on the beads were analyzed by western
blotting using anti-Flag and anti-myc antibodies.
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in XP129, consistent with the observation by Kobayashi
et al. (46). Interestingly, the stable expression of DDB2
conferred the enhanced CPD repair in WI38VA13
but not XP129 cells, suggesting that R207G mutant
XPA does not support the enhancement of CPD repair
by ectopic expression of DDB2 in SV40-transformed
human cells.

DISCUSSION

The protein–protein interaction studies on core NER
factors have greatly contributed to the understanding of
basal NER reaction (47). However, only a few studies on

the interaction between DDB and core NER factors
have been reported (26,48), in contrast to numerous
reports of DDB-interactive proteins involved in other
cellular processes (49). The first core NER factor shown
to interact with DDB is RPA, based on immunoprecipita-
tion using partially purified DDB fraction or nuclear
extracts (48). RPA is a eukaryotic single-stranded DNA-
binding protein essential for chromosomal DNA replica-
tion as well as NER and shows a preferential binding
to damaged DNA compared with native DNA (50,51).
The interaction between DDB and RPA appears to
enhance damaged DNA-binding activity of both proteins
(48). The authors (48) and we (19) also observed a ternary

Figure 4. Effect of R207G mutation on XPA activity in NER reaction in vitro. (A) Three femtomoles of internally-labeled 136-bp substrates
containing a 6-4PP were incubated with 50 mg of XP-A CFEs in the absence (lane 2) or presence of 60 ng of wild-type (lane 3) or R207G
mutant XPA (lane 4) for 45min. As a control, the excision reaction was also conducted with 50 mg of HeLa CFEs (lane 1). DNAs were extracted,
separated on an 8% sequencing gel and detected by autoradiography. The signals were quantified by a Fuji Bas 2000 Bio-imaging analyzer and each
excision efficiency was determined as 0.66% (lane 1), 0.017% (lane 2), 2.2% (lane 3) and 2.9% (lane 4). (B) Six femtomoles of internally-labeled
136-bp substrates containing a CPD were incubated with 60 ng of wild-type (lanes 1 and 2) or R207G mutant XPA (lanes 3 and 4) and other core
NER factors (150 ng of RPA, 20 ng of XPC-RAD23B, 150 ng of TFIIH, 10 ng of XPG and 20 ng of XPF-ERCC1) in the presence (lanes 2
and 4) or absence (lanes 1 and 3) of DDB heterodimer (50 ng) for 4 h. DNAs were analyzed as described in (A) and each excision efficiency was
0.98% (lane 1), 5.6% (lane 2), 1.2% (lane 3) and 0.74% (lane 4). A right panel shows quantitative data from triplicate experiments and percent
excision was expressed as relative excision to control reaction (wild-type XPA, no DDB). Error bars indicate the SD.
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complex of DDB, RPA and damaged DNA in an electro-
phoretic mobility shift assay. In addition, RPA is known
to interact with XPA physically and functionally and
this interaction again enhances both binding activities to
damaged DNA (50,52). Together with our previous obser-
vation of a higher complex containing DDB, RPA,
XPA and damaged DNA (19), DDB might also play a
role in recruiting RPA along with XPA to damaged
DNA sites.
Recently, Sugasawa et al. (26) have reported that DDB

physically interacts with XPC based on immunoprecipita-
tion using cell lysates as well as purified proteins. The
interaction between DDB and XPC is implicated in the
ubiquitination of XPC by the E3 ligase complex with
Cullin4A, Roc1 and DDB, and the XPC polyubiquitina-
tion alters its DNA-binding properties. In the literature,
XPC is also known to interact with XPA (53). Further-
more, other group has recently shown that XPC is

modified by SUMO-1 and ubiquitin in untransformed
cells exposed to UV light and these modifications require
not only DDB2 but also XPA (27). Taken all together, it is
plausible that DDB bound to damaged DNA sites may
function in the recruitment of XPC-RAD23B, XPA and
RPA and further in the modification of XPC at damaged
DNA sites.

A recently developed micropore UV irradiation method
has contributed to our understanding of sequential assem-
bly of NER factors at damaged DNA sites in the nucleus
(43,54). We originally found that DDB rapidly accumu-
lates at locally UV-damaged subnuclear regions in the
absence of XPC or XPA (20). Other groups reported simi-
lar observations and further showed that the recruitment
of XPC to UV-damaged sites, especially CPD, requires
functional DDB2 (as a DDB complex) (22–24). In this
study, we showed that the ectopic expression of DDB2
in SV40-transformed XP-F cells enhances the recruitment
of XPA to UV-damaged sites (Figure 5). Using the same
local UV irradiation, Volker et al. (43) demonstrated that
XPC is required for the recruitment of XPA to damaged-
DNA sites in primary diploid human fibroblasts contain-
ing a normal level of DDB2. DDB may enhance the
recruitment of XPA to DNA lesions in vivo by two possi-
ble mechanisms, directly through its interaction with XPA
and indirectly through efficient XPC loading onto DNA
lesions.

XPA is known to interact with all of other five core
NER factors (34,42,50,52,53,55,56), and their interaction
domains as well as DNA-binding domain in XPA have
been mapped. The DDB2-interactive domain (residues
185–225) determined in this study partially overlaps with
a DNA-binding domain (residues 98–219) reported pre-
viously (57,58) and is located between an RPA1-binding
domain (residues 98–187) (52,59) and a C-terminal
TFIIH-binding domain (residues 226–273) (34). We fur-
ther demonstrated that R207G mutation in the DDB2-
interactive domain results in the reduced binding to
DDB2 or DDB heterodimer. Importantly, this amino-
acid substitution caused the attenuated XPA recruitment
to locally UV-damaged subnuclear regions (Figure 5 and
Supplementary Figure 2S) and impaired enhancement of
CPD repair by DDB in vitro (Figure 4) as well as in vivo
(Figure 6), clearly indicating that the interaction between
DDB and XPA plays an important role in the DDB-
mediated NER reaction for CPD.

The R207G mutation was found in the XP129 revertant
cell line, which had been isolated from a SV40-transfomed
XP12ROSV cell line following the repetitious treatment of
methyl methane sulfonate and reported to have a unique
DNA repair phenotype of removing 6-4PP normally but
not CPD (39,40). On the other hand, Kobayashi et al. (46)
examined the effects of this mutation on NER activity and
UV sensitivity using various XP12ROSV transfectants
stably expressing wild-type or R207G mutant XPA.
Based on the observation that the rate of CPD repair in
the transfectant expressing R207G mutant XPA was
almost normal, the authors concluded that the R207G
mutation might not be responsible for the selective GGR
defect for CPD repair in XP129 cells. The apparent dis-
crepancy between the two studies seems explainable by the

Figure 5. Effect of R207G mutation on XPA accumulation at damaged
DNA sites after local UV irradiation. (A) myc-tagged XPA, wild-type
or R207G mutant, was transiently expressed in XP2YOSV (upper
panel) or XP2YOSV/F-DDB2 cells (middle and lower panels). Cells
were irradiated with 20 J/m2 of UV light through an isopore polycar-
bonate membrane filter. After 30min incubation, cells were fixed and
co-stained with anti-myc antibody (XPA) and TDM-2 antibody (CPD).
(B) myc-tagged XPA, wild-type or R207G mutant, and 3xFlag-tagged
DDB2 were transiently co-expressed in XP2YOSV cells. Following
micropore UV irradiation, cells were fixed and co-stained with anti-
myc antibody (XPA) and anti-Flag antibody (DDB2).
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findings that SV40 transformation reduces GGR activity
for CPD significantly (but not completely) due to dysfunc-
tion of p53 by the large T antigen (44) and this repair
deficiency can be reversed by ectopic expression of
DDB2 (20). Our data shown in Figure 6 strongly support
this possible explanation.

In conclusion, this study has found that DDB2 physi-
cally interacts with XPA and this interaction is required
for the stimulatory effect of DDB on CPD excision
in vitro, the efficient recruitment of XPA to damaged
sites in vivo and the enhancement of CPD repair by ectopic
expression of DDB2 in SV40-transformed human cells.
These findings reveal a new link between DDB and the
core NER factors, and indicate that XPA interacts with
not only five core NER factors but also an accessory
factor DDB. The critical role of XPA as a scaffold
might explain why XP-A patients or XPA-deficient cells
exhibit the most severe phenotypes among seven comple-
mentation groups of NER-defective XP.
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