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Abstract: In this article, we report the results of experimental studies on the impact of ball burnishing
parameters on the roughness, microstructure and microhardness of the surface layer of laser-cut C45
steel parts. We also analysed the distribution of residual stresses generated in the surface layer of
these parts. Laser-cut parts often require finishing to improve the quality of their surface. The tests
performed in this study were aimed at assessing whether ball burnishing could be used as a finishing
operation for parts of this type. Ball burnishing tests were performed on an FV-580a vertical machining
centre using a mechanically controlled burnishing tool. The following parameters were varied during
the ball burnishing tests: burnishing force Fn, path interval fw and the diameter of the burnishing ball
dn. Ball burnishing of laser-cut C45 steel parts reduced the surface roughness parameters Sa and Sz
by up to 60% in relation to the values obtained after laser cutting. Finish machining also led to the
reorganization of the geometric structure of the surface, resulting in an increase in the absolute value
of skewness Ssk. This was accompanied by an increment in microhardness (maximum microhardness
increment was ∆HV = 95 HV0.05, and the thickness of the hardened layer was gh = 40 µm) and
formation of compressive residual stresses in the surface layer.

Keywords: laser cutting; ball burnishing surface roughness; microstructure; microhardness;
residual stress

1. Introduction

Ball burnishing has been successfully used in the engineering industry for several decades now.
It allows one to obtain hardened surfaces with low roughness, improved resistance to abrasive wear
and increased fatigue strength [1–3]. This technology is effectively used as a finishing operation in the
production of such parts as dies, moulds, shafts, compressor turbine blades, or rear suspension control
arms [2].

Burnishing is very often integrated with machining, especially when axially symmetrical elements
are machined using a lathe [4], a drilling or a boring machine. When burnishing axially symmetrical
parts, the burnishing tool runs parallel or perpendicular to the marks left by the machining tool
(a drill, a boring bar, or a turning tool) [1,5,6]. Recently, ball burnishing has also been successfully
performed in a single operation in combination with milling on multi-axis CNC machining centres,
using commercially available tools [7–9].

Ball burnishing is an environmentallyfriendly finishing process. No chips, sparks and dust are
generated during the process, and the use of coolant and lubricants is kept to a minimum. This means
that ball burnishing can replace traditional finishing operations used in the production of machine
parts, such as grinding or lapping [1,8]. Ball burnishing is an effective method of machining parts
made of aluminium alloys [8], magnesium alloys [10], ductile iron [11], titanium alloys [12], and steel
with a hardness up to 45 HRC [2,3,13] and with increased hardness [1,4,5,14].
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During ball burnishing, the surface roughness profile is modified, and asperity summits are
flattened and deformed. Ball burnishing of steel with increased hardness can reduce the surface
roughness parameters by about 40% to 90% in relation to the initial value [5,14,15]. In the case of light
alloys, it is possible to obtain a surface roughness Sa of 0.02 µm, which corresponds to the quality of a
polished surface [8]. Modification of the surface roughness profile also translates into an increase in the
bearing ratio. Linear, or even degressive, bearing area curves obtained in a pre-machining operation
change into progressive ones. In one study, ball burnishing of aluminium alloy EN AW-AlCu4MgSi
(A) produced a surface with 3D roughness parameters Ssk = −0.27 and Spk = 0.02 µm [8]. In another
experiment, burnishing of 41Cr4 steel caused a (maximum) 20-fold decrease in the Spk parameter [5],
which may be indicative of an increase in abrasive wear resistance. The values of surface roughness
parameters depend on the pressing force [8,10], burnishing speed [5,15], type of pre-machining
operation [1,5], burnishing feed [8,9,15], and burnishing strategy [14].

As an effect of the action of the smooth burnishing tool on the workpiece, the material is deformed
and thermally plasticized; this mechanism depends on the machining environment [16]. This leads
to microstructural changes. Grains are lengthened, and the microstructural cohesion of the material
is disrupted [17]. Changes in the hardness and microstructure of ball-burnished material usually
occur in the layer of the material located close to the treated surface [4,17]. However, the increase in
the hardness of the surface layer leads to the deformation of the material in the deeper-lying layers
the workpiece [18]. Changes in the hardness of the surface layer can be determined in destructive
tests, by measuring the microhardness of metallographic specimens, and in non-destructive tests,
using annihilation techniques [19]. The increase in hardness depends on the type of workpiece,
machining conditions [4,17,20], and the type of machining environment [21].

Another very important effect of ball burnishing is the formation of compressive residual stresses
in the surface layer. The resulting residual stresses reside at (1.3–1.8 times) greater depths than the
depth of cold work. During ball burnishing of axially symmetrical parts, deformation and residual
stresses have greater values in the axial direction. Residual stresses measured in the circumferential
direction represent from 30% to 45% of the value of axial stresses [18]. Similar results were obtained
in [17]. The compressive residual stresses generated in the surface layer of the workpiece as a result of
burnishing lead to an increase in resistance to fatigue wear [22].

The phenomena that occur during ball burnishing result in the generation of mechanical energy,
part of which is released in the form of heat, and the rest is stored in the material, causing an increase
in its surface energy [23]. In addition, the geometric structure of the surface formed as a result of
burnishing affects the energy state of the workpiece, leading to an increase in its adsorption activity
and chemical activity [24,25].

Today, there exist technological solutions that combine ball burnishing with other technologies,
e.g., laser-assisted burnishing (LAB) [26] or vibration-assisted ball burnishing (VABB) [27,28].
Ball burnishing can also be integrated into a single operation with laser alloying [29]. The simultaneous
use of a laser beam and a ball burnishing tool allows one to temporarily soften the material locally and
thus achieve fuller plastic deformation [26].

The laser beam has been used as a tool in the machine industry since the second half of the 20th
century. Lasers are used in welding, marking, engraving, alloying, and cutting.

Laser cutting is used in the automotive, chemical, marine and aviation industries [30].
This technology can be used to separate most engineering materials [31–33]. The advantages of
laser cutting include a high cutting speed, a low surface roughness, a satisfactory dimensional accuracy,
a high level of automation, and a wide spectrum of applications [31]. Of course, this technology is
not without flaws. Some of the downsides of laser cutting include restrictions on the thickness of cut
materials, which depends on the type of material being cut, the occurrence of unwanted tensile stresses,
and changes in the microstructure which produce changes in the mechanical properties of structural
elements [34–36]. The coherent laser beam may also generate imperfections on the faces and edges
of the workpiece. Imperfections, according to [37] are irregularities or deviations from the specified
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shape or location of cut. As a result of hydrodynamic flow of molten material, gas flow fluctuation
and oscillation of the laser head, a characteristic drag line pattern forms on laser-cut surfaces [38,39].
The drag lines have different heights and are spaced at different distances, which means that different
areas of the surface of the cut part will have a different quality and shape. There are two characteristic
zones: the laser beam entrance area and the laser beam exit area. These zones are separated from each
other by the so-called boundary layer separation (BLS) [40].

Laser cutting may damage the edges of the cut part, which then form a heat-affected zone
(HAZ) [34]. The HAZ is a thin layer of material which, locally, especially at the edges and corners,
has a high hardness. The thickness of the HAZ depends on laser power, the type of gas used for cutting
and the pressure of this gas [34,39].

The high temperature generated in the cutting zone not only leads to the formation of HAZ,
but also causes thermal stress. Heating of the workpiece to the melting temperature followed by rapid
cooling with the assist gas leads to material shrinkage and phase changes. The workpiece is cooled at a
variable rate, which, in combination with the dynamics of the phase changes, leads to the formation
of tensile stresses. The values and the depth of penetration of the residual stresses depend on the
mechanical and thermal properties of the material being cut [34,41].

The imperfections formed during laser cutting on the faces and edges of a part make it difficult or
impossible to use the part in the next production stage. It is also difficult to apply paint coatings to
those surfaces due to flaking. The imperfections on the faces and edges of laser-cut parts, the presence
of drops of solidified material at their bottom edges, and unfavourable properties of the surface
layer call for finishing. Flash can be removed from the bottom edge of a workpiece using hand files,
deburring machines, wire brushes and belt sanders. The geometric structure of laser-cut surfaces and
their properties can be improved by using centrifugal shot peening [42], smoothing with diamond
tools [43], or mechanical grinding [44].

Centrifugal shot peening of laser-cut parts [42] leads to the reorganization of the geometric
structure of their surface, endowing it with favourable features. Parts finished by centrifugal shot
peening had over four times lower surface roughness parameters and a 14 times higher material ratio.
The microstructure of the surface layer was reorganized, which resulted in an increase in microhardness
(by a maximum of 16%) and formation of compressive residual stresses. In addition, as the shot
impacted the processed surface, combustion products were “blasted” or “sheared” off it.

Smoothing of a laser-cut surface with a diamond tool allows one to obtain a several-fold reduction
in surface roughness and leads to structural and phase changes (transformation of residual austenite
into martensite). At the same time, the surface layer is hardened mechanically. During finishing with a
diamond tool, sliding friction occurs between the tool and the surface of the workpiece. This leads to an
increase in the temperature of the treated area, which causes phase changes, and ultimately an increase
in the hardness of the part in the edge zone, relative to its hardness after laser cutting. An adverse
effect of smoothing with a diamond tool is the appearance of discontinuities and microcracks on the
processed surface [43].

A laser-cut surface subjected to mechanical grinding [44] is characterized by a lower roughness and
a lower thickness of the surface layer. Grinding introduces into the workpiece a state of tensile stress,
which promotes cracking of the surface. The resultant defects are in the place of stress concentration
and reduce the bearing capacity of the processed surface.

A review of the literature shows that laser-cut surfaces require finishing. The methods used so
far in finishing laser-cut parts produce surface defects [43,44], generate tensile stress in the surface
layer [44], and often require the use of expensive special tools [42]. The beneficial effect of ball
burnishing on the state of the surface layer of parts with a hardness above 45 HRC is well known,
but there are no studies showing that this method could be applied in the processing of laser-cut parts.
It can be supposed that ball burnishing of laser-cut surfaces should have a positive effect on their
properties. To explore this possibility, we performed experiments in which we assessed the impact of
ball burnishing on the properties of the surface layer of laser-cut C45 steel parts.
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2. Materials and Methods

The tests were conducted using 5 mm × 8 mm × 100 mm specimens of non-alloy C45 steel
(Rm = 740 MPa, Re= 430 MPa, hardness = 250 HB). Steel of this grade is successfully used in
the production of medium-load machine and equipment parts, such as spindles, shafts, axles,
and unhardened gears. The specimens used in the experiment were cut with a LASER Amada 3000 W
laser cutter from Amada America Inc. (Haan, Germany) set to the following technological cutting
parameters: cutting speed v = 1150 mm/min, power: 2.15 kW, frequency fHz = 1280 Hz, assist gas
pressure 0.06 MPa, laser beam focus position +13 mm. Oxygen was used as the assist gas. Figure 1
shows the experimental design, which includes a set of variable, constant and output (indirect) factors.
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Figure 1. Plan on the experiment.

In the experiments, laser-cut surfaces were finished by ball burnishing (Figure 2). During burnishing,
a ball-shaped burnishing tool rolls without slipping against the surface being processed, deforming the
asperity summits produced in the pre-machining operation (Figure 2b). Ball burnishing is used to smooth
and harden the surface, reduce shape defects, carve lubrication microgrooves and increase fatigue strength.
In some cases, ball burnishing can replace grinding and lapping operations.
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Figure 2. Schema of ball burnishing process of flat surface on vertical machining centre: (a) ball
burnishing kinematics, (b) principle of ball burnishing of the surface after laser cutting (v—speed,
Fn—burnishing force) (1—burnishing tool, 2—sample, 3—holder, 4—vice).

Laser-cut C45 steel specimens were ball-burnished on an FV-580a vertical machining centre
(MOC Mechanicy Pruszków, Pruszków, Poland), using a special burnishing tool. The mechanically
controlled burnishing tool comprises a casing enclosing a helical spring, which allows to press the
working unit attached to the spring against the workpiece. The burnishing machine is equipped with a
replaceable tip with a dn diameter ball made of Si3N4 silicon nitride. The ball exhibits low adhesion
to steel.
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A schematic of the ball burnishing operation is shown in Figure 2a. The burnishing tool (1)
is secured in the spindle; the machine table with the vice moves linearly at speed v, causing the
burnishing ball, which is part of the tool mounted in the non-rotating milling spindle, to roll against
the workpiece. After each pass, the milling table does a transverse motion that corresponds to path
interval fw. During ball burnishing, flat specimens (2) were fixed in a holder (3), which was clamped
between the jaws of a vice (4) mounted on the table of the machine tool.

The ball burnishing operation was carried out using Mobile Cut cooling-lubricating liquid
(Mobilcut 100, Mobile, Bavaria, Germany). The parameters of the operation are presented in Table 1.
The parameters were selected based on preliminary research. The sample size was established as n = 7.
Figure 3 presents the surface after laser cutting and laser cutting and ball burnishing.

Table 1. Ball burnishing conditions.

Burnishing Force Fn, N Path Interval fw, mm Ball Diameter dn, mm

300

0.17

8

510
720
930

720

0.05
0.28
0.40

0.17
12
16

Speed v = 2500 mm/min

Number of passes i = 1
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Three-dimensional topography measurements were performed using a Hommel-Etamic T8000RC
120–140 mechanical roughness tester (Jenoptik, Villingen-Schwenningen, Germany). The scanned
area was 6 mm × 6 mm. The TKU300 measuring tip travelled along measuring paths which
were perpendicular to the traces of the asperities produced by machining. Hommel Map Basic
software(Version 6.2, Jenoptik, Villingen-Schwenningen, Germany) was used to determine 3D surface
roughness parameters.

The microstructure of laser-cut specimens and laser-cut and burnished specimens was assessed
using a Nikon Eclipse MA 100 metallographic microscope (Nikon, Castle Donington, UK) and a
PhenonProX scanning microscope (Thermo Fisher Scientific, Massachusetts, Waltham, MA, USA).

Microhardness measurements were made using the Vickers method in accordance with EN
ISO 6507-1: 2018, using metallographic specimens prepared in a standard manner. An LM 700at
microhardness tester (Leco, St. Joseph, MI, USA) was used at indenter loads of 10 (HV0.01) and
50 g (HV0.05). The results of the microhardness measurements were used to determine the hardness
increase ∆HV and the thickness of the layer hardened by ball burnishing gh (Figure 4).
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hardened layer gh.

Residual stress tests were carried out using a mechanical method [45]. Residual stresses in the
surface layer of laser-cut specimens and specimens subjected to laser cutting followed by ball burnishing
were calculated on the basis of specimen deformations that were revealed when the sequential layers
of the material in which these stresses resided were removed. Layers were removed by chemical
etching in a 4% nitric acid solution. Chemical etching was carried out on a special stand. The sample
deformation value was measured with a digital sensor, the measuring tip of which was in contact with
the surface of the etched sample. Measurement data were sent to a computer. Measurements of sample
deflection were carried out with an accuracy of up to 0.0001 mm.The data from these tests were used
to plot a graph showing the distribution of residual stress as a function of distance from the surface.
This allowed us to determine the absolute value of compressive residual stresses σmax and the depth of
compressive stresses gσ (Figure 5).
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3. Results

3.1. Surface Roughness

Figure 5 shows the topography and a general view of a laser-cut surface. The surface formed in a
laser cutting operation has numerous peaks and valleys (Figure 6a). Two zones with different levels of
roughness are clearly visible in the images. In the zone where the laser beam entered the workpiece
(A), the surface is covered with fine, evenly spaced straight drag lines. In the laser beam exit zone
(B), the drag lines are curvilinear and deviate from standard slope (the intended path of the beam).
During cutting, the layer of liquid metal in the exit zone becomes thicker and sticks to the bottom face
and edge of the workpiece, creating a zone with large irregularities. This phenomenon is associated
with an increase in the viscosity of the material being cut. As a result of uneven and rapid cooling of
the molten metal, discontinuities and microcracks appear on the surface (Figure 6b,c).
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The effect of burnishing force Fn on the roughness parameters Sa and Sz is shown in Figure 7.
There is a visible reduction in the roughness parameters Sa and Sz in relation to the values of these
parameters after laser cutting. An increase in burnishing force Fn in the range from 300 to 720 N
caused a decrease in the surface roughness parameters Sa and Sz. This was due to the fact that as the
burnishing force Fn increased, the burnishing ball penetrated deeper into the workpiece, which resulted
in more effective smoothing of asperities on laser-cut surfaces. The application of a burnishing force
Fn = 930 N resulted in only a slight increase in Sa and Sz, which may have been associated with
excessive deformation of the surface of the workpiece.
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Figure 8 shows the effect of path interval on surface roughness. An increase in path interval
caused an increase in the values of Sa and Sz. At greater values of path interval fw, the tool paths are
spaced farther apart from each other, which results in an uneven deformation of the striped structure
and, ultimately, a surface with a greater roughness. The eight-fold increase in the path interval fw
increased the Sa roughness parameter by 63%. On the other hand, during ball burnishing of the
aluminium alloy EN AW-AlCu4MgSi (A), a two-fold increase in the path interval fw translated into an
increase in the Sa parameter by 78% [8].
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A burnishing ball with a smaller diameter dn makes contact with the workpiece over a smaller
area, which allows high surface pressures to be achieved, resulting in more intensive levelling of
asperities. As a result, a surface with a lower roughness is obtained (Figure 9).
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cutting and ball burnishing (Fn = 720 N, fw = 0.17 mm).

In this study, the surface roughness parameters Sa and Sz were reduced by 21% to 60% relative
to the values obtained after laser cutting. A similar reduction (40% to 94%) in surface roughness
parameters was reported for 41Cr4 steel specimens subjected to ball burnishing [5]. The changes
in the values of the roughness parameters obtained in the present experiment are also similar to
those reported in [42]. Centrifugal shot peening of laser-cut C45 steel specimens allowed researchers
to reduce the Ra parameter by 46% to 79% and the Rz parameter by 42% to 77% [42]. The finding
that centrifugal shot peening led to larger changes in roughness parameters is associated with the
fact that the burnishing elements used in the two processes impact the surface of the workpiece in
different ways. During centrifugal shot peening, the balls hit the workpiece at a small angle, which,
in addition to deformation, causes intensive shearing of asperity summits in the hard material [42].
By contrast, during ball burnishing, asperity summits are flattened out as the ball comes in contact
with the processed surface.

A comparison of surface topographies as a function of the diameter of the burnishing tool shows
that the asperities on the surface burnished with a dn = 8 mm ball are evenly deformed, even though
the traces left by laser cutting have not been levelled out (Figure 10a). There is a visible reduction in
the differences in asperities between the beam entry and beam exit zones. The summits of asperities
were partially flattened out. When a ball with a diameter dn = 12 mm was used, the drag lines were
slightly flattened (Figure 10b). The differences in surface roughness between the beam entry and beam
exit zones are still visible. A comparison of the surfaces obtained using burnishing balls with different
diameters (dn = 8 mm vs. dn= 12 mm) shows that the maximum height of the surface profile obtained
with the 8 mm ball is about 32% lower than that obtained using the 12 mm ball. In the case of the
surface burnished with the dn = 8 mm ball, the asperity peaks are more intensively reduced than the
valleys, compared to the surface burnished with the dn = 12 mm ball. The largest height of the surface
after burnishing with the dn = 8 mm ball decreased by 68% relative to the value obtained after laser
cutting; burnishing with the dn = 12 mm ball reduced this parameter by 49%.
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Figure 10. Surface topographies specimens after laser cutting and ball burnishing: (a) dn = 8 mm,
(b) dn = 12 mm (Fn = 720 N, fw = 0.17 mm).

Figures 11–13 show the effect of ball burnishing parameters on skewness Ssk. The changes
in skewness Ssk as a function of the analysed burnishing parameters were similar to those for the
roughness parameters Sa and Sz. An increase in burnishing force Fn in the range from 300 to 720 N
caused a “more complete” deformation of the stripes formed by laser cutting. The peaks of asperities
were more strongly deformed than the valleys, which caused an increase in the absolute value of
skewness (Figure 11). At Fn = 930 N, a reduction in the absolute value of Ssk was obtained, which was
most likely due to material flow.

At path intervals in the range fw = 0.05–0.28 mm, only very small changes in the value of Ssk
were observed (Figure 12). When the path interval was greater than fw = 0.28 mm, there was no
significant increase in the absolute value of Ssk in relation to the value observed for laser-cut parts.
This can be explained by the fact that at large path intervals, the asperity summits do not undergo
complete deformation. As a result, the surface of the processed material features spots that have not
been burnished.
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Figure 13. Effect of ball diameter dn on the parameter Ssk of specimens after laser cutting and ball
burnishing (Fn = 720 N, fw = 0.17 mm).

The use of variable ball diameters dn leads to small changes in Ssk as a function of this parameter,
which fall within the range of standard deviation (Figure 13). The absolute values of Ssk of ball-burnished
surfaces are several times higher than the values obtained for laser-cut parts, which is suggestive
of an increase in the “functionality” of the processed surface. A surface with a negative skewness
shows a greater capacity to transfer contact loads and a lower tribological wear in the presence of a
lubricant [46].

Ball burnishing of laser-cut surfaces increased the absolute value of skewness from 90% to 820%
in relation to the value obtained after laser cutting. In [14], the absolute value of Ssk was increased
from 48% to 268% during the ball burnishing of milled X38CrMoV5-1 martensitic steel.

3.2. Microstructure and Microhardness

During laser cutting, the material being cut is strongly heated and then cooled down, which leads
to the hardening of the material around the cut edge. The original ferrite-pearlite structure of C45 steel
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(Figure 14a) undergoes changes. The HAZ that forms around the cut edge has a different structure
from the raw material. Martensite needles as well as ferrite and martensite are visible in the HAZ
just next to the edge (Figure 14b). The laser cutting process was too short-lasting for ferrite grains to
become enriched with carbon, which led to the formation of low-carbon martensite. Perlite, on the
other hand, changed into high-carbon martensite.
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Figure 14. Microstructure of C45 steel: (a) before laser cutting, (b) heat affected zone (HAZ) after laser
cutting (light optical microscopy, etched by 2% Nital).

In laser-cut specimens, the zone in which changes in microhardness occur is 0.3 mm wide
(Figure 15). The microhardness increase ∆HV in the area of the cut edge is about 330 HV0.05, and it
decreases away from the edge and deeper into the material, to reach core microhardness (Figure 15).
Though the hardness and the thickness of the hardened layer increase only slightly as a result of ball
burnishing (Figure 15), the increase is likely to translate into enhanced resistance to abrasive wear [22].
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Figure 15. Microhardness distribution of C45 steel element surface layer after laser cutting and laser
cutting and ball burnishing (Fn = 720 N, fw = 0.17 mm, dn = 8 mm).

The ball-burnished surface layer constitutes a collection of plastically deformed crystals.
This means that ball burnishing leads to structural changes and changes in the hardness of the
material. Figure 16a shows the microstructure of laser-cut-and-ball-burnished material. In the edge
zone with an HV 0.01 microhardness of 731.4 HV (Figure 16b), the martensite laths were broken up
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into smaller elements (fragmentation). As the tool comes in contact with the workpiece, phenomena
occur that contribute to the defragmentation of the edge zone.
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Figure 16. Microstructure steel C45 after laser cutting and ball burnishing (Fn = 720 N, fw = 0.17 mm,
dn = 8 mm): (a) burnishing area and core material, (b) core material (scanning microscope PhenonProX).

The hardness increase ∆HV and the thickness of the hardened layer gh depend on technological
parameters. An increase in burnishing force Fn leads to an increase in cold-work energy, which,
when accumulated, causes an increase in the hardness of the areas close to the surface of the workpiece
(Figure 17). The greatest microhardness increase was obtained when the burnishing force increased in
the range from 300 to 510 N. At burnishing forces greater than Fn = 510 N, the effect of this parameter
on microhardness increase clearly decreased, which was associated with the occurrence of the state
of saturation. The hardened layer was from 19 to 40 µm thick and its thickness increased with the
increase in burnishing force, with the reservation that for forces in the range of 720–930 N, the increase
in microhardness and thickness of the hardened layer was small.
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Figure 17. Influence of burnishing force Fn on microhardness increase ∆HV and thickness of the
hardened layer gh of specimens after laser cutting and ball burnishing (fw = 0.17 mm, dn = 8 mm).

When the burnishing tool is applied to the workpiece at larger intervals fw, the material becomes
less structurally homogeneous. The channels carved by the ball are spaced farther apart from one
another, which results in uneven deformation of the machined surface and ultimately translates
into a smaller microhardness increase ∆HV and a decrease in the thickness of the hardened layer gh
(Figure 18). The small hardness increase and the low thickness of the layer in which changes occur
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may be associated with the martensitic structure of the material, which is moderately susceptible to
cold working.
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Figure 18. Influence of path interval fw on microhardness increase ∆HV and thickness of the hardened
layer gh of specimens after laser cutting and ball burnishing (Fn = 720 N, dn = 8 mm).

Figure 19 shows the effect of ball diameter dn on the microhardness increase ∆HV and the thickness
of the hardened layer gh. A maximum microhardness increase was obtained for the ball with the
diameter dn = 8 mm, and the largest thickness of the hardened layer was for the ball with the diameter
dn = 16 mm. For the investigated ball diameter range, changes in ∆HV and gh were small and fell
within the range of standard deviation. Changes in ∆HV and thickness gh are associated with an
increase in the radius of curvature of the ball, which increases with dn.
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Figure 19. Influence of ball diameter dn on microhardness increase ∆HV and thickness of hardened
layer gh specimens after laser cutting and ball burnishing (Fn = 720 N, fw = 0.17 mm).

In the present study, the maximum hardness increment for laser-cut-and-ball-burnished C45 steel
specimens was about 18%, which is similar to the results obtained in [4], where the degree of strain
hardening was over 10% for steel with a hardness of 55 HRC and about 20% for steel with a hardness
of 35 HRC.
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3.3. Residual Stress

During laser cutting, the molten material re-solidifies as a result of the action of the laser beam,
a process that takes place in unstable conditions. This gives rise to tensile stresses in the surface layer
(Figure 20). In the specimens tested in the present study, these stresses resided at depths down to
about 0.05 mm. Ball burnishing generates compressive residual stresses in the surface layer (Figure 20),
whose value and depth depend on the technological parameters of the burnishing operation. The type
of residual stresses generated in the surface layer of the workpiece is important from the point of view
of the functional properties of the part, e.g., increased resistance to fatigue wear [22].

An increase in burnishing force Fn caused an increase in the absolute value of compressive
residual stress (Figure 21); the largest changes in residual stress were observed for forces in the range
of Fn = 510–720 N. When the ball was pressed against the workpiece with a greater force during a
pass, the deeper-lying deformed zones elastically compressed the areas lying closer to the surface.
The burnishing force had a smaller effect on the depth of accumulation of compressive residual
stresses that lie at depths of 0.28–0.33 mm. The highest compressive stresses and the largest depth of
accumulation of compressive residual stresses were obtained for Fn = 930 N.
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Figure 22 shows the effect of path interval fw on the maximum value of compressive residual
stresses and the depth of their accumulation. An increase in fw means that burnishing marks are
spaced farther apart from one another. The surface being processed is deformed to a lesser degree,
which results in a decrease in the absolute maximum value of compressive residual stresses in the
surface layer of the ball-burnished part. The depth of residual stresses does not change significantly
for path intervals in the range fw = 0.05–0.17 mm. At higher path intervals, there is a visible decrease in
the depth of penetration of residual stresses.
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As the diameter of the ball increases, the absolute value of maximum residual stresses σmax

decreases, which can be explained by the increase in the radius of curvature of the ball and a decrease
in pressure per unit area. At the same time, the depth of penetration of compressive residual stresses
gσ increases (Figure 23). When the 16 mm diameter ball was used, the depth of penetration of
compressive residual stresses was 20% greater and the value of those stresses was 17% smaller than for
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Figure 23. Influence of ball diameter dn on the value of maximal residual stress σmax and the depth of
the accumulation compressive residual stress gσ of laser cut and ball burnishing specimens (Fn = 720 N,
fw = 0.17 mm).
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The use of ball burnishing as a finishing treatment for laser-cut parts led to the formation of
compressive residual stresses in the surface layer of the workpiece. Grinding, which has so far been
used as a standard procedure for finishing laser-cut parts, generates tensile stresses in the surface
layer of the material [44]. The maximum values of compressive residual stress σmax obtained in
the present experiments were lower than those obtained by centrifugal shot peening, for which
|σmax| = 448–737 MPa; however, the depth of compressive residual stresses was similar to that obtained
in centrifugal shot peening tests [42].

4. Conclusions

The results of the ball burnishing experiments conducted using laser-cut C45 steel parts lead to
the following conclusions:

1. Ball burnishing of laser-cut C45 steel parts reduced the surface roughness parameters Sa and Sz
by 21% and 60%, respectively, in relation to the values obtained by laser cutting. The change
parameters Sa and Sz becoming more prominent for the variable Fn.

2. Ball burnishing leads to the reorganization of the geometric structure of the surface. As a result of
burnishing, the absolute value of skewness Ssk increased by 90% to 820% relative to the value
obtained by laser cutting.

3. Ball burnishing of laser-cut parts caused structural changes in the material. Martensite laths were
broken up into smaller fragments (fragmentation).

4. The maximum microhardness increment obtained during ball burnishing was from ∆HV = 29 HV0.05
to ∆HV = 95 HV0.05, and the depth of the hardened layer gh ranged from 16 to 40 µm.
The microhardness of the surface layer and the thickness of the hardened layer gh increased with
an increase in burnishing force Fn. An increase in ball diameter caused a slight increase in gh.

5. Ball burnishing generated compressive residual stresses in the surface layer of laser-cut parts,
whose absolute maximum value ranged from 257 to 380 MPa. The stresses resided at a depth
of 0.25–0.40 mm, depending on the technological parameters of the burnishing process. As the
burnishing force Fn increased, the absolute value of compressive residual stress σmax and the
depth of compressive stresses gσ. On the other hand, the use of a ball with a larger diameter
caused a decrease in the value of compressive residual stress σmax
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7. Grochała, D.; Berczyński, S.; Grządziel, Z. Modeling of burnishing thermally toughened X42CrMo4 steel
with a ceramic ZrO2 ball. Arch. Civ. Mech. Eng. 2017, 17, 1011–1018. [CrossRef]

8. Kalisz, J.; Zak, K.; Grzesik, W.; Czechowski, K. Characteristics of surface topography after rolling burnishing
of EN AW-AlCu4MgSi(A) aluminium alloy. J. Mach. Eng. 2015, 15, 71–80.

9. Dudzinska, S.; Szydlowski, M.; Grochala, D.; Bachtiak-Radka, E. Application of Correlation Function for
Analysis of Surface Structure Shaping by Hybrid Manufacturing Technology. In Advances in Macufacturing,
Lecture Notes in Mechanical Engineering; Springer International Publishing: Cham, Switzerland, 2017;
pp. 651–659.
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