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Abstract
Tumorigenesis and metastasis of solid tumors are coupled to profound biophysical changes that alter cancer cells’ mecha-
nobiology, critically impacting metastatic progression. In particular, cell stiffness determines the ability of cancer cells to 
invade surrounding tissues, withstand shear fluid stress and evade immune surveillance. Here, we summarize the biological 
factors, pathological factors, and therapeutic modalities that affect the mechanobiology of cancer cells. We focus on clini-
cally utilized chemotherapeutics and targeted therapies that show direct and indirect modulation of cancer cells’ stiffness 
and discuss how these treatments can be used in combination with other treatment modalities to improve patient outcomes. 
Finally, we list the outstanding challenges in the field and provide a perspective on expanding the clinical utilization of 
experimental therapeutics that can act as “mechanotherapeutics” by regulating mechanobiology of cancer cells.
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Introduction—correlations 
between changes in cellular stiffness 
during the metastatic cascade

Epithelial cell stiffness undergoes profound changes during 
oncogenic transformation and malignant cancer progression 
[1]. Here, we adopt the definition of cellular stiffness as the 
ability of cells to resist compressive stresses [2]. This cel-
lular stiffness is different than bulk tumor tissue stiffness, 
which is largely influenced by the deposition, composition 
and the orientation of extracellular matrix (ECM) proteins 
[3–7]. Bulk tissue stiffness is measured by pre-clinical and 
clinical methods, such as palpitation, ultrasound elastogra-
phy and macro-indentation and these methods cannot resolve 
the contribution of ECM from the contribution of individ-
ual cells to tissue stiffness [8–13]. In contrast, measuring 
stiffness of individual cells requires methods with higher 
spatial resolution such as atomic force microscopy (AFM), 
micro-pipette aspiration, and particle tracking microrhe-
ology (PTMR). These methodologies have been expertly 
reviewed elsewhere [14–16]. Each method measures a 

different parameter that contribute to overall stiffness of the 
cell and they all have their caveats and advantages [17–28] 
(Table 1).

In the classical models of tumor progression, the first 
steps of cellular transformation are the expression of onco-
genes and the loss of tumor suppressor proteins. These proto-
oncogenic events collectively lead to an increase in cell stiff-
ness, such that pre-cancerous cells become stiffer than their 
parental counterparts. Several lines of evidence from PTMR 
experiments support this notion. For example, in hyperpro-
liferative, but otherwise non-transformed, MCF10A mam-
mary epithelial cells, expression of the oncogene Her2, a 
member of the Epidermal Growth Factor Receptor (EGFR) 
family of receptor tyrosine kinases (RTK), and of H-Ras or 
K-Ras, two oncogenic small GTPases, increases cell stiff-
ness when these cells are grown on pathologically stiffened 
three-dimensional matrices and under confinement [29–31]. 
In the same model, knockout of Phosphatase Tensin Homo-
logue (PTEN) further increases cell stiffness [29]. Further-
more, proto-oncogenic Src activation in Drosophila epithe-
lium leads to in situ hyperplasia formation and this stage is 
marked by an elevation in cellular stiffness [32]. These data 
suggest that the pre-cancerous stage of oncogenic transfor-
mation is marked by an increase in cell stiffness.

Conversely, transition from benign tumor cells to invasive 
cancer, which bestows cancer cells the ability to metastasize 
and colonize distant organs, is marked by a compliant (i.e. 
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soft) cellular phenotype. This is backed by results from AFM 
experiments by using human breast cancer biopsies, wherein 
benign ductal carcinoma in situ (DCIS) samples are marked 
by elevated stiffness, whereas invasive cancers present with 
decreased cellular stiffness [33]. ECM content of the intact 
tumors can influence these AFM measurements, but compar-
ison of several cancer cell lines show that cells with higher 
metastatic potential are generally softer than non-metastatic 
counterparts [34–36]. Furthermore, compliant cells sepa-
rated by microfluidics show enrichment of cancer stem cell 
gene expression in comparison to stiff cancer cells. Softer 
cancer cells are also enriched in the expression of epithelial 
to mesenchymal transition (EMT) genes, which are associ-
ated with invasive and metastatic behavior [37, 38]. These 
softer cancer cells, which are found in the leading edges of 
collectively migrating cancer cell clusters in 2-dimensional 
spaces and in 3-dimensional matrices, are thought to be pre-
cursor cells for metastatic dissemination [37, 39].

Metastatic dissemination requires cancer cells to navi-
gate the physical confinements of the surrounding ECM 
and intravasate into and out of the circulation [40, 41]. In 
this context, compliant cancer cells, especially cells that can 
perform nuclear deformations (meaning that their nucleus 
can become softer due to genetic alterations or compres-
sive stress) more readily invade through these constricted 
spaces for local invasion [42]. This ability is subsequently 
important for intravasation into and extravasation out of the 
endothelium for hematogenous dissemination. In general, 
these studies point to softer phenotypes correlating with 
higher invasive, migratory and metastatic potential, but it is 
unlikely that such linear correlations exist in vivo [43, 44]. 
This is because migratory capacity of cells is likely to be 
diminished if their softness prevents them from generating 
traction forces necessary for persistent migration [8]. Fur-
thermore, softer cancer cells cannot withstand destruction 
by shear stress [45]. Similarly, cells with softer nuclei more 
readily undergo cell death under shear stress [46]. These 
studies suggest that the relationship between metastatic 
phenotypes and cellular stiffness follows a Goldilocks pat-
tern: Cancer cells that can adapt to mechanically challenging 
environments have the highest metastatic potential (Fig. 1).

While optimal stiffness regulates the metastatic dissemi-
nation process, studies to date show a more linear relation-
ship between cancer cell stiffness and their sensitivity to 
immune-mediated destruction: compliant, softer cells have 
been shown to be more resistant to targeting by immune cells 
[47]. For example, increasing the stiffness of melanoma, 
breast cancer, and lymphoma cells facilitates adoptive T-cell 
therapy, natural killer (NK) cell-mediated cytotoxicity, and 
increases the effectiveness of immune checkpoint blockade 
(ICB) treatments [48–51]. There are several reasons for the 
improvement of cytotoxic response on stiff target cells: For 
example, NK cells better orient microtubule organizing 

centers (MTOCs) for improved secretion of cytotoxic per-
forin and granzymes when they oppose stiffer surfaces [52]. 
Cytotoxic T-lymphocytes (CTLs) also show improved force 
generation and filamentous actin (F-actin) accumulation at 
the immune synapse when they encounter target cells with 
elevated membrane tension and cortical stiffness [48]. Fur-
thermore, cytotoxic lymphocytes activate mechanotransduc-
tion to a higher magnitude when they encounter stiff target 
surfaces as judged by the elevated phosphorylation of the 
zeta-chain-associated protein kinase 70 (ZAP70), by the 
improved production of pro-apoptotic cytokines, such as 
tumor necrosis factor (TNF) and interferon gamma (IFNɣ), 
and by the elevated expression of lymphocyte activation 
markers such as CD69 and CD25 (encoded by the IL2RA 
gene, interleukin-2 receptor alpha chain) [53, 54]. On the 
cancer cell side of the immune synapse, elevated mem-
brane tension due to increased cortical stiffness facilitates 
the physical insertion of perforin pore complexes into the 
target membranes [55]. Importantly, emerging evidence sug-
gests that disseminated cancer cells that remain dormant in 
secondary environments assume a softer phenotype to avoid 
destruction by CTLs and NK cells [56]. Beyond the cyto-
toxic responses, stiff cancer cells are more readily engulfed 
by macrophages through phagocytic cup formation, whereas 
compliant cells are engulfed through the time-consuming 
trogocytosis process, also known as nibbling [57, 58]. 
Together, these studies highlight the need for identifying 
biological and pathological factors that contribute to cellular 
stiffness for better immune targeting of cancer cells.

Biological and pathological factors 
that contribute to cancer cell stiffness

There are several biological and pathological factors that 
act in a cell-intrinsic manner to regulate stiffness of cancer 
cells, such as intramolecular crowding, lipid composition 
of the plasma membrane and the underlying cytoskel-
eton [59]. PTMR experiments show that intracellular 
water influx reduces intramolecular crowding and allows 
easier diffusion of proteins and thereby reduces cell stiff-
ness [60]. Similarly, hypertonic microenvironments make 
cancer cells less compliant due to water efflux, elevated 
intramolecular crowding, and cell shriveling as judged 
by Brillouin microscopy and electrical deformability 
cytometry [19, 61, 62]. These data suggest that hyper-
tonic conditions generally promote cellular stiffness, but 
cell shriveling can also decrease stiffness of the cellular 
plasma membrane due to loss of membrane tension [63]. 
For example, incubating endothelial cells with an elevated 
concentration of extracellular potassium  ([K+]e), which is 
a hypertonic condition, significantly softens endothelial 
cells’ membranes as judged by AFM measurements [64, 
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65]. These data suggest that hypertonic conditions create 
an uncoupling between intracellular stiffness and the stiff-
ness of the cortical membrane (Fig. 2).

A cell-intrinsic factor that affects cortical cell stiffness 
without any reported effects on intramolecular crowding is 
the cholesterol content of the cellular plasma membrane. 
Tumorigenesis and the subsequent increased cellular metab-
olism require cholesterol production in cancer cells to sus-
tain their proliferation [66]. Additionally, an optimal level 
of membrane cholesterol is necessary for the maintenance 
of cellular stiffness. For example, in endothelial cells, cho-
lesterol extraction from the plasma membrane by the small 
molecule 2-Hydroxypropyl-β-cyclodextrin increases cell 
stiffness [67]. Similarly, in hepatocellular carcinoma cells, 
cholesterol depletion through V-ATPase inhibition by Archa-
zolid A causes cortical stiffening [68]. Furthermore, phar-
macologically or genetically depleting plasma membrane 
cholesterol in melanoma cells elevates their cortical stiff-
ness [48].

A major factor that is involved in both intramolecular 
crowding and cortical cell stiffness is the cytoskeleton. The 
cytoskeleton is a collection of fibrillar networks within the 
cell that determines cellular morphology and architecture 
in response to various environmental and differentiation 
cues [59]. The most prominently studied cytoskeletal ele-
ments for cell stiffness include microtubules, F-actin, and 
the actomyosin network. Several small molecule drugs, 
including Latrunculin A and Cytochalasin D, inhibit F-actin 
polymerization and disband F-actin stress fibers, signifi-
cantly reducing the stiffness of cancer cells and fibroblasts. 
Conversely, promoting F-actin bundling, stress fiber forma-
tion, and enhancing actomyosin contractility through treat-
ment with small molecule drugs, such as jasplakinolide 
and 4-Hydroxyacetophenone, which activates non-muscle 
myosin IIC (encoded by the MYH14 gene), increases cell 
stiffness [39, 49, 69].

Based on the high level of contribution of F-actin to cel-
lular stiffness, it is conceivable that activation of signaling 

Fig. 1  The functional conse-
quences of cell stiffening and 
softening in metastasis. Cancer 
cells alter their stiffness in 
response to changing environ-
mental conditions throughout 
the metastatic cascade. This 
mechanoadaptation promotes 
metastatic dissemination, 
which means cancer cells have 
to assume an optimal stiffness 
value to progress through the 
metastatic cascade. In contrast, 
a stiffer phenotype generally 
exposes cancer cells to immune-
mediated clearance by cytotoxic 
lymphocytes and macrophages
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pathways that promote F-actin bundling and stress fiber 
formation will also contribute to cell stiffness. Cytoskeletal 
signaling pathways are controlled by inputs from the integrin 
family of cell-ECM adhesion molecules and oncogenic sign-
aling pathways [70–73]. For example, increased stiffness of 
the ECM increases the stiffness of cells through the process 
of mechanoreciprocity, which involves integrin engagement, 
activation of focal adhesion kinase (FAK) and downstream 
Src family of tyrosine kinases, Rho family of GTPases, and 
Rho associated kinase (ROCK) [74–77]. Perturbing integrin-
ECM contact or inhibiting ROCK softens cancer cells [78, 
79]. However, FAK knockdown in endothelial cells leads to 

increased cell stiffening, which highlights the role of FAK in 
counteracting stress fiber formation by dissembling mature 
cell adhesions [80]. The oncogenic EGFR, Her2, Ras, PI3K/
Akt, and the downstream mTOR pathways all contribute 
to regulation of cell stiffness either through transcriptional 
activation of F-actin remodelers or by directly impacting the 
activity of Src, FAK, and Rho activation in various contexts 
[70, 72, 73]. Together, these studies highlight how target-
ing oncogenic signaling pathways can have a significant 
impact on cytoskeletal signaling and thereby cellular stiff-
ness (Fig. 3).

↑ F- actin

High cortical stiffness
High intracellular stiffness

↑ Intramolecular crowding
↑ Membrane tension

Low cortical Stiffness
High intracellular stiffness

↑ Intramolecular crowding
↓ Membrane tension ↓ Membrane tension

Low cortical stiffness
Low intracellular stiffness

↓ F- actin

K+

K+K+

K+

K+

K+

K+K+
K+ K+H2O

Fig. 2  Uncoupling between intracellular stiffness, intramolecular 
crowding and cortical membrane stiffness under different biological 
conditions. Intramolecular crowding positively correlates with overall 
stiffness and membrane stiffness and tension, but under certain cir-
cumstances this relationship may be uncoupled. For example, under 
hypertonic conditions, cells shrivel and lose water, which leads to 
intramolecular crowding and loss of membrane stiffness and tension. 

In this scenario, it is not clear which mechanical property of the can-
cer cell is more dominant in terms of contributing to the metastatic 
fate. Theoretically increased cytoplasmic stiffness can reduce meta-
static potential due to loss of invasive capacity, but decreased mem-
brane stiffness and tension could also promote immune evasion from 
cytotoxic T-cells and natural killer cells. Figure was created by using 
BioRender

ECM

Cell
membrane

Cytoskeletal 
signaling

Integrins, RHO,
RAC, FAK, SRC, 

ROCK

Oncogenic signaling
EGFR, PTEN, PI3K, 

AKT, mTOR, 
RAS, MEK, ERK

Cell Stiffness

?

Fig. 3  Relationship between cytoskeletal signaling and oncogenic 
signaling pathways in regulating stiffness of cancer cells. Schematic 
showing how signaling pathways that are known to directly regulate 
the cytoskeleton and therefore contribute to cellular stiffness inter-
act with oncogenic signaling pathways exemplified by the EGFR/
RAS/MEK/ERK and PI3K/AKT/mTOR pathways. Regulation of cell 
stiffness by oncogenic signaling pathways requires post-translational 

modification of the components of the cytoskeletal signaling machin-
ery, but more direct mechanisms may also exist. While cell adhesion 
and cytoskeletal signaling are known to regulate growth factor sign-
aling pathways commonly altered in cancer, whether cell stiffness 
biophysically regulates these oncogenic signaling pathways is also 
unknown. Figure was created by using BioRender
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Indirect manipulation of cancer cell stiffness using 
current targeted and chemotherapeutics

The vast majority of current cancer drugs are designed to 
inhibit cancer cell proliferation, induce apoptosis, or block 
pathways deemed essential for their survival. Though many 
of the drugs discussed here have been around for decades, 
their impact on cancer cell stiffness has only been recently 
investigated. For example, there are several targeted thera-
pies that inhibit oncogenic signaling pathways involved in 
proliferation and cell survival [81]. At the apex of oncogenic 
signaling cascades is EGFR and its inhibition by a mono-
clonal antibody, Cetuximab, stiffens A549, MDA-MB-231, 
and MCF-7 lung and breast cancer cells [82–84]. Similarly, 
the Her2 monoclonal antibody Trastuzamab also stiffens the 
Her2 + SKBR3 breast cancer cells as judged by micropipette 
aspiration [85, 86]. Lapatinib, an RTK inhibitor for EGFR, 
also increases stiffness of MCF-7 and A431 cells in culture 
[87]. Targeting downstream of EGFR by using Trametinib, a 
mitogen activated protein kinase kinase (MEK) inhibitor, in 
MDA-MB-231 breast cancer and MDA-MB-435 melanoma 
cells causes them to stiffen [88]. Conversely, treatment of 
A549 cells with another EGFR inhibitor, Gefitinib, softens 
these cancer cells and reduces the stiffening responses of 
MCF-7 cells to applied force [89, 90]. These contradictory 
results suggest that despite targeting the same RTKs and 
downstream pathways, the mode of action of each thera-
peutic can produce different effects on cellular stiffness. It 
is possible that the on-target effect of shutting down MEK 
and downstream extracellular signal regulated kinase (ERK) 
signaling could lead to lower F-actin cytoskeleton turn-over 
and thereby increased stiffening [72]. Alternatively, off-tar-
get effects of Gefitinib, such as inhibition of Src or Serine 
Threonine Kinase 10 (STK10) that are both directly involved 
in cytoskeletal remodeling, could lead to cellular softening 
[91, 92].

PI3K/AKT/mTOR pathway inhibitors are in clinical trials 
and have been approved for treating patients with various 
malignancies. Application of PI3K/AKT/mTOR inhibi-
tors generally yield a stiffer cancer cell phenotype in vitro. 
Treatment of the PC-3 prostate cancer cell line, which has 
activated PI3K/AKT signaling due to homozygous loss of 
the tumor suppressor PTEN, with the allosteric AKT inhibi-
tor, MK-2206, causes these cells to stiffen [93]. Consistent 
with the idea that PI3K signaling decreases cellular stiff-
ness, treatment of MCF-7 and MDA-MB-231 cells with 
Everolimus, an mTOR complex 1 inhibitor, also increases 
cancer cell stiffness [94]. The observed effect of PI3K/AKT/
mTOR inhibitors on cellular stiffness could be explained 
by the involvement of PI3K signaling in regulating F-actin 
cytoskeleton dynamics through generation of phosphati-
dylinositol (3,4,5)-trisphosphate  (PIP3), which regulates 
Rho family of GTPases, and through phosphorylation of 

actin-bundling proteins, but alternative mechanisms that 
involve regulation of cell cycle and survival cannot be ruled 
out without experimental testing [70, 95].

FDA-approved agents for the BCR-ABL fusion protein in 
chronic and acute lymphocytic leukemia include Imatinib, a 
selective ABL kinase inhibitor, and Dasatinib, a dual ABL 
and Src kinase inhibitor, making the latter a suitable choice 
for probing the role of Src in mechanobiology. Treatment of 
normal podocytes or BRAF mutant A375 melanoma cells 
with Dasatinib reduces cell stiffness, whereas Imatinib has 
not been recorded to have such effects [96, 97]. Src activa-
tion is coupled to FAK activity during cell adhesion and 
treatment of MCF7 cells with Defactinib increases cell stiff-
ness, but does not change stiffness of MDA-MB-231 cells 
[98]. Overall, these studies highlight inhibiting Src and FAK 
have opposite effects on cellular stiffening and that the broad 
involvement of these kinases in multiple contexts requires 
further investigation.

Hormone therapy for hormone positive breast cancers 
has also been shown to impact cancer cell stiffness. In the 
MCF-7 model of Estrogen Receptor positive (ER+) breast 
cancer, treatment of cells with Tamoxifen, a selective estro-
gen receptor modulator (SERM), causes them to stiffen [85]. 
Interestingly, evolution of Tamoxifen resistance in the same 
cell line coincides with cellular softening, suggesting that 
cellular softening is a marker for Tamoxifen resistance [99]. 
However, these data do not suggest that cellular softening is 
a marker of broad drug resistance. Indeed, aromatase inhibi-
tor resistance and resistance to Fulvestrant treatment in the 
same MCF-7 cell line manifests as epigenetic regulation 
that ultimately leads to upregulation of Keratin-80, which 
increases cellular stiffness [100]. Moreover, the use of dif-
ferent aromatase inhibitors targeting the same enzyme does 
not yield the same stiffening effect. A side-by-side compari-
son of Letrozole and Exemestane treatment on MCF-7 cells 
yielded opposite results determined by AFM measurements. 
Letrozole treatment softened MCF-7 cells while Exemestane 
stiffened them [94]. These differential results point to the 
importance of understanding which biomechanical pathways 
are being impacted downstream of these drugs, regardless 
of their intended targets.

DNA damaging chemotherapeutics also increase cellular 
stiffness. Cisplatin treatment of lung, colon, prostate can-
cer, and melanoma cells increase cellular stiffness [83, 101, 
102]. In the case of prostate cancer cells, cisplatin-mediated 
increase in cell stiffness is coupled to F-actin polymerization 
[102]. Treatment of leukemic cells with another DNA-dam-
aging agent, daunorubicin, also stiffens cancer cells [103]. 
DNA damage is known to induce nuclear F-actin polymeri-
zation, and this effect could elevate the overall stiffness of 
the cancer cell, but this idea requires formal testing [104]. 
Together, these data suggest that the overall growth retarda-
tion and tumor suppression in response to drug treatment 
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correlates with an elevated cellular stiffness, but there are 
also several studies, which demonstrate the opposite phe-
nomenon. For example, the tumor suppressive effect of car-
boplatin treatment on ovarian cancer organoids correlates 
with a reduction in their stiffness, suggesting that cell sof-
tening is indicative of chemotherapy response [105]. Indeed, 
in a panel of ovarian cancer cell lines, cisplatin resistance 
accompanies elevated cancer cell stiffness and making can-
cer cells more compliant by targeting Rho GTPases restores 
cisplatin sensitivity [106]. Together, these studies demon-
strate that targeted therapies and chemotherapies have an 
impact on cancer cell stiffness, but whether this is due to 
direct regulation of F-actin polymerization and cytoskeletal 
signaling proteins, or due to a broad activation of stress sign-
aling pathways and subsequent cellular toxicity needs further 
investigation (Table 2).

Direct manipulation of cancer cell stiffness using 
current targeted and chemotherapeutics

In contrast to the previous section, there are several anti-can-
cer therapies which are designed to directly target cytoskel-
etal components or motor machinery to either interfere with 

cell division or impair cell migration (Table 3). This class 
of drugs is primarily tied to preventing proper polymeriza-
tion or depolymerization of microtubules or actin filaments, 
subsequently altering cancer cell stiffness. One of the most 

Table 2  Therapeutic treatments that indirectly affect cell stiffness

Drug Target Cell type Effect on stiff-
ness

Method Reference

Cetuximab EGFR inhibitor A594 ↑ AFM [83] 
MDA-MB-231 ↑ AFM [82] 
MCF7 ↑ AFM [82] 

Trastuzumab HER2 inhibitor SKBR3 ↑ micropipette aspiration [85,86] 
Lapatinib EGFR inhibitor A431 ↑ AFM [87] 

MCF7 ↑ AFM [87]  
Trametinib MEK inhibitor MDA-MB-231 ↑ AFM [88] 

MDA-MB-435 ↑ AFM [88] 
Gefitinib EGFR inhibitor A549 ↓ AFM [89] 

MCF7 ↓ traction force microscopy [90] 
MK-2206 AKT inhibitor PC-3 ↑ AFM [93] 
Everolimus mTOR inhibitor MCF7 ↑ AFM [94] 

MDA-MB-231 ↑ AFM [94]  
Dasatinib ABL/Src kinase inhibitor A375 ↓ AFM [96] 
Defactinib FAK inhibitor MCF7 ↑ AFM [98] 

MDA-MB-231 – AFM [98] 
Tamoxifen ER modulator MCF7 ↑ micropipette aspiration [85] 
Letrozole Aromatase inhibitor MCF7 ↓ AFM [94] 
Exemestane Aromatase inhibitor MCF7 ↑ AFM [94] 
Cisplatin Platinum-based chemotherapy A549 ↑ AFM [83] 

Calu-6 ↑ AFM [83] 
PC-3 ↑ AFM [102] 
B16F10 ↑ AFM [101] 

Daunorubicin DNA-damage chemotherapy AML ↑ AFM [103] 

Table 3  Therapeutic treatments that directly affect cell stiffness

Drug Target Cell type Effect on 
stiffness

Method Reference

Docetaxel Micro-
tubule 
depolym-
erization 
inhibitor

PNT1A ↑ AFM [102] 

22Rv1 ↑ AFM [102]  
PC-3 ↑ AFM [102] 

Vinflunine Micro-
tubule 
polym-
erization 
inhibitor

DU145 ↑ AFM [108] 

Salinomy-
cin

FAK 
inhibitor

Liver can-
cer stem 
cells

↑ AFM [116] 
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commonly used classes of chemotherapeutic drugs for 
treating patients with solid tumors include taxanes. These 
drugs, such as paclitaxel and docetaxel, prevent microtubule 
depolymerization, halting cancer cell mitosis and leading to 
apoptosis. Though there are some exceptions, this class of 
drugs generally stiffens cancer cells, which is expected as 
their on-target effect. For example, docetaxel treatment of 
prostate cancer cells yielded cells with a stiffer phenotype, 
as determined by AFM, along with an increased accumula-
tion of tubulin at the periphery of the cells [102]. Similarly, 
vinca alkaloids, such as vinblastine or vinflunine, block 
mitosis by binding β tubulin and preventing microtubule 
polymerization [107]. Surprisingly, vinflunine was found to 
increase prostate cancer cell stiffness, not through noticeable 
changes in microtubule networks, but through an increase in 
actin polymerization around the nucleus of cells, thought to 
be a resistance mechanism developed by these cells to take 
advantage of the actin-microtubule internetwork crosstalk 
[108].

Although drugs directly targeting actin polymerization 
are generally considered highly toxic due to the necessity 
of this key cytoskeletal component in all cells, healthy and 
cancerous alike, there are some drugs which specifically 
target actin bundling and stability [109]. For example, the 
actin-bundling protein, Fascin-1 is a known promotor of 
cancer cell migration and its frequent upregulation in vari-
ous tumor types is well-known to correlate with worse sur-
vival outcomes. Interestingly, the use of Fascin-1 inhibitors, 
such as migrastatins and the repurposed drugs, raltegravir 
and imipramine, have demonstrated slowed cancer inva-
sion in both in vitro and in vivo models. Though it remains 
unknown whether these treatments soften tumor cells along 
with their decreased actin-bundling, there are studies that 
show Fascin-1 knockdown does decrease glioma cell stiff-
ness [110–113]. Similarly, therapeutic inhibition of the 
actin-stabilizing and contractility aiding protein, tropomyo-
sin, using TR100, leads to actin disorganization in human 
melanoma cells [114]. Though genetic knockdown of tro-
pomyosin in neuroblastoma cells yields cells with a softer 
phenotype determined by AFM, the impact of the inhibitor 
TR100 on epithelial cancer cell stiffness remains elusive 
[115]. Unexpectedly, a repurposed antibiotic, salinomycin, 
has also demonstrated efficacy in slowing liver cancer stem 
cell invasion by increasing cell stiffness and F-actin forma-
tion through inhibition of the FAK-ERK1/2 pathway [116]. 
Collectively, it is clear that many of the targeted and broadly 
cytotoxic treatment modalities have effects on cellular stiff-
ness and these effects on cellular stiffness likely contribute 
to treatment resistance and response.

Potential contribution of changes in cellular 
stiffness to clinical therapy response

Emerging data on the regulation of cellular stiffness by clini-
cally relevant therapeutics provides us with a rationale for 
interrogating the contribution of cellular stiffness to therapy 
response. For example, the FAK inhibitor, Defactinib, in 
combination with Pembrolizumab, an ICB antibody, are 
currently in a clinical trial for treatment of patients with 
advanced cancers (NCT02546531). This clinical trial was 
based on the remarkable effect of combining these two 
treatments in preclinical models [117, 118]. Since FAK 
inhibition stiffens cancer cells in vitro and increased stiff-
ness improves ICB approaches in pre-clinical studies, it is 
tempting to speculate that part of the beneficial effect of 
this combination therapy may be due to alterations in cell 
stiffness. One could also extrapolate this line of reasoning 
to interrogate whether AKT inhibition in combination with 
ICB could produce such beneficial effects in patients. This 
is especially important because the AKT inhibitor, Capiv-
esartib, was recently approved for use in combination with 
Fulvestrant in advanced breast cancers [119]. Both of these 
treatments increase cellular stiffness in vitro, and they could 
potentially be used in combination with ICB to prevent met-
astatic relapse by targeting dormant breast cancer cells [93, 
100]. The same logic can also apply to the combined use of 
ICB with nab-paclitaxel, which presumably stiffens cancer 
cells, in clinical trials for treating metastatic breast cancer 
[120]. On the downside, tamoxifen has been used as one of 
the first line treatments for ER+ breast cancer, but tamoxifen 
resistance emerges with cellular softening. One could argue 
that ICB treatments would be less effective in tamoxifen 
resistant breast cancers because the mechanical input into 
CTL activation would be limited. ROCK inhibitors have also 
shown a lot of promise in pre-clinical models for treatment 
of various cancers in combination with ICB, but it could be 
challenging to use ROCK inhibitors in combination with 
ICB in patients if ROCK inhibitors’ softening effect on can-
cer cells negate the mechanical input necessary for CTL acti-
vation [121]. However, testing this idea awaits development 
of better ROCK inhibitors, since the most advanced ROCK 
inhibitor failed a clinical trial due to poor pharmacokinetic 
performance [122].

All of the above-mentioned treatments for stiffening can-
cer cells would also impact the tumor microenvironment. 
Theoretically, stiffening cancer cells with these therapies 
could lead to propagation of compressive stresses through-
out the tumor microenvironment. These compressive stresses 
could, inturn, promote pathological ECM deposition by 
cancer-associated fibroblasts, and thereby limit immune 
cell infiltration. One avenue for avoiding pathological ECM 
deposition could be by co-treatment with Renin Angiotensin 
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System inhibitors to suppress fibroblast activation, prevent 
ECM deposition and allow immune inflitration as in the case 
of pre-clinical models of glioblastoma and liver metastases 
by colorectal cancer [123, 124]. The use of Renin Angio-
tensin System inhibitors highlight a major opportunity for 
understanding how systemic treatments impact mechano-
biology of cancer cells and how we can repurpose some of 
these FDA-approved treatments in cardiovascular diseases 
for targeting cancer cell stiffness [125]. For example, there 
are several  K+ channel manipulators used in cardiovascular 
diseases and these can affect cancer cell stiffness [126]. This 
is particularly important because high levels of extracellu-
lar  K+ are present in tumor interstitial fluid and this high 
 [K+]e shuts down cellular  K+ efflux and softens endothelial 
cells [127, 128]. If  [K+]e also softens cancer cells, it would 
be important to know whether  K+ channel targeting drugs 
have similar effects on cancer cells’ stiffness and therefore 
regulate metastatic and immune-evasive phenotypes. Finally, 
drugs used for cholesterol management, such as statins, have 
been in clinical trials for cancer treatment and are likely to 
have impacts on pre-malignant and dormant metastatic cells 
through both cancer-intrinsic mechanisms and mechanisms 
that directly affect T-lymphocyte and cardiovascular biology 
[129–132].

Challenges in targeting cellular stiffness

There are major technical challenges in the field of mecha-
nobiology. First, most of the methods used for determining 
the stiffness of cells, such as PTMR, AFM and Brillouin 
spectroscopy require a certain level of tissue dissociation, 
which removes cancer cells from their tumor microenviron-
ment. While there are efforts to determine the stiffness of 
processed tissue sections, most require cryosectioning and 
low temperatures are known for dissembling the F-actin 
cytoskeleton, which is a major contributor to cellular stiff-
ness. One approach to overcome these technical issues is 
to deploy chemical fixation strategies. In this setting, all 
biological structures would stiffen, but the relative stiffness 
differences within the same tissue preparation would remain 
intact [133].

A second challenge is that it is difficult to pinpoint the 
precise molecular mechanism that underlies a pharmacologi-
cal perturbation’s effect on cellular stiffness. This is because 
biophysical effects are frequently tied to biochemical effects, 
which will simultaneously change signaling and transcrip-
tional landscapes of the cell. These secondary effects can in 
turn impact the physical state of the cell by promoting cell 
cycle entry, metabolic rewiring, senescence and apoptosis. 
One approach to differentiate between direct biophysical 
effects versus secondary biochemical effects of these phar-
macological agents on cellular stiffness would be to conduct 

real-time stiffness measurements during the course of the 
treatment: Direct biophysical effects treatments would be 
recorded within seconds or minutes, whereas secondary 
transcriptional effects would emerges hours or days later. 
Indeed, this is the case for F-actin modifiers and regula-
tors of ion channels that act within seconds to minutes of 
application.

Beyond the technical challenges, there are also signifi-
cant conceptual challenges in the field. Accumulating evi-
dence shows that the malignant phenotype is marked by a 
softer cancer cell phenotype, that when reversed, may lead 
to inhibition of migration and metastasis. Yet, address-
ing exceptions to this general notion is a significant chal-
lenge in the field. First, not all tumor cells are marked by 
a decrease in their stiffness in comparison to normal cells. 
For example, glioblastoma cells have a similar stiffness to 
non-transformed cells [134]. In fact, increased stiffness 
of glioblastoma cells is associated with invasive behav-
ior within the brain microenvironment, and this invasive 
behavior is the reason why debulking treatments, such 
as surgery and radiation, are never curative in this dis-
ease [135]. Furthermore, increasing cellular stiffness in 
the absence of active immune surveillance can result in 
undesired effects. For example, cellular stiffening through 
F-actin polymerization could promote long-term cancer 
cell dormancy and survival by triggering cell survival 
pathways typically activated upon cell-ECM adhesion 
[136, 137]. F-actin polymerization and subsequent cell 
stiffness can also increase metastasis by promoting resist-
ance to shear stress in blood circulation [45]. Increase in 
cellular stiffness can also promote metastasis by amplify-
ing traction forces needed for persistent migration [138]. 
These studies highlight how mechanoadaptation processes 
pose a significant challenge to use mechanics to better treat 
cancer [44].

One approach to overcome mechanoadaptation would be 
to target processes that are fundamentally important in regu-
lating cell stiffness. The problem with this approach is that it 
could result in adverse effects on multiple tissues. For exam-
ple, many of the regulators of cancer cell stiffness are likely 
to be involved in regulating the biophysical properties of the 
immune system, and biophysical fitness of immune cells is 
critical for a robust anti-tumor immune response [47]. Thus, 
identifying and targeting regulators of cellular stiffness that 
are unique to cancer cells would be an ideal strategy.

Finally, one would have to consider what the ideal clini-
cal stage to target cellular stiffness would be. An attractive 
approach is deploying these therapeutics in the adjuvant 
setting after gross debulking of the primary tumor with sur-
gery or during metastatic dormancy. In this setting, mecha-
noadaptive processes that allow progression of cancer cells 
through local invasion, survival through shear stresses in 
circulation and extravasation would be less relevant since the 
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bulk of the primary tumor cells would have been eliminated 
by surgery. Additionally, disseminated cancer cells would 
be in a hostile new niche, devoid of an immune suppres-
sive environment and therefore exposed to cytotoxicity by 
circulating lymphocytes. Indeed, emerging studies show that 
elevating the stiffness of dormant tumor cells promote their 
clearance before they can manifest as lethal metastases in 
pre-clinical studies [56]. In summary, studying fundamental 
biology behind regulation of cellular stiffness offers novel 
perspectives into targeting cancer and opens new areas of 
investigation for determining how commonly used drugs can 
impact metastatic outcomes in patients.
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