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Abstract: Accurate glucose prediction along a long-enough time horizon is a key component for
technology to improve type 1 diabetes treatment. Subjects with diabetes might benefit from supervi-
sion and control systems that accurately predict risks and trigger corrective actions early enough
with improved mitigation. However, large intra-patient variability poses big challenges to glucose
prediction. In previous works by the authors, clustering and local modeling techniques with seasonal
stochastic models proved to be efficient, allowing for good glucose prediction accuracy for long
prediction horizons. Continuous glucose monitoring (CGM) data were partitioned into fixed-length
postprandial time subseries and clustered with Fuzzy C-Means to collect similar behaviors, enforcing
seasonality at each cluster after subseries concatenation. Then, seasonal stochastic models were
identified for each cluster and local predictions were integrated into a global prediction. However,
free-living conditions do not support the fixed-length partition of CGM data since daily events dura-
tion is variable. In this work, a new algorithm is provided to overcome this constraint, allowing better
coping with patient’s variability under variable-length time-stamped daily events in supervision and
control applications. Besides predicted glucose, two real-time indices are additionally provided—a
crispness index, indicating good representation of current glucose behavior by a single model, and
a normality index, allowing for the detection of an abnormal glucose behavior (unusual according
to registered historical data). The framework is tested in a proof-of-concept in silico study with ten
patients over four month training data and two independent two month validation datasets, with and
without abnormal behaviors, from the distribution version of the UVA/Padova simulator extended
with diverse sources of intra-patient variability.

Keywords: type 1 diabetes; glucose prediction; seasonal local models; Fuzzy C-Means

1. Introduction

Diabetes represents one of the major health challenges of the 21st century. According
to [1], 463 million people have diabetes worldwide in 2019, and this figure is estimated to
rise to 700 million by 2045. Type 1 diabetes (T1D), the most severe kind, affects about 10%
of people with diabetes. In T1D, β-cells in the pancreas are destroyed by an autoimmune
response. These cells secrete insulin, which is an essential hormone needed to maintain
blood glucose (BG) concentrations in a narrow range (70–140 mg/dL). Insulin promotes the
transport of glucose into the cell and its lack translates into elevated BG (hyperglycemia).
Thus, T1D treatment consists in insulin replacement by means of subcutaneous administra-
tion of insulin analogs in order to avoid the long-term complications due to hyperglycemia.
This is carried out either by multiple daily injections with insulin pens or continuous
infusion through insulin pumps. However, overdosing of insulin can provoke too low BG
concentration (hypoglycemia), with severe consequences if untreated, including comma
and death. Good BG control is challenging, and requires a lot of effort from patients,
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who must frequently monitor their BG levels and take dosing decisions to avoid hyper-
glycemia and hypoglycemia. Nowadays, glucose concentration can be measured in a
quasi-continuous way by using continuous glucose monitoring (CGM) devices, which
consist of an electrochemical sensor measuring interstitial glucose at the subcutaneous
space and estimating BG, which is transmitted periodically (every 5 min) to an external
receiver [2].

Accurate glucose prediction along a given time horizon is a key component in current
diabetes technology. Patient monitoring systems must raise warnings of risks enough
time ahead to successfully prevent extreme hyperglycemic and, especially, hypoglycemic
episodes [3]. In sensor-pump integrated systems, predicted glucose levels can trigger
actions by the insulin pump, like automatic insulin infusion suspension to mitigate im-
pending hypoglycemia [4]. Glucose prediction is also an important feature in artificial
pancreas (AP) systems, that is, closed-loop glucose control systems where a control algo-
rithm governs the insulin pump from CGM data [5,6]. AP research has been intense in the
last decade. A first commercial system was launched in late 2017, a second one in early
2020, and many more are on the way [7,8]. Glucose prediction can be an integral part of
the control algorithm itself, such as in Model Predictive Control-based AP systems [9].
Therefore, high-reliability glucose prediction models have the potential to significantly
improve diabetes management as part of a monitoring system, integrated systems or an AP.

A huge number of alternatives for BG prediction in T1D have appeared in the literature,
such as, among others, linear empirical dynamic models, multivariate nonlinear regression
techniques, extended Kalman filters, data mining or artificial intelligence approaches [10].
In [11,12], seasonal stochastic local models are introduced for the first time in the field
aiming at improved glucose prediction under high intra-patient variability. The rationale
lies on the fact that observed behaviors in past similar scenarios can help improving
prediction at the present moment. Seasonal stochastic time series models such as SARIMA
(Seasonal AutoRegressive Integrated Moving Average), or SARIMAX (SARIMA including
eXogenous variables), are meant to capture regular periodical patterns in time series
data [13]. Although seasonality is not a priori a characteristic of glucose data in T1D,
it can be enforced partitioning historical CGM data into fixed-length time subseries and
concatenating them, after a clustering process collecting similar behaviors based on a
given similarity measure. Then, seasonal stochastic models can be identified for each
cluster and their predictions integrated to provide a global glucose prediction. Seasonal
models have exhibited relatively higher postprandial BG prediction accuracy for long
prediction horizons [11], including challenging scenarios with variety of meals and exercise
sessions [12]. In this latter case, SARIMAX models were used including insulin infusion
and energy expenditure from a wearable as exogenous inputs.

In the above works, a concatenation of fixed-length postprandial time subseries driven
by mealtime was considered, from controlled studies. Although this can be appropriate to
test performance and concepts underlaying the new prediction methodology, its application
in free-living conditions do not support fixed-length partition of CGM data, as required
to enforce seasonality. Daily events such as mealtime and night periods happen at non
regular times and have variable lengths. In this work, algorithms are modified to overcome
this constraint, allowing to cope with patient’s variability under variable-length time-
stamped events, and paving the way to its application in supervision and control in
T1D. CGM data is partitioned into a collection of “event-to-event” time subseries whose
length is regularized (unified) by adding fictitious blank samples where needed to enforce
seasonality. This imposes the use of new clustering algorithms able to deal with these blank
samples, which correspond to missing (incomplete) data. Main events are mealtimes and
night periods, although other events could be considered as long as a timestamp exists, such
as reported hypoglycemia treatments or exercise sessions. Besides predicted glucose, two
real-time indices are additionally provided indicating crispness of the prediction (degree
of representation of current glucose behavior by a single model), and normality of the
observed behavior (degree of representation by registered historical data), allowing for the
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detection of patient’s abnormal states (unusual or not seen before in historical data), which
might trigger conservativeness in the insulin therapy for the sake of safety.

2. Materials and Methods
2.1. Data Overview

Three datasets were generated for the ten adults virtual cohort in the educational
version of the UVA/Padova simulator [14], which was extended with an exercise model [15],
and diverse sources of intra-patient variability:

• Training dataset: Four-month data was generated for the ten patient cohort following
open loop therapy (basal insulin and ratios provided in the simulator were used).
The 15-15 rule was used to treat hypoglycemia (15 g of carbohydrates were adminis-
tered when glucose went below 70 mg/dL, and repeated if after 15 min hypoglycemia
was still present). A nominal day with three meals of 40, 90 and 60 g of carbohydrates
at 7:00, 14:00 and 21:00 h was considered. Actual mealtime and carbohydrate intake
varied around nominal values following a normal distribution with a standard de-
viation of 20 min for mealtime, and with a 10% coefficient of variance for meal size.
Although no study on dietary habits was performed to set this amount of variability
on meal size, a 10% coefficient of variance managed to challenge this in silico study
with a wide enough variety of meal sizes, ranging from 20 to 120 g, distributed around
the chosen nominal values. Meal absorption dynamics was changed at each meal by
randomly selecting one of meal model parameter sets available from the simulator,
resulting in faster or slower meal absorptions especially due to nonlinearities in gastric
emptying emulating a slow down of carbohydrates absorption produced by fats [14].
Additionally, meal absorption rate (kabs) varied with a uniform distribution in ±30%,
and carbohydrate bioavailability ( f ) in ±10% around selected nominal values. Carb
counting errors by the patient were considered with a uniform distribution between
−30% and +10%, following results in [16] where a trend to meal underestimation is re-
ported. Insulin absorption pharmacokinetics (kd, ka1, ka2) varied in ±30%, according
to the intra-patient variability reported in [17]. Circadian variability of insulin sensi-
tivity (Vmx, Kp3) was considered with variations in ±30% around nominal sensitivity,
reproducing changes in basal insulin requirements in the adult population reported
in [18]. The reader is referred to [14] for the model and parameters details. Finally,
missed boluses were sporadically generated with a minimum separation of 14 days
between them in order to better mimic imperfect data collection. These postprandial
periods were later excluded to compose the training dataset from collected data.

• Validation dataset 1 (“normal”): Two-month data was generated for the 10-patient
cohort for the same scenario as data used for training. Thus, events and variability in
this validation dataset is expected to be well represented in training data (it contains
“normal” data).

• Validation dataset 2 (“abnormal”): Two-month data was generated for the 10-patient
cohort adding to the above scenario missed boluses (once per week), and three
moderate intensity (50% VO2max) exercise sessions per week (on Tuesday, Thursday
and Saturday). Nominal duration of the exercise duration was 60 min, and nominal
start time at 18:00 h. Actual duration and start time changed at each session following
a normal distribution with coefficient of variance of 10% for duration and standard
deviation of 20 min for start time. Since training data does not contain missed boluses
and exercise, these events are expected not to be well represented in training data (the
dataset contains “abnormal” data).

In all the above datasets, besides CGM data, time stamps and labels for the following
events were generated: Breakfast, Lunch, Dinner, Night and Hypoglycemia treatment. The Night
event was considered to start 6 h after dinner. All rescue carbs administered in a hypo-
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glycemia treatment were gathered in a single Hypoglycemia treatment event, starting at the
time of the first rescue carb intake. This will be represented by the set of time-ordered pairs

E := {(tei ,Lei ) | i = 1, . . . , ne}, (1)

where tei is the timestamp for the i-th event, with tei < tei+1 , Lei is the label of the i-th
event, Lei ∈ {Breakfast, Lunch, Dinner, Night, Hypoglycemia treatment}, and ne is the number
of events.

In a clinical context, assumption of existence of time stamps for meals and night period
is a mild one. Mealtime can be automatically extracted from insulin pump information
(bolus calculator), or from the recently marketed smart pens in a multiple daily injections
therapy. The start of a night period is defined algorithmically and no input is necessary
from the patient. Hypoglycemia occurrence can be detected from CGM data and only con-
firmation of rescue carbs intake by the patient would be needed. However, this information
in not critical since the amount of carbs is not needed. In the absence of this confirmation,
assumption of treatment of any hypoglycemia occurrence might be assumed.

2.2. Enforcing Seasonality: CGM Data Partitioning

As a first step, seasonality must be enforced prior to building seasonal stochastic local
models from the training data set. Provided that the starting time and duration of events
in the CGM historical data is variable between event instances, the original CGM time
series data is partitioned into a set of “event-to-event” time subseries from the reported
timestamps and labels in the set E . A single partition can be considered if event labels are
neglected, or multiple partitions can be generated according to some grouping of event
labels. This latter option has the advantage of building prediction models more specific to
well differentiated events (for instance a night compared to a meal), although it requires
events labeling. A compromise solution is adopted here, with consideration of three
partitions—meals, night and hypoglycemia treatment. No difference between breakfast,
lunch and dinner is needed, requiring only information about mealtime and hypoglycemia
occurrence, which can be extracted automatically. Thus, consider

E = EM ∪ EN ∪ EH, (2)

where

EM := {(tei ,Lei ) | Lei ∈ {Breakfast, Lunch, Dinner}} (3)

EN := {(tei ,Lei ) | Lei ∈ {Night}} (4)

EH := {(tei ,Lei ) | Lei ∈ {Hypoglycemia treatment}}. (5)

Given the index sets

IM := {i | (tei ,Lei ) ∈ EM} (6)

IN := {i | (tei ,Lei ) ∈ EN } (7)

IH := {i | (tei ,Lei ) ∈ EH} (8)

and denoting by [G]t1
t0
(t) := {G(t) | t0 ≤ t ≤ t1} to the time subseries given by the segment

of CGM data from t0 to t1, the following CGM data partitions are built:

ΠM := {[G]
tei+1
tei

(t) | i ∈ IM} (9)

ΠN := {[G]
tei+1
tei

(t) | i ∈ IN } (10)

ΠH := {[G]
tei+1
tei

(t) | i ∈ IH}. (11)
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Therefore, each CGM time subseries comprises from a given event timestamp, tei ,
to the next event timestamp, tei+1 .

In order to enforce seasonality, time subseries length must be regularized. To this
end, a maximum expected length for an event-to-event period must be set. In this work,
the period with the maximum duration for each partition ΠM, ΠN , and ΠH for the training
data is computed, denoted here as LM, LN , and LH, respectively. Given the time subseries

[G]
tei+1
tei

(t) ∈ Rli , then LM := maxi∈IM li, LN := maxi∈IN li, and LH := maxi∈IH li. Time
subseries with length li smaller than the corresponding maximum length (LM, LN , LH), are
expanded with blank values (“not a number”—NaN) until reaching maximum length. As a
result, time subseries length is regularized and seasonality can be enforced (see Section 2.4).
Remark that most of time subseries will have blanks in the final positions which should be
adequately treated as missing data in the clustering and identification processes. As well,
regularized length will be different for each partition ΠM, ΠN , and ΠH.

Other events may be present in the historical data besides the considered ones, like
for instance snacks and exercise. If these events are announced by the patient or can be
automatically extracted from the devices, they could be included in the list of events driving
data partition. Alternatively, they can be treated as exogenous inputs, as it was the case
of exercise in [12] by means of signals from a wearable. Unannounced and unmeasurable
events affecting CGM will be part of the data variability, which will be adequately treated
in the clustering step.

2.3. Enforcing Similarity: Data Clustering

Once CGM data is partitioned into event-driven glucose time subseries, data in a
partition are clusterized to gather similar glucose responses. Fuzzy C-Means (FCM) clus-
tering [19] was successfully applied in previous works to the classification of similar
postprandial periods [12]. However, FCM requires data to be complete for the computa-
tion of cluster prototypes (centroids) and distance measures. Thus, FCM is not directly
applicable to the problem at hand due to the presence of missing data resulting from the
seasonality enforcing step described in the previous section. Therefore, the Partial Distance
Strategy FCM (PDSFCM) algorithm [20] is used here to overcome CGM incomplete data.
Given a data set X = {x1, x2, . . . , xn}, xi ∈ RL, i = 1, . . . , n, PDSFCM partitions data into
c > 1 clusters through the minimization of the objective function

Jm(U, V; X) =
c

∑
i=1

n

∑
j=1

um
ij d2(xj, νi), (12)

where V = (ν1, ν2, . . . , νc) is the vector of sought cluster prototypes νi ∈ RL, where L is
the regularized length in the partition under consideration, that is, LM, LN , or LH, d is a
partial distance function and m ∈ [1, ∞) is the fuzziness parameter. The following partial
distance is used here [20]

d(a, b) :=
L

L− B

√√√√ L

∑
i=1

(Di)2 (13)

Di :=
{

0 if ai or bi is blank
ai − bi otherwise,

(14)

for a, b ∈ RL and B the number of blanks (in one vector, or the other, or both). Remark
that for B = 0, the above distance is the standard Euclidean distance. The partition matrix
U = [uij], i = 1, 2, . . . , c, j = 1, 2, . . . , n, collects the membership value of each data xj to
each cluster i, where uij ∈ [0, 1], ∑c

i=1 uij = 1, ∀j and 0 < ∑n
j=1 uij < n ∀i. In our case,

the data set X corresponds to each partition Π ∈ {ΠM, ΠN , ΠH} of glucose time subseries

[G]
tei+1
tei

(t) after length regularization as described in Section 2.2.
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There exists a large variety of indices to determine the optimal number of clusters.
In this work, the Fukuyama-Sugeno (FS) index was used [21].

2.4. Local SARIMA Models

After data in a partition are clusterized, local seasonal models are trained for each
cluster. A SARIMA model, as opposed to its non-seasonal counterpart ARIMA model,
includes new seasonal autoregressive (SAR) and seasonal moving-average (SMA) terms
introducing dependence of an observation at time t on observations and stochastic errors
at lags multiple of the model seasonality period s [22]. Combination with AR and MA
components will introduce dependence on observations and stochastic errors previous
to t, t− s, t− 2s, . . . up to a given number of past data depending on the corresponding
model component orders. Remark that this implies that CGM data before each event time
is needed to properly feed the SARIMA model at t = tei and during the first computed
samples depending on the AR order. This will be referred to as pre-sampling data, which
length must accommodate to the maximum expected AR order, denoted as Pr. Then,
a CGM time series can be built from the time-ordered concatenation of regularized-length

time subseries [G]
tei+1
tei

(t) ∈ RL in a cluster, preceded by the corresponding pre-sampling
data, of length Pr (see Figure 1). The resulting concatenated time series G(t) will have
seasonality s := L + Pr. Remark there will be as many concatenated CGM time series like
the one in Figure 1 as number of clusters (c), gathering together similar behaviors. Then,
a seasonal stochastic local model can be identified for each cluster.

Figure 1. An illustrative example of a concatenated time series for seasonal stochastic local models identification. Each
element in a cluster, corresponding in this case to glucose responses to meal events regularized to length L, are concatenated
ordered according to the event time stamp, and preceded by pre-sampling data of length Pr. As a result, a seasonal
time series with seasonality s = L + Pr is obtained. Remark that meal events not necessarily are consecutive due to the
clustering process.

In the absence of exogenous inputs, a local SARIMA model for a given cluster can be
expressed in the form:

G(t) = α + w(t)
φp(z−1)ΦP(z−s)∇D

s ∇dw(t) = θq(z−1)ΘQ(z−s)ε(t),
(15)

where G(t) is the glucose concentration at time t, α is a constant term (intercept), w(t)
is the disturbance series, ∇ is the backward difference operator, defined by ∇w(t) :=
w(t)−w(t− 1), d is the non-seasonal integration order of the time series, D is the seasonal
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integration order of the time series (in practice, d and D are usually small, equal to 0, 1 or
2), ∇s is the seasonal backward difference operator, defined by ∇sw(t) := w(t)− w(t− s).
The input ε(t) is the stochastic error following a white noise process ε(t) ∼WN(0, σ2) and
φp(z−1), ΦP(z−s), θq(z−1), and ΘQ(z−s) are polynomials in the lag (back-shift) operator
z−1 of degree p, q, P, and Q, respectively, defined as

φp(z−1) = 1− φ1z−1 − φ2z−2 − · · · − φpz−p

ΦP(z−s) = 1−Φsz−s −Φ2sz−2s − · · · −ΦPsz−Ps

θq(z−1) = 1 + θ1z−1 + θ2z−2 + · · ·+ θqz−q

ΘQ(z−s) = 1 + Θsz−s + Θ2sz−2s + · · ·+ ΘQsz−Qs.

(16)

Model (15) will be expressed in short form as SARIMA (p, d, q)(P, D, Q)s. If the
clustering process is successful, the time subseries in a cluster will be similar, as defined
by the partial distance measure d. Then, a SARIMA model can be identified for each
cluster i, yielding a set of local glucose predictors (one per cluster). Remark that the cost
index during identification will neglect blank data in the residuals computation, as well as
pre-sampling data added during the concatenation. Box-Jenkins methodology [23] is used
in this identification process. Exogenous inputs could also be considered with SARIMAX
models [12], although here only glucose and mealtimes will be considered available.

As a summary, Figure 2 shows the data processing steps during the training phase
prior to local models identification. Figure 3 shows the identification procedure.

Partition 3 SARIMA/X local models identification

● ● ●

● ● ●

● ● ●

● ● ●

● ● ●

● ● ●

● ● ●

● ● ●

● ● ●

● ● ●

● ● ●

● ● ●

Partition 1: postprandial periods (B, L, D)

Long-term CGM data time series

PREPROCESSING 

• Divide CGM into event-to-event periods

• Regularize length adding NaNs

• Store presampling of each period

• If available:
• Create subsets driven by labels
• Divide exogenous data 

Event time stamps

Labels* (optional)                            B            L         D     H  N          B          L         D         N         B              B         L          D    H     N 

Exogenous input (optional) ● ● ●

*Breakfast (B)
Lunch (L)
Dinner (D)
Night (N)
Hypo treatment (H)

…

RAW FREE-LIVING DATA
● ● ●

● ● ●

regularized
periods

periods 
exogenous data 

periods
presampling

● ● ● ● ● ●

C1

clusters            &    prototypes

C2

C3
C4

C5

CLUSTERING

• Use an incomplete data clustering 
algorithm over regularized periods

• Apply to each subset using an index-
based optimal clusters number 

CONCATENATING

• Concatenate time ordered periods in a 
cluster

• Include presampling to each cluster

• Perform the same procedure with 
exogenous data, if available

● ● ●

● ● ●

● ● ●

● ● ●

● ● ●

● ● ●

Partition 2: night periods (N)

regularized
periods

periods 
exogenous data 

periods
presampling

Partition 3: hypo treatment periods (H)

regularized
periods

periods 
exogenous data 

periods
presampling

● ● ●

Partition 1 SARIMA/X local models identification

&

&

&

&

&

TIME SERIES for: Partition 2 SARIMA/X local models identification

● ● ●

● ● ●

● ● ●

● ● ●

&

&

&

&

&

Repeat the same process with all the subsets

Figure 2. Data processing steps during the training phase. Optional event labels may include: Breakfast (B), Lunch (L),
Dinner (D), Night (N), Hypo treatment (H), ...
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Figure 3. Local models identification process during the training phase. Data in a cluster was split in 80% for training and
20% for validation (see Section 2.7).

2.5. Model Integration

Once local models are trained for each cluster, a glucose predictor is built from the
integration of such local models during real-time operation. Consider a given time tp ≥ tek ,
where tek is the latest event timestamp, from which a prediction is to be computed according
to the selected prediction horizon. A total of c local predictions will be available at that
time instant, Ĝi(t|tp), i = 1, . . . , c produced by the models at each cluster. A global glucose
prediction Ĝ(t|tp) will be computed as a weighted sum of the c local predictions, with time-
varying weights γi(tp), as follows

Ĝ(t|tp) :=
c

∑
i=1

γi(tp)Ĝi(t|tp). (17)

The computation of the weights γi(tp) is carried out in a two-step process in an
attempt to discard coarsely non-contributing clusters (very dissimilar behavior of the
cluster center compared to measured CGM data), and then refining the weighting among
the remaining possibly contributing clusters. Given [G]t1

t0
(t) the segment of CGM data from

t0 to t1, and [νi]
t1
t0
(t), i = 1, . . . , c, the corresponding segments for cluster centers, the fuzzy

membership of the segment [G]t1
t0
(t) to the i-th cluster in a given index set I is defined as

ui(t1; t0) :=

 nI

∑
l=1

 d2
(
[G]t1

t0
(t), [νi]

t1
t0
(t)
)

d2
(
[G]t1

t0
(t), [νl ]

t1
t0
(t)
)


1
m−1


−1

, (18)

where nI := |I| is the cardinality of the index set I. Then, weights in (17) are computed
as follows:

• First, fuzzy membership ui(tp; tek ), i ∈ I1 := {1, . . . , c} is computed. That is, similarity
of CGM data and cluster centers from the event onset tek to current time tp is checked.
Given a (possibly time-varying) threshold µmin(tp), a new index set I2 := {i ∈
I1 | ui(tp; tek ) ≥ µmin(tp)} ⊆ I1 is defined, selecting the clusters with high enough
similarity according to the selected µmin. A value µmin(tp) := 0.2 maxi ui(tp; tek ) was
used here, that is, contributions of clusters for which membership is lower than 20%
of the maximum membership are neglected.

• Then, in a second step, fuzzy membership ui(tp; tp −W) to each cluster i ∈ I2 is
computed, where W is a to-be-defined (short) time window length. A time window
W corresponding to 20 min will be considered here.
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Weights γi(tp) are then computed as

γi(tp) :=
{

ui(tp; tp −W) i ∈ I2
0 i ∈ I1 \ I2.

. (19)

Remark that ∑c
i=1 γi(tp) = 1 and γi(tp) can be interpreted as a fuzzy membership

value. We will refer to (17)–(19) as Global Seasonal Model (GSM) prediction.
It must be remarked that at the onset of the next event, tek+1 , the CGM time subseries

from tek to tek+1 , with regularized length L, together with the corresponding pre-sampling
data, must be appended as new data in the concatenated seasonal time series (Figure 1) of
a selected cluster. This is needed because local SARIMA models make use of time-ordered
previous data in the same cluster for their predictions, according to the SAR component
order. The cluster with the highest fuzzy membership ui(tek+1 ; tek ), i ∈ I1, for the CGM
time subseries is selected for this purpose. This should not change representativeness of
the cluster prototype, since high similarity of the new time subseries with respect to cluster
members is expected, whenever training data represents well the diversity of glucose
profiles in a patient. Eventually, online updating of the SARIMA models, or re-clustering
and re-training, can be performed.

2.6. Real-Time Crispness and Normality Indices

Besides predicted glucose, two real-time indices are additionally provided indicating
crispness of the prediction (degree of representation of current glucose behavior by a single
cluster), and normality of the observed behavior, allowing for the detection of patient’s
abnormal states (behaviors too dissimilar to available historical CGM data). It must be
remarked that, in the scope of this work, the concept of normality is not primarily related
to a physiological meaning: normality does not mean patient normality (normoglycemia),
and abnormality does not mean patient abnormality (hyper- or hypoglycemia). On the
contrary, abnormality must be understood as a behavior too dissimilar to available historical
CGM data of a patient. For example, consider that patient A performed exercise regularly in
the past and patient B did not perform exercise at all. This difference will be reflected in the
available historical CGM data of patient A and B used during training, and, consequently,
the identified models using data for patient A will be able to predict well a glycemic
response under exercise, whereas identified models using data for patient B will perform
badly when facing a well distinguishable response to exercise. Therefore, an exercise bout
leading to the same CGM profile will be considered normal for patient A and abnormal
for patient B. Hence, the objective of the normality index will be to inform patient B that
something abnormal is happening in his/her CGM profile and that he/she can not rely on
the prediction of the proposed system. In the case of patient A, nothing will happen in this
case. In order to check the normality index capabilities and performance, in Section 2.1 a
fictitious validation dataset 2 (“abnormal”) has been defined containing missed boluses
and exercise sessions, which are not present in the validation dataset 1 (“normal”). Then,
response to missed boluses and exercise sessions are expected to contain abnormal CGM
segments (those well distinguishable from other glycemic responses in historical data)
in the of the context of this paper, although missed boluses and exercise sessions are
normal in the patients’ daily life. The crispness and normality indices may therefore
provide significant information to the user (and control algorithms) as part of an online
monitoring system.

The “crispness index” (CI) aims at providing information about how much the com-
puted glucose prediction Ĝ(t|tp) is produced by a single model. Since the glucose predictor
is a multi-model system weighted by fuzzy membership values, the index rationale is
that predictions based on a single local model in the set, perfectly matching the system’s
behavior, should be more reliable. This ideal best case is the one with a membership value
γi(tp) of 1 for one of the local models and 0 for the others. On the contrary, the worst
case is that all local models contribute equally to the prediction, with weight 1/c. The
crispness index at time tp is defined as the Manhattan distance, normalized to the interval
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[0, 1], between the vector composed by the membership values γi(tp), i = 1, . . . , c, and the
equally-distributed-membership vector (1/c, 1/c, . . . , 1/c), that is

CI(tp) :=
1

2
(

1− 1
c

) c

∑
i=1

∣∣∣∣γi(tp)−
1
c

∣∣∣∣. (20)

The “normality index” (NI) aims at determining the degree at which the current
behavior is well represented in historical data and forecasting is the result of “interpolation”
among local models predictions (normal behavior), or, on the contrary, the current behavior
is beyond past behaviors and forecasting results from “extrapolation” by some or all the
local models (abnormal behavior). Possibilistic memberships can give some hints in this
case. The possibilistic counterpart of (18), denoted as uPi (t1; t0), representing possibilistic
membership to the i-th cluster referred to the data window [t0, t1] can be computed as

uPi (t1; t0) :=
(

1 + η
(

d2([G]t1
t0
(t), [νi]

t1
t0
(t))

) 1
m−1
)−1

, (21)

where uPi (t1; t0) ∈ [0, 1], and η is a constant. Define now the possibilistic counterpart of
(19) as

γPi (tp) :=
{

uPi (tp; tp −W) i ∈ I2
0 i ∈ I1 \ I2.

(22)

Contrary to fuzzy membership, ∑c
i=1 γPi (tp) = 1 does not necessarily hold now.

In the presence of an abnormal period, far away and not represented by any cluster, equal
memberships to each cluster would be obtained when considering fuzzy membership (18),
resulting from similar distances to all prototypes. The same result would be obtained in a
normal period just in the middle of the available clusters. Nevertheless, if the possibilistic
membership (21) is used, such abnormal period would result in very low membership
values for every cluster. Thus, at a given time tp, the sum of all possibilistic memberships
γPi (tp) provides a measure of the sought concept: the closer to zero, the more abnormal
the period is, not being represented enough by any cluster. Thus, the normality index is
defined as

NI(tp) :=
1
|I2|

c

∑
i=1

γPi (tp), (23)

where normalization by the number of non-zero membership values (cardinality of the
index set I2) is carried out so that NI(tp) ∈ [0, 1]. Abnormal behaviors may be due
to hardware failures, extreme hypoglycemia or hyperglycemia, or any other glycemic
behavior not represented in the historical time series used for training the local models.
When abnormal behaviors are detected, the user should be informed of the extrapolation
being performed. This can highlight the necessity of re-clustering and learning new local
models. To this end, an abnormal behavior warning can be generated when NI(tp) is
below a given tunable threshold NIthr.

Figure 4 summarizes the local models integration procedure to get a glucose prediction,
together with the computation of crispness and normality indices.

2.7. Validation Procedure

The training data set comprised four-month in silico data for a ten patient cohort,
as described in Section 2.1. For each patient, training data was partitioned in ΠM, ΠN ,
and ΠH sets. Clustering and local model training was then applied to each partition,
yielding a set of glucose predictors per patient (one per event groupM, N , andH).
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Figure 4. Real-time operation of the glucose predictor. When a new event is reported, the predictor trained for that event
class (meal, night, or hypo treatment in this work) is selected. This predictor will be composed of a number of cluster
prototypes and local models (dashed boxes PROTOTYPES and SARIMA/X MODELS). Then, at each sampling time tp,
a new glucose measurement G(tp) is received from the CGM, and a predicted trajectory Ĝ(t|tp) is computed considering a
given prediction horizon. To this end, fuzzy memberships to each cluster, γi(tp), provide the weighting factors of predicted
trajectories by the local models, Ĝi(t|tp), following the two-step method described in Section 2.5. Additionally, crispness
and normality indices are computed from fuzzy and possibilistic memberships to each cluster, respectively, as described in
this section, which are provided as outputs together with the predicted trajectory. When the next event happens, the CGM
time series of the last period is added to the cluster with most similar prototype, as well as to the historical data of the local
model associated to that cluster.

On the one hand, local model training was performed by separating data in each
cluster into training and validation data. The first 80% of the available data for each cluster
was used to generate the concatenated time series for model identification (Section 2.4).
The remaining 20% was kept as validation time series. For all time subseries in the
validation data in a cluster, predictions of the corresponding local model were evaluated,
for prediction horizons PH ∈ {15, 30, 60, 120, 180, 240}min, every time step, from starting
time tei up to tei+1 − PH, in order to be able to compute prediction residuals. If the duration
of the time subseries was smaller than PH, then it was discarded. Standard prediction
horizons in the literature are 30 to 60 min. One of the purposes of this in silico study was to
analyze in which extent these values could be extended, since longer prediction horizons
can be beneficial, for instance, in the context of control algorithms. A prediction horizon
of 240 min was considered long enough to represent a postprandial period, and longer
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prediction horizons were considered of no additional value. Standard metrics RMSE
(mg/dL) and MAPE (%) were used to measure forecasting accuracy:

RMSE :=

√
1
n

n

∑
i=1

e2(i) (24)

MAPE :=
100
n

n

∑
i=1

∣∣∣∣ e(i)
G(i)

,
∣∣∣∣ (25)

where n is the number of observations, G(i) denote the ith glucose observation, and
e(i) = G(i)− Ĝ(i) is the forecasting error (residual), with Ĝ(i) the forecast of G(i). Two
definitions of residuals were considered, leading to different forecasting accuracy metrics:

• Residuals of each predicted trajectory G(t|tp), t ∈ [tp, tp + PH]. It evaluates how suc-
cessfully a predicted trajectory fits actual data. Remark that during the identification
process glucose trajectories are sought to be fitted by the model, following the same
rationale in this metrics definition. In this case, for each prediction, PH observations
are available. Metrics were averaged for all computed predictions. Henceforth, this
metrics will be referred to as RMSEtraj and MAPEtraj. This is the metrics used in our
previous works [11,12].

• Residuals of the glucose trajectory built from predictions G(tp + PH|tp). It evaluates
how successfully actual glucose trajectory can be predicted PH time instants ahead.
In this case, for each time subseries in the validation data, and denoting as li the
length of the time subseries, li − PH observations are available for the computation
of residuals. Metrics were averaged for all time subseries in the validation data.
Henceforth, this metrics will be referred to as RMSElast and MAPElast.

On the other hand, glucose predictors performance was evaluated using two indepen-
dent 2-month validation data sets. A first validation data set included normal behavior,
while the second one included new events not present in the training data in order to chal-
lenge the predictor (see Section 2.1). For each validation data set, glucose prediction was
performed for the whole 2-month period, selecting the corresponding glucose predictor
at each new event according to its type (meal, night, hypoglycemia treatment). For all
time subseries in the validation data, predictions of the GSM model were computed in
the same way as for local models evaluation, described above. As validation data was
generated independently from training data, in few cases the duration of a validation
time subseries was longer than the prototypes length (regularized length of training data).
In this case, last value of the prototypes were held constant up to the validation time
subseries length. Metrics RMSEtraj, MAPEtraj, RMSElast, and MAPElast were computed
as described before.

3. Results and Discussion
3.1. Time Series Building and Data Clustering

Training data, for each of the 10 patients, was comprised of 360 meals and 119 night
events, of varying duration. The number of hypoglycemia treatment events was patient-
dependent, attending to the settings of the open loop therapy provided in the simulator,
with a median value of 18 events and 25–75% percentiles of 13 and 36 events, respectively.
Mean CGM glucose ranged from 122 mg/dL (patient 10) to 169 mg/dL (patient 7).

Application of the PDSFCM clustering algorithm, in combination with the FS cluster
validity index for the determination of the number of clusters, resulted in a varying number
of clusters depending on the variability exhibited by the patient, as shown in Table 1.
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Table 1. Number of clusters considered for each patient (P) according to the FS cluster validity index.
For patients 5 and 8, not enough hypoglycemia treatments were available to apply clustering (marked
as *). In these cases, only a single local model is considered.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

Meals (ΠM) 5 5 5 5 6 6 8 5 5 5
Night (ΠN ) 3 3 3 3 3 3 4 3 4 5

Hypo treatment (ΠH) 2 2 2 2 1 * 3 4 1 * 3 3

As an illustration, Figure 5 shows the clustering results for patient 6 and data in the
meals partition ΠM. The number of elements per cluster were 50, 61, 36, 63, 70 and 71 for
clusters 1 to 6, respectively. Regularized length of the time subseries was 98. Considering
the whole cohort, regularized lengths ranged from 98 to 106 samples for ΠM, from 60 to
65 samples for ΠN , and from 36 to 76 samples for ΠH.

Figure 5. Clustering result of time subseries in meals partition ΠM for patient 6. Black solid line indicates the cluster prototype.

After clustering, time subseries were assigned to the cluster with maximum mem-
bership. Then, a seasonal time series per cluster was created by concatenating all time
subseries assigned to the given cluster representing similar glycemic excursions, preceded
by pre-sampling data. A length of five samples was considered for pre-sampling data
(Pr = 5), given that orders lower than 5 were obtained for the AR and MA processes in
previous studies. Thus, a seasonality period of s = L + 5 was enforced, with L the regular-
ized length for that patient and data partition. The resulting seasonalities are presented in
Table 2.

Table 2. Seasonality (in number of samples) resulting from time subseries concatenation in a cluster.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

Meals (ΠM) 111 105 106 103 105 103 103 107 103 105
Night (ΠN ) 70 66 65 74 67 68 69 66 66 68

Hypo treatment (ΠH) 81 51 60 75 43 74 65 41 65 61
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3.2. Local Models Identification

A model for each cluster was identified using the Box-Jenkins methodology. As stated
in Section 2.7, the first 80% of the data in a cluster were used for model identification,
and the rest 20% for model evaluation. During the identification, residuals at time instants
with missing values or belonging to pre-sampling periods in the concatenated time series
were neglected (weighted 0 in the cost index). SARIMA model structure and parameters
were identified for each cluster.

Table 3 shows, as an example, the resulting SARIMA model structure (p, d, q)(P, D, Q)s
for each cluster for patient 6. The orders for the AR component (p) ranges from 1 to 4,
and for the MA component (q) from 0 to 4. With regards to seasonal part, SAR component
order (P) ranges from 1 to 2, and SMA order (Q) from 0 to 2. Need for time series differen-
tiation (d 6= 0 or D 6= 0) only appeared in hypoglycemia treatment cases, where glucose
may follow an increasing trend. Similar results were obtained for the rest of patients.

Table 3. Example of local models structure (patient 6), represented as (p, d, q)(P, D, Q)s.

Partition Cluster SARIMA Model Structure

Meals (ΠM)

1 (2, 0, 1)(2, 0, 2)103

2 (2, 0, 2)(1, 0, 1)103

3 (4, 0, 4)(2, 0, 0)103

4 (3, 0, 3)(2, 0, 1)103

5 (4, 0, 1)(1, 0, 1)103

6 (3, 0, 2)(1, 0, 1)103

Night (ΠN )

1 (2, 0, 0)(1, 0, 2)68

2 (2, 0, 4)(1, 0, 1)68

3 (2, 0, 3)(1, 0, 1)68

Hypo treatment (ΠH)

1 (4, 0, 0)(1, 0, 1)74

2 (1, 0, 2)(1, 0, 1)74

3 (1, 1, 0)(1, 1, 0)74

Accuracy metrics of the trained local models is shown in Table 4, aggregating data for
all patients and local models in a partition, as well as overall metrics. For all prediction
horizons, the lowest metrics were obtained for the night partition ΠN due to the lower vari-
ability during nights as compared to meals. Local models for ΠH had a poorer performance
due to the significantly lower number of events for training and validation, compared to
ΠM and ΠN . Comparing RMSEtraj (MAPEtraj) versus RMSElast (MAPElast), the latter
reported higher values, since residuals of the last predicted value in each prediction is
expected to be higher than when the whole predicted trajectory is considered. However,
the higher the prediction horizon, the lower this difference was. This may be due to the
implicit exclusion of residuals in [tei , tei + PH) in the computation of RMSElast (MAPElast),
where tei is the event initial time. When PH is long enough, an important part of a post-
prandial response may be neglected, which may provoke a loss of monotonicity of the
RMSElast (MAPElast) metrics with respect to the prediction horizon. Overall performance
was good, with a maximum average RMSEtraj of 11.46 mg/dL (MAPEtraj of 6.79%), corre-
sponding to a PH of 240 min. Maximum average RMSElast was 13.69 mg/dL (for a PH
of 180 min), and maximum average MAPElast of 8.86% (for a PH of 240 min). During the
night predictions, these metrics were reduced approximately by 40%.
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Table 4. Accuracy metrics of the trained local models aggregating data for all patients and local models in a partition,
as well as overall metrics. The number of computed PH-ahead predictions is reported in each case, which depends on the
number of validation events and their length.

Number of RMSEtraj RMSElast MAPEtraj MAPElast
Predictions (mg/dL) (mg/dL) (%) (%)

PH = 15 min

Meals (ΠM) 54,365 3.03 (2.46) 5.46 (1.11) 1.96 (1.61) 2.89 (0.43)
2.41 [1.22, 4.16] 5.24 [4.79, 5.95] 1.53 [0.76, 2.70] 2.91 [2.58, 3.23]

Night (ΠN ) 10,940 2.34 (1.98) 4.60 (2.54) 1.91 (1.56) 3.04 (1.38)
1.84 [0.97, 3.15] 3.94 [3.55, 4.32] 1.51 [0.76, 2.60] 2.84 [2.43, 3.23]

Hypo treatment (ΠH) 1440 3.98 (3.60) 6.71 (2.78) 3.17 (3.19) 4.78 (2.30)
3.02 [1.46, 5.21] 5.79 [4.80, 7.69] 2.16 [1.09, 4.03] 4.12 [3.11, 5.90]

Overall 66,745 2.94 (2.43) 5.45 (2.15) 1.97 (1.66) 3.32 (1.50)
2.31 [1.17, 4.00] 5.01 [4.16, 6.03] 1.54 [0.77, 2.70] 3.04 [2.59, 3.33]

PH = 30 min

Meals (ΠM) 52,187 4.98 (3.76) 9.10 (1.94) 3.09 (2.36) 4.80 (0.76)
4.01 [2.26, 6.68] 8.53 [7.99, 9.84] 2.46 [1.35, 4.17] 4.80 [4.19, 5.40]

Night (ΠN ) 10,211 3.64 (2.86) 7.09 (4.49) 2.87 (2.17) 4.67 (2.49)
2.92 [1.74, 4.73] 5.87 [5.27, 6.99] 2.29 [1.33, 3.78] 4.24 [3.75, 4.80]

Hypo treatment (ΠH) 1304 6.71 (6.01) 11.78 (6.11) 4.92 (4.66) 7.95 (5.10)
4.88 [2.70, 8.57] 10.44 [7.64, 13.57] 3.32 [1.81, 6.45] 6.85 [4.74, 8.67]

Overall 63,702 4.80 (3.74) 9.04 (4.24) 3.09 (2.41) 5.41 (3.00)
3.80 [2.16, 6.39] 8.08 [6.59, 10.30] 2.45 [1.36, 4.13] 4.75 [4.06, 5.52]

PH = 60 min

Meals (ΠM) 47,831 7.45 (5.17) 12.52 (3.19) 4.50 (3.13) 6.68 (1.21)
6.13 [3.77, 9.69] 11.69 [10.63, 13.92] 3.70 [2.22, 5.95] 6.63 [5.67, 7.52]

Night (ΠN ) 8753 4.94 (3.58) 8.86 (6.82) 3.80 (2.59) 5.79 (3.86)
4.10 [2.67, 6.11] 6.84 [6.07, 8.26] 3.15 [2.00, 4.87] 4.92 [4.22, 6.03]

Hypo treatment (ΠH) 1034 10.53 (9.53) 17.23 (12.39) 7.04 (6.49) 10.67 (9.46)
7.31 [4.21, 13.55] 14.42 [9.22, 21.76] 4.59 [2.75, 8.95] 6.77 [4.84, 14.34]

Overall 57,618 7.13 (5.17) 12.37 (7.61) 4.44 (3.18) 7.23 (5.11)
5.73 [3.54, 9.18] 10.77 [7.85, 14.01] 3.62 [2.18, 5.81] 6.09 [4.98, 7.50]

PH = 120 min

Meals (ΠM) 39,119 9.82 (6.09) 14.19 (4.37) 5.88 (3.74) 8.10 (1.72)
8.32 [5.57, 12.39] 13.29 [11.52, 15.35] 4.98 [3.22, 7.54] 7.95 [6.81, 9.13]

Night (ΠN ) 5837 5.98 (3.85) 9.41 (8.48) 4.47 (2.58) 6.19 (5.17)
5.26 [3.75, 7.21] 7.15 [6.16, 9.10] 3.86 [2.75, 5.50] 5.15 [4.30, 6.67]

Hypo treatment (ΠH) 522 16.63 (14.44) 19.27 (13.96) 10.36 (9.23) 10.50 (7.85)
10.54 [6.32, 21.66] 15.53 [8.60, 27.97] 6.54 [3.80, 13.45] 7.56 [4.36, 15.76]

Overall 45,478 9.40 (6.20) 13.58 (8.72) 5.75 (3.78) 7.92 (4.72)
7.79 [5.21, 11.81] 12.00 [8.12, 15.26] 4.82 [3.14, 7.28] 7.16 [5.34, 8.84]

PH = 180 min

Meals (ΠM) 30,413 10.89 (6.09) 14.16 (4.75) 6.49 (3.77) 8.58 (1.97)
9.50 [6.63, 13.52] 13.05 [11.02, 15.40] 5.57 [3.83, 8.22] 8.77 [6.99, 9.80]

Night (ΠN ) 2935 6.45 (3.67) 9.96 (9.64) 4.78 (2.42) 6.76 (6.35)
5.84 [4.32, 7.55] 7.59 [6.07, 9.85] 4.21 [3.12, 5.91] 5.12 [4.28, 7.63]

Hypo treatment (ΠH) 193 20.73 (17.21) 21.48 (16.47) 12.49 (10.47) 14.37 (10.50)
12.87 [7.47, 30.05] 13.46 [11.33, 32.33] 6.95 [4.66, 20.11] 11.06 [5.31, 22.06]
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Table 4. Cont.

Number of RMSEtraj RMSElast MAPEtraj MAPElast
Predictions (mg/dL) (mg/dL) (%) (%)

Overall 33,541 10.56 (6.22) 13.69 (9.34) 6.37 (3.80) 8.71 (5.81)
9.06 [6.30, 13.11] 11.67 [9.31, 14.71] 5.45 [3.74, 8.01] 7.67 [5.65, 9.57]

PH = 240 min

Meals (ΠM) 21,865 11.56 (5.88) 14.32 (4.89) 6.81 (3.54) 9.06 (2.21)
10.39 [7.45, 14.13] 13.21 [10.68, 15.99] 6.00 [4.27, 8.52] 8.97 [7.09, 10.81]

Night (ΠN ) 576 6.71 (2.50) 8.34 (4.44) 5.12 (2.13) 6.37 (4.14)
6.30 [4.77, 8.25] 7.71 [4.99, 9.29] 4.87 [3.53, 6.14] 4.96 [3.62, 7.08]

Hypo treatment (ΠH) 56 23.53 (17.21) 27.74 (29.20) 13.94 (10.27) 19.55 (20.59)
16.13 [9.71, 34.75] 13.24 [9.86, 51.20] 8.51 [5.36, 21.68] 10.09 [4.05, 43.91]

Overall 22,497 11.46 (5.95) 13.23 (9.53) 6.79 (3.58) 8.86 (6.46)
10.27 [7.32, 14.02] 11.72 [8.68, 15.08] 5.96 [4.25, 8.47] 7.93 [5.82, 10.81]

3.3. Online Forecasting Validation

Figure 6 shows an illustration of the real-time computation of glucose predictions
considering 5 local models for a sample validation time subseries in ΠM. Four 120-min
ahead predictions are shown, separated one hour each, at the samples indicated by the
vertical dashed lines starting at mealtime. Upper panel shows CGM data, local models
predictions and global glucose prediction obtained from the weighted sum of local pre-
dictions, with time-varying weights are shown in the γi(tp) panel. Early postprandial
response is more variable and, thus, more local models contribute to the glucose prediction
computation, compared to late postprandial phase, where LM2 seems to fully describe the
response in this case. This is also described by the crispness index, with lower values at
time instants where a higher number of local models contribute to the predicted trajectory.
The normality index describes to what extent past short-time CGM data at each prediction
time tp is represented by the same segment of data from cluster prototypes, and “interpo-
lation” instead of “extrapolation” is being performed. In this case, a drop of the index is
observed during the glucose increase until peak value. A too low value would indicate an
abnormal behavior, which threshold need to be tuned (see Section 3.4).

Table 5 present validation results of the glucose predictor in real-time operation for
the 2-month independent validation dataset 1 (“normal”) described in Section 2.1. Metrics
are expected to deteriorate as compared to the local models performance due to the local
predictions integration process, as it is observed in the data presented. For this dataset,
overall average RMSEtraj ranged from 3.51 mg/dL to 23.90 mg/dL for prediction horizons
15, 30, 60, 120, 180 and 240 min (MAPEtraj from 2.35% to 15.19%). Overall average RMSElast
ranged from 6.52 mg/dL to 28.96 mg/dL (MAPElast from 4.04% to 20.00%).

Table 5. Accuracy metrics of the glucose predictor for validation dataset 1 (“normal”).

Number of RMSEtraj RMSElast MAPEtraj MAPElast
Predictions (mg/dL) (mg/dL) (%) (%)

PH = 15 min

Meals (ΠM) 133,540 3.63 (3.11) 6.58 (0.96) 2.36 (2.00) 3.55 (0.36)
2.81 [1.39, 4.93] 6.54 [6.10, 6.79] 1.83 [0.90, 3.22] 3.56 [3.34, 3.85]

Night (ΠN ) 26,426 2.79 (2.31) 4.90 (0.87) 2.14 (1.75) 3.17 (0.63)
2.19 [1.13, 3.80] 4.71 [4.29, 5.07] 1.67 [0.84, 2.96] 3.00 [2.73, 3.69]

Hypo treatment (ΠH) 4308 3.99 (3.35) 8.08 (2.97) 3.46 (3.15) 5.41 (1.68)
3.18 [1.59, 5.42] 6.57 [6.43, 10.80] 2.57 [1.25, 4.68] 5.10 [4.46, 6.15]

Overall 164,274 3.51 (3.02) 6.52 (2.24) 2.35 (2.01) 4.04 (1.42)
2.71 [1.35, 4.75] 6.37 [5.07, 6.70] 1.82 [0.89, 3.21] 3.63 [3.09, 4.46]
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Table 5. Cont.

Number of RMSEtraj RMSElast MAPEtraj MAPElast
Predictions (mg/dL) (mg/dL) (%) (%)

PH = 30 min

Meals (ΠM) 128,144 6.31 (5.26) 12.08 (1.81) 3.90 (3.17) 6.35 (0.67)
4.88 [2.61, 8.44] 11.71 [11.16, 12.33] 3.05 [1.61, 5.26] 6.30 [5.84, 6.87]

Night (ΠN ) 24,659 4.50 (3.57) 7.93 (1.83) 3.34 (2.63) 5.09 (1.16)
3.58 [2.04, 5.90] 7.42 [6.69, 8.35] 2.64 [1.49, 4.46] 4.63 [4.39, 5.79]

Hypo treatment (ΠH) 3746 6.96 (5.37) 13.95 (4.67) 5.60 (4.82) 9.05 (3.48)
5.49 [3.12, 9.35] 12.66 [11.30, 14.53] 4.15 [2.25, 7.50] 7.90 [7.35, 9.95]

Overall 156,549 6.04 (5.08) 11.32 (3.92) 3.86 (3.16) 6.83 (2.67)
4.64 [2.51, 8.03] 11.27 [8.35, 12.65] 3.00 [1.60, 5.16] 6.47 [5.55, 7.37]

PH = 60 min

Meals (ΠM) 117,356 10.45 (8.60) 19.49 (3.52) 6.30 (4.97) 10.19 (1.42)
8.06 [4.54, 13.65] 18.58 [17.43, 20.09] 4.93 [2.75, 8.34] 9.76 [9.28, 10.76]

Night (ΠN ) 21,142 6.50 (4.98) 10.46 (2.95) 4.74 (3.57) 6.63 (1.73)
5.22 [3.33, 8.16] 9.67 [8.23, 11.08] 3.79 [2.35, 6.05] 6.16 [5.58, 7.18]

Hypo treatment (ΠH) 2709 12.25 (9.24) 23.60 (9.77) 8.87 (7.20) 13.75 (6.65)
9.59 [5.42, 16.40] 20.94 [17.57, 23.39] 6.62 [3.58, 12.05] 11.07 [10.60, 15.28]

Overall 141,207 9.90 (8.30) 17.85 (8.21) 6.11 (4.89) 10.19 (4.90)
7.48 [4.29, 12.83] 17.44 [11.08, 20.93] 4.74 [2.69, 8.04] 9.68 [7.18, 10.76]

PH = 120 min

Meals (ΠM) 95,780 16.30 (12.49) 26.80 (6.03) 10.03 (7.72) 15.87 (3.10)
12.86 [7.65, 21.14] 24.77 [22.77, 28.19] 7.87 [4.61, 13.09] 14.99 [13.52, 17.46]

Night (ΠN ) 14,149 8.61 (6.18) 12.01 (3.62) 6.23 (4.48) 7.91 (2.50)
7.08 [4.78, 10.50] 11.24 [8.71, 14.29] 5.05 [3.33, 7.76] 7.52 [5.83, 9.14]

Hypo treatment (ΠH) 1143 21.67 (17.55) 36.64 (21.12) 13.85 (10.65) 20.00 (10.06)
15.65 [9.02, 28.52] 29.97 [20.72, 42.83] 9.97 [5.51, 19.77] 16.31 [14.01, 22.75]

Overall 111,072 15.38 (12.23) 25.15 (16.12) 9.58 (7.55) 14.59 (7.90)
11.80 [7.02, 19.90] 22.72 [14.29, 28.19] 7.40 [4.36, 12.41] 13.77 [9.14, 16.67]

PH = 180 min

Meals (ΠM) 74,297 21.02 (14.45) 32.14 (6.80) 13.36 (9.96) 21.57 (4.41)
17.24 [10.62, 27.63] 30.31 [27.52, 34.38] 10.49 [6.35, 17.48] 21.58 [17.81, 22.70]

Night (ΠN ) 7182 10.71 (6.55) 13.25 (4.41) 7.71 (4.74) 9.21 (3.03)
9.18 [6.37, 13.01] 13.32 [9.33, 14.79] 6.56 [4.41, 9.48] 9.35 [6.50, 10.43]

Hypo treatment (ΠH) 374 26.67 (20.46) 41.50 (25.48) 16.83 (12.91) 27.95 (16.87)
20.94 [10.72, 34.96] 35.28 [29.39, 41.73] 12.15 [6.28, 25.29] 20.88 [16.53, 34.55]

Overall 81,853 20.15 (14.28) 28.96 (19.10) 12.88 (9.77) 19.58 (12.64)
16.24 [9.92, 26.56] 28.45 [14.79, 34.38] 10.00 [6.07, 16.78] 17.74 [9.73, 22.01]

PH = 240 min

Meals (ΠM) 53,118 24.19 (16.07) 34.53 (9.29) 15.36 (10.99) 24.21 (6.91)
20.05 [12.60, 31.81] 33.93 [27.40, 37.77] 12.36 [7.63, 19.91] 23.35 [21.10, 27.92]

Night (ΠN ) 1384 11.83 (6.66) 12.87 (6.05) 8.31 (4.90) 9.04 (4.09)
9.59 [7.56, 14.32] 10.38 [8.30, 16.19] 6.85 [5.13, 10.19] 7.54 [5.85, 12.28]

Hypo treatment (ΠH) 117 32.68 (20.11) 41.58 (14.18) 21.51 (14.59) 33.52 (26.41)
26.69 [16.15, 48.10] 43.77 [30.66, 50.34] 18.86 [9.74, 33.57] 23.21 [16.02, 45.16]

Overall 54,619 23.90 (16.04) 27.28 (15.18) 15.19 (10.94) 20.00 (15.36)
19.70 [12.28, 31.40] 25.58 [13.10, 36.60] 12.17 [7.50, 19.71] 17.04 [9.15, 24.53]
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Figure 6. Illustration of the real-time computation of glucose predictions. Vertical dashed lines indicate the start of each 2-h
prediction shown.

Table 6 presents validation results for the two month independent validation dataset
2 (“abnormal”) described in Section 2.1. Inclusion of abnormal events slightly increased
error in 1–2% as comparison of MAPEtraj and MAPElast in Tables 5 and 6 reveal. This was
expected since missed boluses and exercise were not present in the training. The impact was
higher up to a prediction horizon of 120 min, which may be related to the duration of the
abnormal event effect on glycemia (postprandial and post-exercise periods). The number of
predictions column indicates that abnormal events increased the number of hypoglycemic
episodes (due to exercise), inducing different partitioning of data and participation of
the glucose predictors for ΠM, ΠN , and ΠH. For the abnormal dataset, overall average
RMSEtraj ranged from 4.04 mg/dL to 25.36 mg/dL for the PHs considered (MAPEtraj
from 2.65% to 15.06%). Overall average RMSElast ranged from 7.33 mg/dL to 32.83 mg/dL
(MAPElast from 4.66% to 19.82%).

Other authors have conducted in silico studies for the performance analysis of a
variety of prediction methods, although comparison is not straightforward due to the
difference in the simulators used, scenarios considered, and different input requirements
by the glucose prediction technique. In this sense, the lower the inputs needed to perform
a prediction the better, especially when such inputs require patient intervention such as the
amount of carbs intake, for instance. These results are summarized in Table 7.

In [24], 8-day glucose and insulin data is used from a virtual cohort of 30 patients
from the educational version of the UVA/Padova simulator, comprising 10 adults, 10 ado-
lescents and 10 children. Variability in meal time and quantity was considered. Three
models are compared: AR, ARX considering insulin as input, and ANN (artificial neu-
ral network), with prediction horizons of 30 min and 45 min. For the adult population,
RMSElast values of 14.0 mg/dL, 13.3 mg/dL and 2.8 mg/dL are reported for AR, ARX and
ANN with prediction horizon 30 min, respectively. These figures increase to 23.2 mg/dL,
22.8 mg/dL, and 4.0 mg/dL for a prediction horizon of 45 min. ANN outperformed
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AR and ARX models. Compared to results in Table 5, AR and ARX are outperformed
by the methodology here presented, with a RMSElast of 11.32 mg/dL for a prediction
horizon of 30 min. This is as well the case for results in Table 6 including abnormal data,
where an RMSElast of 13.18 mg/dL was achieved. Metrics obtained for AR and ARX
for 45 min are comparable to the metrics reported in Table 5 for a prediction horizon of
120 min (RMSElast = 25.15 mg/dL), and in Table 6 for 60 min (RMSElast = 21.00 mg/dL),
respectively. However, this is not the case for ANN, with extremely low RMSElast values
reported in [24]. This may be due to the nature of the in silico study, since the simulator
used in [24] does not include the extra features of intra-patient variability reported in
Section 2.1, besides the length of the data (8 day vs. 2 months), which might have produced
overfitting in the ANN case. As well, the ANN used insulin data as external input which
may limit applicability to insulin pump users, while in our case, only glucose and meal-
time is used for glucose prediction. This latter can be extracted from the pump or smart
pen information, or even estimated using meal detection algorithms in standard insulin
pen users.

Table 6. Accuracy metrics of the glucose predictor for validation dataset 2 (“abnormal”).

Number of
Predictions

RMSEtraj RMSElast MAPEtraj MAPElast

PH = 15 min

Meals (ΠM) 128,002 4.18 (3.72) 7.72 (1.12) 2.59 (2.34) 3.92 (0.34)
3.12 [1.52, 5.63] 7.51 [7.17, 8.18] 1.96 [0.95, 3.50] 3.95 [3.72, 4.25]

Night (ΠN ) 26,113 3.14 (2.86) 5.70 (1.17) 2.25 (1.80) 3.33 (0.52)
2.35 [1.20, 4.15] 5.68 [5.17, 6.08] 1.79 [0.88, 3.17] 3.34 [2.90, 3.64]

Hypo treatment (ΠH) 9496 4.71 (4.57) 8.57 (2.80) 4.58 (4.69) 6.74 (1.57)
3.64 [1.75, 6.40] 7.27 [6.04, 11.59] 3.09 [1.41, 6.16] 6.69 [5.48, 7.72]

Overall 163,611 4.04 (3.68) 7.33 (2.18) 2.65 (2.51) 4.66 (1.78)
3.00 [1.47, 5.44] 6.99 [5.97, 8.18] 1.97 [0.95, 3.55] 4.08 [3.43, 5.48]

PH = 30 min

Meals (ΠM) 122,617 7.29 (6.34) 14.34 (2.13) 4.31 (3.73) 7.13 (0.59)
5.42 [2.84, 9.65] 13.69 [13.14, 15.10] 3.29 [1.70, 5.75] 7.04 [6.55, 7.72]

Night (ΠN ) 24,349 5.06 (4.45) 9.35 (2.10) 3.53 (2.66) 5.38 (0.95)
3.79 [2.16, 6.54] 9.33 [8.42, 9.87] 2.79 [1.54, 4.86] 5.31 [4.69, 5.75]

Hypo treatment (ΠH) 8374 8.40 (7.17) 15.84 (4.89) 7.53 (7.11) 11.52 (2.10)
6.74 [3.55, 11.33] 14.03 [11.80, 20.75] 5.39 [2.66, 10.05] 11.66 [9.82, 12.43]

Overall 155,340 7.00 (6.20) 13.18 (4.26) 4.36 (3.93) 8.01 (2.94)
5.15 [2.71, 9.24] 12.70 [9.87, 15.10] 3.27 [1.70, 5.77] 7.05 [5.75, 9.82]

PH = 60 min

Meals (ΠM) 111,847 12.16 (10.46) 23.62 (4.20) 6.99 (5.82) 11.73 (1.20)
8.92 [4.98, 15.79] 22.89 [20.89, 24.46] 5.33 [2.92, 9.24] 11.29 [10.76, 12.60]

Night (ΠN ) 20,823 7.35 (6.33) 12.65 (3.58) 5.04 (3.56) 7.10 (1.36)
5.52 [3.42, 9.04] 12.60 [11.17, 13.81] 4.04 [2.40, 6.74] 7.14 [6.48, 7.67]

Hypo treatment (ΠH) 6218 14.75 (11.19) 26.73 (9.93) 11.76 (10.03) 15.87 (4.64)
11.70 [6.66, 19.95] 25.76 [17.93, 33.63] 8.79 [4.56, 16.33] 14.84 [12.01, 19.65]

Overall 138,888 11.56 (10.16) 21.00 (8.82) 6.91 (5.94) 11.57 (4.58)
8.34 [4.66, 14.92] 20.04 [13.81, 24.46] 5.17 [2.86, 9.05] 10.86 [7.67, 12.98]

PH = 120 min

Meals (ΠM) 90,307 19.04 (15.74) 33.75 (7.58) 11.13 (9.08) 18.56 (2.67)
14.30 [8.20, 24.39] 31.51 [30.93, 36.49] 8.57 [4.77, 14.67] 17.71 [17.02, 19.02]
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Table 6. Cont.

Number of
Predictions

RMSEtraj RMSElast MAPEtraj MAPElast

Night (ΠN ) 13,795 9.90 (8.78) 15.26 (5.67) 6.65 (4.54) 8.44 (2.12)
7.26 [4.79, 11.98] 13.59 [11.92, 18.08] 5.20 [3.42, 8.70] 8.48 [7.29, 10.16]

Hypo treatment (ΠH) 2536 25.96 (19.05) 38.90 (19.18) 17.53 (12.18) 20.16 (9.07)
20.77 [12.62, 33.16] 40.80 [18.61, 51.14] 14.87 [8.38, 23.88] 21.59 [9.67, 27.76]

Overall 106,638 18.02 (15.47) 29.31 (15.76) 10.70 (8.91) 15.72 (7.55)
13.21 [7.46, 23.06] 27.14 [17.28, 39.21] 8.08 [4.51, 14.07] 16.46 [8.92, 21.58]

PH = 180 min

Meals (ΠM) 68,825 24.03 (18.52) 39.59 (9.67) 14.40 (11.15) 24.41 (4.40)
18.60 [11.20, 31.11] 37.76 [33.31, 43.42] 11.17 [6.48, 19.01] 24.10 [22.65, 24.55]

Night (ΠN ) 6800 11.49 (10.59) 16.14 (7.44) 7.61 (5.16) 9.10 (2.80)
8.30 [5.71, 13.40] 13.66 [10.40, 19.19] 5.88 [4.02, 9.72] 8.74 [7.46, 10.62]

Hypo treatment (ΠH) 663 33.35 (25.15) 42.76 (26.38) 20.56 (15.94) 25.95 (14.90)
25.14 [15.71, 40.97] 29.77 [21.70, 66.61] 16.13 [10.11, 25.79] 21.81 [13.20, 33.91]

Overall 76,288 22.99 (18.40) 32.83 (20.20) 13.85 (11.00) 19.82 (11.71)
17.46 [10.29, 29.79] 29.77 [17.89, 39.22] 10.60 [6.08, 18.24] 18.07 [10.32, 24.55]

PH = 240 min

Meals (ΠM) 47,763 25.60 (19.12) 36.80 (10.52) 15.19 (10.76) 23.54 (4.84)
20.18 [12.57, 32.58] 36.84 [30.45, 41.36] 12.18 [7.35, 19.99] 23.21 [19.46, 26.55]

Night (ΠN ) 1176 11.79 (10.20) 15.41 (7.35) 7.94 (5.55) 9.09 (3.60)
8.39 [6.26, 12.90] 12.32 [11.41, 19.31] 5.96 [4.46, 9.39] 7.86 [6.84, 11.47]

Hypo treatment (ΠH) 203 46.01 (32.58) 42.30 (40.44) 26.50 (18.78) 28.76 (24.81)
32.35 [21.02, 68.73] 27.17 [15.67, 62.29] 18.23 [11.87, 36.15] 22.90 [11.61, 38.15]

Overall 49,142 25.36 (19.19) 29.84 (22.94) 15.06 (10.80) 19.19 (14.37)
19.89 [12.28, 32.26] 24.65 [13.00, 37.04] 12.01 [7.21, 19.82] 16.25 [8.29, 25.32]

Table 7. Prediction error of different literature methods with in silico studies. Acronyms: ANN (artificial neural network),
NN-PLA (neural network plus linear prediction algorithm), LVX (latent variable-based model), PM (physiological model),
CRNN (convolutional recurrent neural networks), DRNN (dilated recurrent neural networks), CHO (carbohydrates),
Ra (glucose rate of appearance from a meal). * data for the adult cohort.

Study Method Inputs Virtual Cohort #Days PH (min) RMSElast
(mg/dL)

Daskalaki et al. [24] ANN CGM and 10 adults + 8 30 2.8 *
insulin infusion 10 adolescents + 10 children 45 4.0 *

Zecchin et al. [25] NN-LPA CGM, CHO, 20 subjects 11 30 9.4predicted Ra

Zhao et al. [26] LVX CGM, insulin 10 adults 7 30 8.6
infusion, and CHO 60 14.0

Liu et al. [27] PM 10 adults 14

30 10.90
CGM, insulin 60 24.44

infusion, and CHO 90 33.50
120 37.63

Li et al. [28] CRNN CGM, insulin 10 adults 360 30 9.38
infusion, and CHO 60 18.87

Zhu et al. [29] DRNN
CGM, insulin

10 adults 360 30 7.8infusion, CHO,
and sampling time
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In [25], a neural network incorporating meal information in parallel with a linear pre-
dictor (NN-LPA) is evaluated in silico with 11-day data from 20 subjects of the UVA/Padova
simulator. As in the previous case, variability in meal time and quantity was considered.
The method is compared with the neural network presented in [30] (NNPG) and an AR(1)
model. For a prediction horizon of 30 min, RMSElast values of 9.4 mg/dL, 10.7 mg/dL,
and 17.5 mg/dL are reported for NN-LPA, NNPG and AR(1), respectively. Of note, NN-
LPA requires a physiological meal model since the glucose rate of appearance at t + PH is
one of the inputs of the neural network. In [26], a latent variable-based model (LVX) is eval-
uated from 7-day data from 10 virtual subjects of the UVA/Padova simulator. The model
used meal intake and insulin information as exogenous variables. An average RMSElast
of 8.6 mg/dL and 14.0 mg/dL was reported for 30-min and 60-min prediction horizons,
respectively, as compared to our results in Table 5 with an RMSElast of 11.32 mg/dL and
17.85 mg/dL, respectively, and Table 6, with 13.18 mg/dL and 21.00 mg/dL, respectively.
A slight increase of RMSElast of only approximately 3–4 mg/dL (5–7 mg/dL with abnormal
data) is observed in our results, despite the far more challenging intra-patient variability in
our work and less input information required, as stated above.

More recent in silico studies, in this case using the same extended UVA/Padova
simulator as in this work, have been reported. In [27], a physiological model (PM) in
combination with CGM signal deconvolution is presented for long-term glucose prediction.
The model requires as inputs carbohydrate intake and insulin delivery, as opposed to our
case. Two-week data for 10 in silico subjects is used for model training and evaluation.
RMSElast values of 10.90 mg/dL, 24.44 mg/dL, 33.50 mg/dL, and 37.63 mg/dL are re-
ported for prediction horizons of 30, 60, 90 and 120 min. These values outperformed ARX
and LVX models in head-to-head comparisons. In [28], convolutional recurrent neural
networks (CRNN) are evaluated with 1-year data from 10 in silico subjects. Models are
trained with 50% of the data and evaluated with the rest 50%. Glucose, meal and insulin
information are required as inputs. RMSElast values of 9.38 mg/dL and 18.87 mg/dL for
30-min and 60-min prediction horizons are reported. Above metrics are outperformed in
general by results presented in Tables 5 and 6, being especially relevant longer prediction
horizons. Finally, in [29] dilated recurrent neural networks (DRNN) are tested with the
same 1-year in silico study. A prediction horizon of 30 min is considered, with a reported
RMSElast of 7.8 mg/dL, which is better than our result for the same prediction horizon even
in the absence of abnormal data (11.32 mg/dL). However, DRNN required information on
insulin, meal intake and time of the day, as opposed to this work.

Summing up, with the limitation of a non-head-to-head comparison and variety of
simulation studies in the literature, metrics obtained outperformed other methods, or were
very close to the reported performance. This was so even when imperfect training was
considered introducing abnormal data in the validation dataset, while having the clear
advantage of the minimal input information required (CGM and mealtime). This one can
ultimately be automatically extracted without patient intervention making the glucose
predictor suitable for insulin pump and MDI users.

From the point of view of the real-world application of the methodology, it is worth
remarking that, in a similar way to a neural network, the training phase is the one more
computationally demanding. In this work the computing cluster Rigel from Universitat
Politècnica de València was used, in particular the Dell Power Edge R640 nodes with
2 processors Intel Xeon Gold 6154 with 18 cores, 3 Ghz and 25 Mb cache memory. The clus-
tering phase for the 10 patients, which included 10 clustering problems per patient with
increasing number of clusters for later selecting the optimal number of them, using 22 cores
and 3 Gb memory per core, was computed in 22 min. The training of the local models,
using 30 cores and 3 Gb memory per core, was performed in about 6.5 h. Validation of local
models, using the same resources, lasted 53 min. This gives rise to a total of 8 h of comput-
ing time approximately for training. Once trained, the real-time evaluation of a glucose
prediction is straightforward, requiring the evaluation of equations in Section 2.5 for the
glucose prediction (evaluation of n SARIMA models, n fuzzy memberships, and a weighted
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sum of time series, where n is the number of clusters), and Section 2.6 for crispness and
normality indices.

3.4. Normality Index

The Normality Index defined in Equation (23) is intended to provide information on
abnormal glucose behaviors according to available historical data. Thus, it is expected
that low normality values at time tp, NI(tp), are related to higher prediction errors for
glucose trajectories computed at that same time tp. The Normality Index relies on the
comparison of CGM values in the recent past (20 min in this work) with cluster prototypes
in that same time window. It is expected that this relationship with the prediction error
is stronger for short or medium prediction horizons, for which abnormal behavior is still
present. A PH of 60 min was considered in the following analysis. All predictions G(t|tp),
t ∈ [tp, tp + PH], carried out during the validation of the glucose predictor for dataset 2
(“abnormal”), amounting to a total of 138,888 predicted trajectories, were grouped into two
groups, for NI(tp) < NIthr and NI(tp) ≥ NIthr, with the threshold NIthr varying from 0.1
to 0.9 in steps of 0.1. Then, the difference of the median prediction error at tp + PH (absolute
value of the residual) among groups was analyzed. Remark that these residuals are the
ones considered in the computation of RMSElast for a given validation time subseries.
Figure 7 shows these results. All differences were found statistically significant using the
Wilcoxon Rank Sum test (p < 0.001). This test was selected since data was non-normal
and non-paired.
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Figure 7. Relationship between Normality Index and prediction error. Difference of the median
absolute value of the residual at tp + PH between groups for NI(tp) < NIthr and NI(tp) ≥ NIthr,
with NIthr ranging from 0.1 to 0.9, is shown. All differences were found statistically significant
(p < 0.001).

Clinically meaningful differences were obtained for the lowest thresholds, amount-
ing to 19.14 mg/dL for NIthr = 0.1, and 10.29 mg/dL for NIthr = 0.2. As an illustra-
tion, Figure 8 shows the relationship for NIthr = 0.2, which reveals an increased pres-
ence of higher prediction errors when NI(tp) < 0.2 (median [25th–75th percentiles]:
21.05 [9.79, 38.52] vs. 10.75 [4.88, 20.49] mg/dL).
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Figure 8. Boxplot of absolute value of the residual at tp + PH grouped by Normality Index value for
a threshold of 0.2. Difference of the median was statistically significant by Wilcoxon Rank Sum test
(p < 0.001).

Finally, Figure 9 illustrates an example of the relationship between NI and abnormal
events in the simulated scenario. Postprandial response after a missed bolus (blue shaded
area) is clearly detected as an abnormal CGM response. Consider that a minimum delay
of 20 min will happen since that is the window considered in the computation of NI.
After an initial glucose rise that could be similar to other meals, the value of NI is below
the threshold consecutively at each sample during the postprandial period until glucose
returns to normoglycemia. Regarding the exercise, including 3-h post-exercise period
with altered insulin sensitivity (green area), abnormality is found in the hypoglycemia
recovery, due to the increased need of carbohydrates as compared to a non-exercise related
hypoglycemia in the training data, as well as the initial response of the meal following
exercise. Other segments of CGM data might be also considered abnormal without relation
to missed boluses or exercise, such as the one around sample 1.64× 104. In this case, a meal
close to a hypoglycemia recovery happened.

The information provided by the Normality Index can be useful in real-time operation,
raising for instance warnings when sufficiently long abnormal periods are detected (as in
the case of missed boluses), due to expected decrease of accuracy of predictions. Addition-
ally, remark that its computation is independent of predictions since it relies only on the
clustering training phase (no local models are implied). This means that its use in an offline
context can also be devised, as a tool for the analysis of CGM data highlighting areas of
abnormal response that may deserve special attention by the clinician.
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Figure 9. Example of relationship between Normality Index and abnormal events in the simulated scenario. Shaded blue
area indicates a missed bolus postprandial period. Shaded green area indicates an exercise session and 3-h post-exercise
period. Shaded red area indicates a section of CGM data classified as abnormal (NI(tp) < 0.2).

4. Conclusions

In previous works, seasonal local modeling proved successful in glucose prediction
for longer prediction horizons. However, fixed-length postprandial time series were used,
which do not apply to realistic scenario. In this work, this limitation is overcome with the
introduction of event-to-event CGM time series partitioning, and clustering of variable-
length data. A new local models integration method is also proposed. Metrics obtained
outperformed other literature methods, or were very close to the reported ones, even
when imperfect training was considered introducing abnormal data in the validation
dataset, while having the clear advantage of the minimal input information required
(CGM and mealtime). This one can ultimately be automatically extracted without patient
intervention making the glucose predictor suitable for insulin pump and MDI users.
Besides, the normality index can provide useful information about abnormal glycemic
responses leading to a more cautious use of the provided predictions, or providing valuable
information to clinicians for the inspection of CGM data. This study has the limitation
of any in silico study, and evaluation with clinical data should be conducted as the next
step in this research. Although this work focused on the adult cohort for the sake of
comparison with other literature methods, the methodology could have been applied
equally to the adolescent or children virtual cohort, with an adaptation of the number of
clusters considered according to the population variability.
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