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Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:Malassezia, a lipophilic and lipid-dependent yeast, is a microorganism of current interest to

mycobiologists because of its role as a commensal or pathogen in health conditions such as

dermatological diseases, fungemia, and, as discovered recently, cancer and certain neuro-

logical disorders. Various novel approaches in the study of Malassezia have led to increased

knowledge of the cellular and molecular mechanisms of this yeast. However, additional

efforts are needed for more comprehensive understanding of the behavior of Malassezia in

interactions with the host. This article reviews advances useful in the experimental field for

Malassezia.

Introduction

The Malassezia genus was discovered in the early 19th century. Currently, 18 species belonging

to this genus have been identified, all of which are considered to be important contributors to

the human and animal mycobiota [1,2]. In addition to the 18 current species, the incorpo-

ration of M. auris, M. palmae and M. rara has been recently proposed [1]. Malassezia yeast can

cause some dermatological conditions, such as pityriasis versicolor, atopic dermatitis, dan-

druff, seborrheic dermatitis, and folliculitis but also plays a role in systemic infections.

Recently, Malassezia has been associated with chronic diseases such as inflammatory bowel

disease (IBD), cancer, and neurological disorders such as Alzheimer’s disease [3]. These find-

ings continue to attract attention and emphasize the importance of understanding the role of

this microorganism in human health.

Experimental approaches allow the study of this yeast at the cellular and molecular level. In

addition, genomic data from multiple species are now available, allowing the identification of

Malassezia genes that are involved in environmental adaptation, metabolism, pathogenicity,

and antifungal resistance [4]. The use of a convenient system of genetic manipulation through

Agrobacterium tumefaciens–mediated transformation (AMT) and a CRISPR/Cas9 system

could increase the ability to study gene function and provide information about pathogenicity

[4].
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Given its role in the human mycobiota, it is important to understand how Malassezia inter-

acts with the host. Both in vitro (ex vivo) and in vivo models have been studied, as summarized

in Table 1. An in vivo mammalian skin model using C57BL/6 mice, which exhibits similarities

to the human immune system, facilitated the elucidation of a key role of Malassezia in induc-

ing a Th17 response associated with exacerbation of skin inflammation [5]. In addition, a

murine model has been used to study the role of Malassezia in IBD and the pathogenesis of

pancreatic ductal adenocarcinoma (PDA). Interestingly, a mouse model led to the finding that

M. restricta has a negative association with Huntington’s disease [5–8]. Unfortunately, a

murine model also has disadvantages, including ethical concerns and high cost. However,

invertebrate models, such as Galleria mellonella, may be alternatives, offering advantages such

as easy management, low cost, and similar immune response to humans [9]. In addition, ex

vivo models (for instance, skin explants) and in vitro models (for instance, keratinocyte cell

lines and reconstructed human epidermis) provide conditions similar to the human skin to

study the human immune response [10–12].

The combination of various strategies and tools is necessary to further deduce Malassezia–
host interactions (Fig 1). Omics approaches, such as lipidomics and volatilomics [28,29], may

potentially lead to a deeper understanding of the genus by identifying factors associated with

its commensal and pathogenic status. Also, considering the emergence of antifungal resistance

in this genus, this could facilitate the development of therapeutic strategies that modulate the

homeostasis of the yeast without disruption to the host.

Undoubtedly, research on Malassezia is still young, underscoring the importance of under-

standing the lipid requirements of this genus to determine the ideal conditions that allow for

the survival of Malassezia in the niches that they occupy. In this review, we highlight advances

in the field and different strategies that can be used to continue to learn about this genus and

its interactions with hosts.

Beyond what you can see: Is it possible to study Malassezia interactions

with a model host?

The implementation of microscopy-based techniques is a new field in Malassezia research,

especially when the goal is to evaluate the interaction between this yeast and its host. Various

microscopy-based techniques [30] in combination with other approaches can be implemented

to understand whether Malassezia can invade the tissue or if the disease is caused by other fac-

tors and to document the interaction between Malassezia and model hosts.

Microscopy-based techniques can be used to analyze the progression of infection, invasion

of cells, colonization, and biofilm formation of Malassezia with in vivo or ex vivo models

(Table 1). For example, Corzo-León and colleagues used various stains (periodic acid solution,

Schiff reagent, counterstain with hematoxylin solution) and microscopic techniques (fluores-

cent confocal microscopy [FCM] and SEM) to reveal the host–pathogen interaction in oily

and non-oily skin in an ex vivo human skin model infected with M. sympodialis [10]. Used

together, these techniques demonstrated a direct interaction between Malassezia and keratino-

cytes and the epidermal damage caused by these fungi [10]. In addition, histological stains

have been used to evaluate yeast–host interactions and the cellular response to infection, tissue

invasion, and colonization in G. mellonella and RhE models infected with Malassezia [9,12].

Further, FCM has been standardized for costained Malassezia and lipid storage organelles (i.e.,

lipid droplets), which are promoters of pathogenicity and survival during stress conditions in

other microorganism models [31].

Microscopy techniques are widely used in other pathogenic fungi to investigate tissue inva-

sion, cell damage, and the host–pathogen interaction. For example, fluorescent imaging
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Table 1. Different studies applying experimental models to study Malassezia–host interactions.

Current models to study host–microbe interaction Studies performed in Malassezia species

Model

category

Experimental

model

Advantages Disadvantages Malassezia
species

Methodological

assessment/parameters

analyzed

Findings

Invertebrates

Galleria
mellonella

• Conserved innate

immune system

• Low cost

• No ethical implications

• Minimal infrastructure

requirements

• Easy management [9]

• No adaptive immune

response

• No fully sequenced

genome [13,14]

M. furfur
M.

pachydermatis

• Histological stain: H&E

• Confocal microscopy

• Larval melanization

and survival

• Fungal burden

• Hemocyte response

G. mellonella is a suitable model

to evaluate the Malassezia–host

interaction process, where the

survival of larvae is dependent on

inoculum concentration, species

of Malassezia, and incubation

temperature [9]

Drosophila
melanogaster • Short life cycle

• Low cost

• Genome available

• Available advanced

technologies to apply

• Conserved innate

immune system [15]

• No adaptive immune

response [13]

M.

pachydermatis
• Histological stain: HE,

GMS

• Fly survival

• Fungal burden

• Systemic infection

Toll-deficient flies infected with

M. pachydermatis are susceptible

to infection, and they are

inoculum dependent compared

to wild type [16]

Caenorhabditis
elegans

• Short life cycle

• Physiologically simple

• Genome available

• Transparent cuticle

• Easy to obtain and

manage [14]

• No adaptive immune

response

• Unable to be cultured

at 37˚C

• Difficult to inoculate

[14]

M.

pachydermatis
• Worm survival C. elegans showed a high

mortality after 96 h of exposure to

plates incubated with M.

pachydermatis at 25˚C [17]

Vertebrates Mouse • Conserved immune

response

• Various routes of fungal

administration

(intravenous, cutaneous,

ocular, vaginal,

intragastric,

oropharyngeal)

• Development of systemic

symptoms of infection

• Sequenced genome

[13,18]

• High cost

• Ethical implications

• Special requirements

(larger space, optimal

asepsis)

• Experience and

training are needed

[13]

M.

pachydermatis
• Histological stain: HE,

methenamine silver stain

• Fungal burden

M. pachydermatis causes otitis

and dermatitis in mice, with a

high burden at the beginning of

infection that decreases over time

[19]

M. sympodialis • RT-qPCR

• FISH

Coinfection of mice with M.

sympodialis and Pseudomonas
aeruginosa or Staphylococcus
aureus influence the immune

response of the host [20]

M.

pachydermatis
M. furfur
M. sympodialis

• RT-qPCR

• Histochemistry

• Immunofluorescence

• Flow cytometry and

cell sorting

• Histological stain: HE,

periodic acid-Schiff

Malassezia-induced IL-17

immune response in the skin

results in fungal reduction and

promotes inflammation [5].

M. restricta •Morphological

evaluation

• Histological stain: HE

• Flow cytometry

• qPCR

The presence of M. restricta did

not affect the mouse colon but

exacerbated DSS-induced colitis.

M. restricta led to severe

intestinal inflammation with

higher production of IL-17A- and

IFN-γ-producing CD4+ cells [6]

M. restricta • Shotgun metagenomic

sequencing

M. restricta was a key species in

the gut microbiome with a

negative association with

Huntington’s disease in the R6/1

transgenic mouse model [8]

Malassezia
spp.

M. globosa

• qPCR

• Histological stain: HE,

Gomori trichrome

• IHC and microscopy

• FISH

• DNA sequencing

Malassezia spp. can migrate from

the gut to the pancreas, and its

presence there is higher in mice

with PDA. This may be mediated

by activation of the MBL pathway

[7]

(Continued)
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Table 1. (Continued)

Current models to study host–microbe interaction Studies performed in Malassezia species

Model

category

Experimental

model

Advantages Disadvantages Malassezia
species

Methodological

assessment/parameters

analyzed

Findings

Malassezia
furfur

• Histological stain: HE,

periodic acid–Schiff

staining

• Primary keratinocyte

cell culture

• RT-qPCR

• Antibody treatment (to

neutralize the IL-36

receptor)

• Flow cytometry

• Cytotoxicity assay

• Epicutaneous infection

in mice

• Fungal burden

Mice inoculated with M. furfur
show hyperkeratosis and

epidermal thickening. M. furfur
triggers a IL17 immune response

mediated by the IL-36 receptor

through expression of

IL17-associated molecules in an

epicutaneous mice model, with

implications for skin

inflammation induced by

Malassezia infection [21].

In vitro In vitro cell lines

(keratinocytes)

• Easy to manage

• Low cost

• No ethical implications

• Reproducible results

• Deep knowledge of cell

lines [22]

• Genetically modified

cell lines change

phenotype and

functions

• Short observation

time

• Results cannot be

interpolated with in

vivo models [22].

M. furfur • RT-qPCR

• Western blot

• ELISA

• Cell viability

• Negative-stain TEM

• Confocal microscopy

• IHC

Nanoparticles produced by M.

furfur are internalized into the

HaCaT cell line and stimulate

IL-6 production [11]

M. furfur
M. globosa
M. obtusa
M. restricta
M. slooffiae
M. sympodialis

• ELISA

• TEM

Removing the Malassezia
capsular-like layer triggers a

significant increase in the

production of IL-6, IL-8, and IL-

1a and a decrease in intracellular

IL-10 in keratinocytes [23]

M.

pachydermatis
• Histological stain:

Wright’s stain

• RT-qPCR

• Invasion assay

M. pachydermatis can invade

HaCat cells and triggers a strong

cellular response [24]

Ex vivo modela • Isolated tissue closely

mimics natural tissue

conditions in the in vivo

model [25]

• Technically

demanding

• Short observation

time [25]

M. sympodialis • SEM

• Confocal microscopy

• Histology: HE, periodic

acid–Schiff staining

• RT-qPCR

• Immunoassays

• Proteomics

Oleic acid in the skin is associated

with direct contact of yeast and

keratinocytes, as well as damage

to the epidermis. The skin

exposed to Malassezia in oily

conditions expresses IL-18 but

not antimicrobial peptide genes

[10]

RHE

• Possibility of

incorporating various cell

types in combination with

keratinocytes

• No ethical implications

• Reproducible results

• Higher degree of

standardization [26,27]

• Impairment of

barrier function

• Lack of equivalent for

dermal features (for

instance, vasculature,

glands, and lipids)

• Short observation

time

• No adaptive immune

response [27]

M. furfur
M. sympodialis

• Light microscopy

• Wide-field fluorescence

microscopy

• SEM

• Cytotoxicity assay

• RT-qPCR

M. furfur and M.sympodialis
colonize and form biofilm at the

RhE surface [12]

FISH, fluorescence in situ hybridization; GMS, Grocott Gomori methenamine-silver nitrate; HE, hematoxylin–eosin; IHC, immunohistochemistry; MBL, mannose-

binding lectin; PDA, pancreatic ductal adenocarcinoma; RhE, reconstructed human epidermis; RTAU : PleasenotethatRT � qPCRhasbeenfullyspelledasquantitativereversetranscriptionPCRinTable1abbreviationlist:Pleaseconfirmthatthisiscorrect:-qPCR, quantitative reverse transcription PCR; SEM, scanning

electron microscopy; TEM, transmission electron microscopy.
aExplanted organs such as skin explant.

https://doi.org/10.1371/journal.ppat.1010784.t001
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methodology was used to visualize the interaction of macrophage cells in zebrafish and Crypto-
coccus neoformans [32]. In this study, Bojarczuk and colleagues established that macrophages

could control infection in zebrafish and observed infection progression in detail [32]. Likewise,

zebrafish as a model host for fungal infections has also been used in Candida albicans because

it allows prolonged in vivo imaging of host–pathogen interactions, especially for bloodstream

infections [33]. A bronchoscopic fibered confocal fluorescence microscopy (FCFM) technique

was implemented and standardized for in vivo visualization and monitoring of Cryptococcus
and Aspergillus infections in murine lungs [34]. This FCFM technique enabled researchers to

visualize and describe morphological features of fungal cells during in vivo infection, which

provided insight into how the condition progresses [34]. Implementing these techniques to

visualize Malassezia in the skin could help to better understand how infection develops, the

possible physical changes that occur to the yeast in the evolution of disease, and the relation-

ship between the yeast and host macrophages or other cells.

FCM and cryo-imaging techniques have been used to describe the cellular response of the

infection of Aspergillus fumigatus in G. mellonella [35]. The cryo-images showed nodule devel-

opment demonstrating dissemination and melanization indicating tissue invasion [35]. FCM

Fig 1. Approaches to study the pathogenicity of Malassezia spp. Various in vivo and in vitro models allow the study of infection processes and the evaluation

of the host cellular and molecular responses. Multiple methodologies can be used together in experimental models to better understand Malassezia metabolism

and implications in pathogenicity. The image was designed in Biorender.com. FCM, Fluorescence confocal microscopyAU : PleaseprovidefullspellingforCFMinFig1abbreviationlistifthisindeedisanabbreviation:; RT-qPCR, quantitative reverse

transcription PCR; SEM, scanning electron microscopyAU : AnabbreviationlisthasbeencompiledforthoseusedinFig1:Pleaseverifythatallentriesarecorrect:.

https://doi.org/10.1371/journal.ppat.1010784.g001
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of the nodules confirmed the presence of germinating conidia and hyphae [35]. In combina-

tion with other techniques, these approaches could be implemented for Malassezia in different

host models to answer questions related to physical interactions, dissemination, and invasion

that can help to determine whether Malassezia is a commensalist or pathogen.

Focusing on the extraordinary: How could infection models help to

determine the unknown function of Malassezia genes and the role of gene

products in virulence?

In Malassezia, variability in virulence has been reported within species and between species

[36]. However, it is unclear which genes are involved in this variability and their role in Malas-
sezia pathogenesis, homeostasis, or host interactions. At least 44 Malassezia-specific gene clus-

ters exist, some likely acquired through horizontal gene transfer. However, most have

unknown functions [37]. The linkage between the mating loci in Malassezia may be involved

in pathogenesis variability [37].

Assessing the function of genes can be challenging due to the biological features of the

yeasts belonging to the Malassezia genus, including lipid requirements, feasibility of cell con-

tact during transformation processes, growing time, and the cell wall structure [38]. Thus,

development of a transformation technique that overcomes these challenging features is much

needed for gene function studies.

A. tumefaciens–mediated transformation provides random insertional mutagenesis and

CRISPR/Cas9-mediated targeted gene deletion in Malassezia yeasts [38–41]. This tool, in com-

bination with a murine model and macrophages as an ex vivo model, has facilitated the evalua-

tion of the role of M. sympodialis flavohemoglobin, a protein encoded by a horizontally

transferred gene [42]. In both models, flavohemoglobin was not necessary to establish infec-

tion in the murine model or for survival inside macrophages [42]. This is the first approach to

study Malassezia gene function in host–microbe interactions, and more studies are needed.

In addition, A. tumefaciens–mediated transformation and CRISPR/Cas9–mediated targeted

gene deletion can be used to study the mechanism of action of therapeutic strategies, such as

calcineurin inhibitors [43]. However, given the large number of genes involved in the Malasse-
zia host–microbe interaction and the relative lack of data on these genes, in vivo models are

needed. Larvae of G. mellonella and zebrafish may serve as alternative in vivo systemic infec-

tion models. In addition, superficial and systemic infection models in adult zebrafish may pro-

vide opportunities to assess virulence and gene function [13,33]. Amorim-Vaz and colleagues

evaluated 22 targeted transcription factor mutants of unannotated genes of C. albicans in G.

mellonella, which demonstrated the reliability of this insect as a fungal infection model with

results that correlated with a murine model [44]. Similarly, Garcı́a-Carnero and colleagues

demonstrated the reliability of G. mellonella larva as a model for Candida spp. and mutants

with reduced virulence. This study identified predictors of virulence, such as changes in hemo-

cyte circulation, melanization, phenoloxidase, and lactate dehydrogenase activity [45]. A 2-day

postfertilization zebrafish larvae systemic infection model has allowed in vivo assessment of

the infection process and tissue invasion with C. neoformans, a species more closely related to

Malassezia spp. than C. albicans, with results that correlate with previous observations of the

host innate immune response in the murine model [46]. Zebrafish larvae inoculated with C.

neoformans mCherry-expressing deficient mutants and wild-type strains were observed with

fluorescence microscopy, demonstrating (i) the mechanism of immune control of the infection

and (ii) its ability to survive phagocytosis and invade tissues [46]. These examples demonstrate

the feasibility of this experimental design to identify the function of Malassezia genes and their

role in virulence.
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The zebrafish larval infection model is a well-known animal model that is amenable to

genetic modification. In addition, this model can be implemented in combination with the A.

tumefaciens–mediated transformation technique to observe in vivo changes in cellular interac-

tion associated with the genes of interest. This may lead to a better understanding of the Malas-
sezia–host interaction.

Comprehending the complex metabolism of Malassezia: Is the metabolism

of Malassezia related to pathogenic processes?

The complex metabolism of Malassezia results in the production of different molecules or

metabolites that could be involved in the transition from commensal to pathogenic behavior.

These molecules include lipids, proteins, and volatile organic compounds (VOCs), knowledge

of which could increase the understanding of the pathogenicity of Malassezia species, as has

been described for other microorganisms [47–49].

The production and assimilation of lipids in yeasts have been studied due to their involve-

ment in membrane composition and their role in regulating cell membrane–associated pro-

teins [50]. The study of lipid metabolism in Malassezia is relevant because of the importance

of lipids in energy storage, signaling processes, metabolism, and membrane composition

[31,47], as well as the fact that Malassezia is lipid dependent. Lipid characterization has shown

differences between species during the stationary phase, revealing 18 lipid classes and 428

lipidic compounds. These lipids are represented by sterols, triacylglycerols, diglycerides, and

fatty acid esters of hydroxy fatty acids. Curiously, the compounds’ concentrations vary

between species. For example, the content of cholesteryl ester is lower than other lipid classes

(for instance, cholesterol or triacylglycerols) in M. furfur, atypical M. furfur, and M. pachyder-
matis and undetectable in M. globosa, M. restricta, and M. sympodialis [51]. Moreover, lipido-

mic and proteomic analyses identified lipid metabolism proteins, most of which are enzymes

involved in lipid biosynthesis. The complex lipid metabolism of Malassezia may contribute to

the genus’s pathogenic processes [51,52]. Other assessments have revealed a connection

between the production of lipid mediators in human skin and Malassezia, raising questions

about the role of these lipids in the establishment of disease [28]. The role of lipids in disease

development has been described in a Saccharomyces cerevisiae model, in which disturbances in

cellular lipid homeostasis resulted in cell death induced by free fatty acid toxicity and lipid per-

oxidation in the mitochondrial pathways of apoptosis [47]. In C. albicans, phospholipid path-

ways enhance virulence; for example, the phosphatidylserine synthase mutant is avirulent in

mice and has reduced production of phosphatidylethanolamine, which is thought to be

involved in cell wall integrity, mitochondrial function, and filamentous growth [53]. In addi-

tion, lipidomic analysis enables the study of lipid composition under specific conditions. For

example, lipidomic characterization of Fusarium oxysporum isolates infecting G. mellonella
revealed a higher number of phospholipid species with higher unsaturation in clinical versus

environmental isolates [54].

Proteins are important in metabolism because they are functional molecules that perform

biochemical reactions due to transcriptomic processes [55]. Proteomic analyses can provide

information about cell biology, host–pathogen interactions, antimicrobial resistance, bio-

marker discovery, and identification of anti- and propathogenic cellular responses [55,56].

Few studies have been performed to unravel the role of Malassezia proteins in host interac-

tions. One of these involved protein characterization using liquid chromatography with tan-

dem mass spectrometry and found that human skin exposed to M. sympodialis had increased

protein expression by 18%. The proteins reported in that study were mainly related to cornifi-

cation, antimicrobial immune response, and defense response to fungus [10]. An in vitro
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study assessed the effect of M. globosa aspartyl protease 1 (MgSAP1) on S. aureus biofilm pro-

duction and found that MgSAP1 could cleave the S. aureus protein A, which is involved in bio-

film production [57], demonstrating a possible protective role of M. globosa on the skin. Still,

it is necessary to evaluate this activity in ex vivo or in vivo models to better understand the

effect of this aspartyl protease on a potential pathogen.

Host–pathogen interactions have been assessed via proteomic approaches in other microor-

ganisms. For example, protein expression during A. fumigatus infection of G. mellonella
revealed increased levels of antimicrobial peptides and proteins that contribute to the innate

immune response to fungus in mammals [35]. Similarly, in a C. albicans–infected G. mellonella
model, the yeast secreted several proteins related to pathogenesis, oxidative stress, hyphal cell

wall formation, and heat shock into the larval hemolymph, which enhances the C. albicans vir-

ulence process [48]. These methodological approaches could be applied to the Malassezia–host

interaction to identify proteins involved in host interactions, those related to virulence, and

those that interact with the host immune response.

Fungal volatiles are gaining relevance because of their involvement in host–pathogen inter-

actions and use as biocontrol alternatives [58]. A recent study detected 61 VOCs in different

growth media supplemented with lipids in the M. furfur exponential and stationary growth

phases [49]. This study confirmed chemical differentiation of the VOCs under other condi-

tions. For instance, γ-dodecalactone was identified in the modified Dixon and oleic acid media

in both growth phases, but not in palmitic acid or the combination oleic–palmitic acid media.

In addition, differences were observed in the production of VOCs according to the growth

phase. For instance, dimethyl sulfide increased during the stationary phase, while others,

including octane, decreased, suggesting that Malassezia VOC production is stimulated by the

compounds in the growth media and demonstrating the dynamic metabolism of this yeast

[49]. However, no information exists for other species regarding VOC production, function in

metabolism, or role in biological interactions. In contrast, the role of VOCs produced by sev-

eral microorganisms has been described. Gas chromatography with mass spectrometry has

demonstrated that VOCs produced by the pathogen A. fumigatus are toxic to D. melanogaster
on the basis of fungal VOCs interrupting the metamorphic development of the insect. Further,

compounds such as 1-octen-3-ol and isopentyl alcohol may increase the pathogenicity of the

fungus [58]. In G. mellonella, a coinfection model demonstrated that sulfur compounds pro-

duced by P. aeruginosa promoted the growth of A. fumigatus [59]. These findings may help to

understand the role of metabolism in virulence during host–pathogen interactions.

Understanding resistance in Malassezia
The study of antifungal resistance in Malassezia is of clinical interest because Malassezia spp.

have been identified as the etiologic agents of bloodstream infections and are associated with

severe systemic disease [60–62]. Considering the recurrence of Malassezia skin disease and the

need for long-term antifungal treatment, precautions are needed to prevent the emergence of

resistance to various classes of antifungal agents [62,63]. However, due to the nutritional

requirements of this genus, it has been difficult to standardize interlaboratory methodologies

for in vivo and in vitro analyses [64]. As such, several groups have modified the in vitro Clini-

cal and Laboratory Standards Institute M27-A3 and European Committee on Antimicrobial

Susceptibility Testing protocols by adjusting temperature and supplementing culture medium

with different lipids [65]. Nonetheless, it is important to note that there is no common agree-

ment in a standard methodology as there is for pathogenic yeasts such as Candida and Crypto-
coccus, and the lack of clinical cutoff values hinders the determination of resistance [65].
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Recent studies have reported isolates from different Malassezia spp. with high minimum

inhibitory concentrations (MICs) against some azoles, such as fluconazole, voriconazole, and

ketoconazole [62,66,67]. Given the growing evidence of the emergence of azole resistance in

Malassezia, there is increasing interest in understanding the mechanisms behind this phenom-

enon. Hence, various approaches have been used to understand resistance in Malassezia,

including (i) synergism studies in which combinations of azoles and efflux pump inhibitors

like haloperidol, pro-methazine, and cyclosporine A reduced azole MICs compared to treat-

ment without inhibitors in M. furfur and M. pachydermatis [68]; (ii) genomic studies in which

ketoconazole resistance in a M. pachydermatis isolate was attributed to duplication of genes

encoding ERG4 and ERG11 [69] and findings that duplication of ATM1 and ERG11 could

explain resistance to this azole in M. restricta [67]; and (iii) gene expression and RNA-seq anal-

yses that demonstrated that efflux pumps such as PDR5 [67] and PDR10 [61] are up-regulated

in resistant isolates of M. restricta and M. furfur, respectively, exposed to azoles (ketoconazole

and clotrimazole). The latter was also confirmed via CRISPR-Cas9 deletion of PDR10. These

results demonstrated this efflux pump provides azole resistance in M. furfur and is not only

attributed to CYP51 mutations as reported previously [61].

Although the use of antifungal agent susceptibility profiling is increasing Malassezia, much

remains unknown about the in vivo course of antifungal treatment. Mammalian models are

the standard to evaluate the efficacy and pharmacokinetics of novel and traditional antimicro-

bial agents [70]. Regardless, there is a growing interest in using other models of infection, such

as G. mellonella, considering ethical issues with mammalian models [71,72]. The G. mellonella
invertebrate model has been used in different infection models to study pharmacokinetics due

to similar responses found in humans [70,72]. Although Malassezia infections have been suc-

cessfully established in murine models and G. mellonella, no antifungal activity assays have

been performed [9,73]. Thus, in vivo models and methodologies that allow the evaluation of

novel antifungal or alternative therapeutic treatments are needed [64].

Considering that antifungal susceptibility tests have been performed on other yeasts and fil-

amentous fungi in a wide variety of experimental models, background studies support stan-

dardization of a model for Malassezia. For instance, 2 antifungal compounds have been

evaluated in a coculture of Trichophyton rubrum and keratinocytes in which the expression of

genes related to therapeutic targets and resistance mechanisms was determined by quantitative

RT-PCR [74]. In addition, G. mellonella has been used to verify an in vitro–in vivo correlation

of the combined effect of antifungal treatments on Mucorales growth [75]. As another exam-

ple, a zebrafish model was proposed for antifungal compound screening in C. albicans infec-

tion [76]. Likewise, murine models have been used to determine the activity of new molecules,

such as occidiofungin and T-2307, against C. albicans and C. neoformans, respectively, with a

correlation between in vitro and in vivo results [77,78].

New therapeutic candidates and alternatives have been proposed for Malassezia-associated

infections. For instance, L-lysine [79], AMP, essential oils, and plant extracts [80] have been

proposed as alternatives to traditional antifungals therapies, but further research is needed to

study their effectiveness in vivo [79]. It is crucial to standardize models to evaluate the efficacy,

safety, and pharmacokinetics of traditional and alternative therapies and to corroborate

whether there is a correlation between in vivo and in vitro antifungal efficacy.

Conclusions

Considering the efficacy of current techniques applied to in vivo and in vitro models to under-

stand host–pathogen relationships and aspects related to metabolism in other fungal species, it

would be worthwhile to introduce these tools to the study of Malassezia. These models can be
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used to inform the application of strategies to identify the role of different molecules in host

interactions. Even identification of the pathways by which these metabolites are produced

could clarify the behavior of Malassezia. Such studies will make it possible to propose alterna-

tive therapeutic targets to control infections caused by these yeasts or improve diagnostic

techniques.
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