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Introduction
Therapeutic strategies targeting EGFR, ALK, 
ROS1, and other driver oncogenes have revolu-
tionized the treatment landscape of non-small cell 
lung cancer (NSCLC) and improved patient out-
comes.1 Most recently, MET exon 14 skipping 
(hereafter referred to as METex14) has joined the 
group of actionable driver oncogenes for NSCLC. 
MET is a transmembrane receptor tyrosine kinase 
(RTK), encoded by MET gene, and activated by 
its stromal ligand hepatocyte growth factor 
(HGF).2 Activation of MET-HGF promotes pro-
liferation and metastasis of cancer cells. MET 
protein is an established driver of oncogenesis 
based on three types of genomic alterations: 
amplification, mutation, and fusion. The exon  
14 of the MET encodes the intracellular 

juxtamembrane (JX) domain, which contains 
PKC phosphor-site (S985), caspase cleavage site 
(D1002), and E3 ubiquitin ligase CBL (Casitas-
B-lineage lymphoma) docking site (Y1003), all 
controlling downregulation of RTK activity 
(Figure 1a).3–7 The alteration disrupts intronic 
splice sites that flank exon 14, including the splice 
acceptor site of intron 13 and the splice donor site 
of intron 14, or mutation within the exon 14 cod-
ing sequence itself, and all result in exon 14 skip-
ping in the transcript. The most common of these 
mutations are base substitutions, followed by 
indels. Therefore, alterative splicing events lead-
ing to the skipping of MET exon 14 result in acti-
vating the MET-HGF pathway and promoting 
tumor cell proliferation, migration, and prevent-
ing apoptosis (Figure 1b).
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The first alternative splicing event of METex14 
was described in mouse models, which was a 
141-basepair deletion and results in a 47-amino-
acid JX region deletion of the MET protein.8 This 
deletion in METex14 JX region promoted tumori-
genesis and formation.9 Alterations in this region 
in patients with NSCLC were first reported by 
Ma et al.10 and explored in a large cohort since 
late 2015.11 Since then, METex14 has been stud-
ied in NSCLC and other tumors as an oncogenic 
driver, and ignited the enthusiasm for the devel-
opment of therapeutic agents to target this new 
driver. In this review, we summarize characteris-
tics of METex14 NSCLC, and discuss the prom-
ise of selective MET inhibitors, small molecule 

inhibitors and antibody-based approaches, in the 
treatment of NSCLC patients harboring METex14 
skipping alterations. We also discuss immuno-
therapy strategies under development.

Clinicopathologic characteristics of METex14 
splicing alterations in NSCLC
Hundreds of different alterations have been 
described that lead to exon 14 skipping in 
NSCLC, including point mutations, deletions, 
insertions, or complex mutations (indels) that all 
affect conserved sequences of splice donor or 
acceptor sites located within the exon–intron 
boundaries (Figure 1a). Due to the nature of 

(a)

(b) (c)

Figure 1. METex14 in non-small lung cancers. (a) schematic diagram of genomic areas flanking MET exon 14 
and key amino acid residuals within exon 14. (b) Skipping of MET exon 14 leads to upregulated MET signaling. 
Tyrosine kinase inhibitors (TKIs) and antibody-based therapies are two major therapeutic approaches to target 
METex14. (c) Incidence of known driver oncogenes for lung adenocarcinoma.
CBL, Casitas-B-lineage lymphoma; JX, juxtamembrane; SEMA, sema homology region; TK, tyrosine kinase; TKIs, tyrosine 
kinase inhibitors; TM, transmembrane.
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METex14 being a heterogeneous RNA splicing 
alteration, an effective next-generation sequenc-
ing (NGS) assay is needed to capture the genetic 
changes. Generally speaking, hybrid-based DNA 
sequencing platforms could be more sensitive 
than the amplicon-based DNA sequencing plat-
forms, whereas the RNA sequencing platform can 
directly identify the loss of exon 14 transcription 
and therefore may be the most definitive.12 
Nowadays, with MET exon 14 skipping becom-
ing an established actionable oncogene for lung 
cancer, many NGS platforms have optimized the 
assays with high depth of coverage surrounding 
the MET gene, which improves the detection 
sensitivity.

Studies from different countries have reported 
that the prevalence of METex14 in lung adeno-
carcinoma was around 3% (Figure 1c),8 higher 
than squamous cell carcinoma (1%)13 and small 
cell lung cancer (0–0.2%), but much lower than 
adenosquamous (6%) and pulmonary sarcoma-
toid carcinoma (9–22%). METex14 alterations 
have also been observed at higher frequency in 
females than males, and the median age was 
reported from 71.4 years to 76.7 years.14–19 
NSCLC with MET exon 14 skipping mutations 
appeared to be a highly aggressive subtype. Some 
88.2% (out of 34 with metastatic disease) of 
METex14 NSCLC patients had metastases at 
more than one single site, and 22.6% (out of 84) 
total METex14 NSCLC patients had multifocal 
disease.14 Gow et  al.20 showed that the median 
overall survival (OS) of stage IV METex14 
NSCLC patients (n = 18) was 6.7 months, with-
out significant difference when compared with 
the patients with negative driver mutation 
(n = 210; 11.2 months). Another retrospective 
study conducted by Awad et  al.21 reported 34 
stage IV METex14 NSCLC patients who never 
received MET inhibitors, and the median OS was 
8.1 months.

Small molecule inhibitors targeting METex14 
NSCLC
Two classes of MET-targeting therapeutics are now 
in clinical development for METex14 NSCLC: 
small molecular MET tyrosine kinase inhibitors 
(TKIs) and antibody-based therapies against 
MET/HGF (Figure 1b). In 2020, two MET TKIs 
received regulatory approval for METex14 
NSCLC: tepotinib by Japanese Ministry of 
Health, Labor and Welfare (MHLW) and cap-
matinib by US Food and Drug Administration 

(FDA), representing a major achievement for 
MET TKI development.

TKIs for MET are generally classified as type I, 
type II, and type III. Type I MET inhibitors bind 
to the ATP-pocket in the active form (DFG-in) of 
MET, and are subdivided into Ia and Ib. Type Ia, 
such as crizotinib, interacts with the Y1230 resi-
due, the hinge region, and the solvent front 
G1163 (analogues to the same position as G1202 
of ALK gene and G2032 of ROS-1 gene). Type 
Ib, such as capmatinib, tepotinib, savolitinib, has 
strong connection with the Y1230 residue and 
the hinge, but no interaction with G1163. Each of 
these TKIs has demonstrated promising efficacy 
for advanced METex14 NSCLC. Newer type I 
inhibitors, Bozitinib and TPX-022, are under 
clinical evaluation currently. Type II inhibitors, 
such as cabozantinib, merestinib, glesatinib, bind 
the ATP-pocket in the inactive state (DFG-out) 
by extending to a hydrophobic back pocket. Both 
type I and type II are ATP-competitive inhibi-
tors.22 Tivantinib is a type III inhibitor, which 
binds to allosteric sites distinct from the ATP 
binding site, and is reported to be non-ATP com-
petitive.23 Tivantinib has been previously studied 
in NSCLC patients, and was discontinued due to 
futility in an interim analysis;24 however, METex14 
was not evaluated in this trial. Many other small 
molecule inhibitors targeting MET are under var-
ious stages of development, such as glumetinib 
(SCC244), AMG-337, foretinib (GSK1363089, 
XL880), S49076 and SAR125844.

Type I MET small molecule inhibitors
Crizotinib (XALKORI). The first targeted therapy 
demonstrating anti-tumor efficacy in METex14 
NSCLC was crizotinib. Crizotinib (PF02341066; 
Pfizer) is a type Ia inhibitor. Besides MET, it also 
inhibits ALK, ROS-1 and other targets. The IC50 
of inhibiting the phosphorylation of wild-type 
MET in vitro in several human tumor cell lines 
ranges between 4 nM and 8 nM.16,25–27 Many case 
studies reported the efficacy of crizotinib in lung 
cancer patients with METex14 alterations (>10 
refs since 2015). In a retrospective series of 61 
patients with metastatic NSCLC, 27 including 19 
adenocarcinomas were treated with a MET inhib-
itor (22 with crizotinib) and 34 were not. Median 
OS was 24.6 months for patients treated with a 
MET inhibitor compared with 8.1 months in 
those not receiving such a drug.21 The median 
progression-free survival (mPFS) for the 22 
patients treated with crizotinib was 7.4 months. 
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PROFILE 1001 was the first trial to formally 
evaluate crizotinib efficacy in METex14 NSCLC 
patients. In the total of 65 evaluable patients, 
overall response rate (ORR) was 32% with three 
complete responses (CRs) and 18 partial responses 
(PRs). Duration of response (DOR) was 
9.1 months and mPFS was 7.3 months. Objective 
responses to crizotinib were observed indepen-
dent of METex14 alteration splice site or mutation 
type.28 The most common treatment-related 
adverse events (TRAEs) were edema (51%) and 
vision disorder (45%), which were similar to that 
reported previously for patients with ALK- or 
ROS1-rearranged NSCLC. For this trial, METex14 
was detected in archival tumor tissue and base-
line/end of treatment plasma samples. Tissue 
NGS was performed at the central laboratory 
Foundation Medicine, Inc. (FMI) and Cancer 
Genetics, Inc. (CGI). Plasma ctDNA NGS was 
performed at Personal Genome Diagnostics 
(PGDx).

A phase II, two-arm study, the METROS study 
with crizotinib (NCT02499614), is ongoing in pre-
treated NSCLC patients with ROS-1 translocation, 
or MET amplification, or MET exon 14 mutation. 
Stage IA–IIIA NSCLC patients with surgically 
resectable ALK rearrangement, ROS-1 rearrange-
ment, or MET exon 14 mutation positive are also 
being recruited to evaluate the efficacy of neoadju-
vant therapy with crizotinib (NCT03088930). 
Additionally, crizotinib is the TKI for the METex14 
arms of two large phase II basket trials: the NCI-
MATCH trial (NCT02465060) in the US and the 
National Lung Matrix trial (NCT02664935) in the 
UK, for patients with METex14 solid tumors and 
lung cancer respectively. Another phase II, open-
label study (NCT04084717) is underway to assess 
the efficacy of crizotinib in metastatic NSCLC 
patients with a mutation in genes ROS-1 or MET. 
Crizotinib has received FDA breakthrough desig-
nation for use in the treatment of METex14 
NSCLC.

Capmatinib (TABRECTA). Newly designed small 
molecule inhibitors selectively targeting MET 
have been developed for the treatment of METex14 
NSCLC and they have shown promising activi-
ties. Capmatinib (INC280, INCB28060; Novar-
tis) is a highly selective and potent type Ib MET 
inhibitor with in vitro and in vivo activities against 
preclinical cancer models with MET activa-
tion.29,30 Capmatinib inhibits MET kinase activ-
ity with an average IC50 value of 0.13 nM, and a 
cell-based IC50 of 0.3–0.7 nM in lung cancer cell 

lines. Two open-label, multicenter, phase I dose-
escalation and expansion studies (NCT01546428, 
n = 44; NCT01324479, n = 38) demonstrated 
clinical safety and determined the dose to be safe 
was 400 mg b.i.d.31,32 Preliminary anti-tumor effi-
cacy was reported in NCT01324479 and 
NCT02276027 in MET  altered tumors.33,34

Capmatinib efficacy in METex14 NSCLC was 
established in the GEOMETRY mono-1 trial 
(NCT02414139), a multicenter, non-randomized, 
open-label, multicohort, and phase II study enroll-
ing 97 metastatic METex14 NSCLC patients. 
Patients received capmatinib 400 mg orally twice 
daily until disease progression (PD) or unaccepta-
ble toxicity. Among the 28 treatment-naïve patients, 
the ORR was 68% (95% CI: 48–84) (64% PRs 
and 4% CRs) with a response duration of 12.6  
months (95% CI: 5.5–25.3), and the mPFS was 
9.69 months. Among the 69 previously treated 
patients, the ORR was 41% (95%CI: 29–53) (all 
PRs) with a DOR of 9.7 months (95% CI: 5.5–13), 
and the mPFS was 5.42 months. Additionally, in 
this trial, 13 patients had brain metastases, with 
seven that had central nervous system lesions 
shrinkage, including four that disappeared. The 
drug’s efficacy appeared to be independent of any 
specific MET exon 14 variant, and treatment was 
well tolerated, with the main side effects being 
peripheral edema and nausea.35,36 With this set of 
results, on 6 May 2020, capmatinib received its 
approval by the US FDA for the treatment of met-
astatic NSCLC whose tumors have a mutation 
that leads to MET exon 14 skipping, as detected by 
an FDA-approved test.37 In addition, FDA also 
approved the FoundationOne CDx assay 
(Foundation Medicine, Inc.) as a companion diag-
nostic for capmatinib.

Several phase II studies are ongoing in patients 
with NSCLC, including NCT03693339 in Korea 
and NCT03911193 in Italy. In addition, a phase II 
trial (NCT04460729) will formally evaluate the 
intracranial efficacy of single-agent capmatinib in 
the population of treatment-naïve or pretreated 
with one or two prior lines of systemic therapies for 
advanced stage of NSCLC with MET exon 14 
mutation that has metastasized to brain. 
Furthermore, confirmatory phase II data for cap-
matinib in the first-line setting are pending.

Tepotinib (TEPMETKO). Tepotinib (EMD1214063; 
Merck KGaA) is another highly selective and 
potent type Ib MET inhibitor. Preclinical studies 
reported that tepotinib could inhibit HGF-induced 
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MET phosphorylation in cancer cell lines with an 
average IC50 of 3 nM and induced regression of 
human tumors in xenograft tumor models regard-
less of whether MET activation was HGF depen-
dent or independent.38,39

A first-in-human phase I trial (NCT01014936) of 
tepotinib in patients with advanced solid tumors 
was conducted in 149 patients (including 17 lung 
primary tumors) without identification of maxi-
mum-tolerated dose at 1400 mg daily and the rec-
ommended phase II dose (RP2D) of tepotinib 
was established as 500 mg once daily, supported 
by translational modeling data as sufficient to 
achieve ⩾90% c-MET inhibition in ⩾90% of 
patients.40

Tepotinib demonstrated clinically meaningful 
efficacy in advanced METex14 NSCLC patients, 
in the open-label, multicenter, multicohort phase 
II VISION study (NCT02864992). The study 
includes three cohorts: cohort A – patients with 
MET exon 14 skipping mutation; cohort B – 
patients with MET-amplified disease; cohort C – 
currently enrolling patients with MET exon 14 
skipping mutations for confirmatory analysis of 
the results in cohort A. As of January 2020, a total 
of 152 patients confirmed with MET exon 14 
skipping based on tissue or liquid biopsy had 
received tepotinib (at a dose of 500 mg orally 
once daily) and 99 patients (89 patients were ade-
nocarcinoma) were eligible for outcome analysis. 
The ORR as determined by an independent 
review was 46% (95% CI: 36.4–56.8; all PRs) 
with a disease control rate (DCR) of 65.7%. The 
mPFS was 8.5 months and the median duration 
of OS was 17.1 months (95% CI, 12.0–26.8), 
although data were immature at the time of analy-
sis.41 TRAEs were reported in 89% of the safety 
population. Peripheral edema was the most com-
mon TRAE of grade 3 or higher (in 7%) led to a 
dose reduction in 16% of the patients, and also a 
dose interruption in 18%. In March 2020, tepo-
tinib received Japanese MHLW approval, and 
also on the agency’s fast track path with US FDA. 
Archer®MET CDx has been approved for the 
detection of METex14 both in blood and tissue 
samples from patients with advanced NSCLC for 
consideration of tepotinib treatment.

Savolitinib. Savolitinib (AZD6094, volitinib, 
HMPL-504; AstraZeneca) is another potent (IC50 
4 nM) and selective (>650 folds selectivity over 
265 kinases), type Ib, small molecule MET TKI. 
Studies across a panel of cancer cell lines 

demonstrated selectivity for MET-driven disease, 
with MET-amplified cell lines being most sensi-
tive (IC50 of 1 nM) and also suggesting limited 
off-target activity. In preclinical models, savoli-
tinib demonstrated inhibition of HGF-mediated 
MET phosphorylation and dose-dependent 
tumor growth and downstream signaling,42 and 
was highly efficacious at blocking the growth of 
cancer cell lines harboring METex14.

A phase II clinical study (NCT02897479) con-
ducted in China demonstrated preliminary effi-
cacy and safety of savolitinib in patients with 
pulmonary sarcomatoid carcinoma and other 
type of METex14 NSCLC. In the most recent 
updated report on this trial,43 for MET treatment-
naïve patients (n = 70, 57.1% with lung adenocar-
cinoma), the ORR was 47.5% (95% CI: 
34.6–60.7), and DCR was 93.4% (95% CI: 84.1–
98.2), and 58.1% of the patients were treated for 
more than 6 months. The mPFS was 6.8 months 
(95% CI: 4.2–13.8). TRAEs leading to treatment 
discontinuation occurred in 14.3% patients, 
among which liver injury and hypersensitivity 
were most common (each 2.9%). In addition, the 
study showed that savolitinib can penetrate the 
blood–brain barrier (BBB) and was also effective 
in patients with brain metastases. On 29 May 
2020, the New Drug Application for savolitinib 
for the treatment of METex14 NSCLC has been 
accepted for review by the China National 
Medical Products Administration.

Bozitinib. Bozitinib (APL-101, PLB1001, 
CBT101; Apollomics Inc) is a highly selective 
and specific MET inhibitor (8 nM) with robust 
activity in gastric, lung, hepatic, and pancreatic  
in vivo models.44 Bozitinib had higher apparent 
permeability and lower efflux rate than other 
MET inhibitors (crizotinib, cabozantinib, and 
foretinib) in a preclinical cell model, and showed 
superior specificity in MET inhibition and was 
permeable in crossing the BBB in cell and rat 
models. Hu et al.45 evaluated the mutational land-
scape of 188 secondary glioblastoma (sGBM) 
patients and identified that METex14 was detected 
in 14% (95% CI: 8.0–23.5) of sGBM cases and 
associated with worse prognosis. In the subse-
quent phase I clinical trial (NCT02978261) eval-
uating bozitinib in sGBM patients carrying 
PTPRZ1-MET fusions and/or METex14 (n = 6), 
two achieved PR, two achieved stable disease 
(SD), and two had PD, with little side effects, and 
recommended bozitinib monotherapy dosage as 
300 mg b.i.d.
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NCT03175224 is a phase I/II international mul-
ticenter, open-label study evaluating the safety, 
pharmacokinetics, and preliminary efficacy of 
bozitinib in NSCLC patients with METex14 and 
c-MET dysregulation advanced solid tumors. 
Based on completion of the phase I and approval 
from the study’s safety review committee to 
advance the trial, the phase II portion of the 
study, titled SPARTA, was initiated in May 2020. 
Another phase II study (NCT04258033) has 
recently been initiated in Guangdong, China, and 
will include 185 participants with advanced 
NSCLC harboring MET dysregulation to assess 
the efficiency and safety of bozitinib.

TPX-0022. TPX-0022 (Turning-point Therapeu-
tics), a type I kinase inhibitor with a novel macro-
cyclic structure, has been designed and optimized 
to inhibit MET/CSF1R/SRC with enzymatic 
kinase inhibition IC50 values of 0.14, 0.71, and 
0.12 nM, respectively. Given TPX-0022 is a cyclic 
compound, not a linear compound like all the 
existing TKIs, TPX-0022 cannot be classified as 
Ia or Ib. TPX-0022 potently inhibited cell prolif-
eration of the MET-amplified gastric cancer cell 
lines with a value of IC50 <0.2 nM that was com-
parable with capmatinib and was more than 
10-fold more potent than crizotinib. TPX-0022 
also demonstrated inhibition to tumor growth by 
inducing tumor-associated macrophages to a 
more M1 phenotype and increasing the cytotoxic 
T cells.46

The first-in-human ongoing phase I clinical trial 
(NCT03993873) is being conducted in the US to 
determine the safety and preliminary efficacy of 
the novel MET/CSF1R/SRC inhibitor TPX-0022 
in patients with advanced solid tumors harboring 
genetic alterations in MET, including NSCLC 
with METex14.

Type II MET small molecule inhibitors
Cabozantinib (CABOMETYX). Cabozantinib (Cometriq, 
XL184, BMS-907351; Exelixis) is a type II MET 
inhibitor with activities against a broad range of 
targets, including MET, RET, AXL, VEGFR2, 
FLT3, and c-KIT. Currently, cabozantinib was 
approved by US FDA for metastatic medullary 
thyroid cancer (November 2012), first-line 
treatment of advanced renal cell carcinoma 
(December 2017), and hepatocellular carci-
noma patients previously treated with sorafenib 
(January 2019).

Cabozantinib was the first orally available MET 
inhibitor to enter clinical trials in 2005. 
Cabozantinib is potent inhibitor of MET with an 
IC50 value of 1.3 nM. As cabozantinib is a type II 
inhibitor, it also inhibits MET-activating kinase 
domain mutations Y1248C/H, D1246N, or 
K1262R, with IC50s values of 4, 5, and 14.6 nM, 
respectively. In mouse models, cabozantinib dra-
matically altered tumor pathology, resulting in 
decreased tumor and endothelial cell proliferation 
coupled with increased apoptosis and dose-
dependent inhibition of tumor growth in breast, 
lung, and glioma tumor models.47 Although large 
cohort investigation of cabozantinib in METex14 
NSCLC has not been published yet, several case 
reports demonstrated safety and potential activity 
of cabozantinib in METex14 NSCLC.48–50 An 
Italian phase II trial is currently evaluating cabo-
zantinib in patients with MET-amplified NSCLC 
or METex14 NSCLC (NCT03911193).

Merestinib. Merestinib (LY2801653; Eli Lilly) is 
also a type II potent, orally bioavailable MET 
inhibitor (IC50 = 2 nM). Merestinib also inhibits 
MST1R (RON). Preclinical studies have demon-
strated that treatment with merestinib inhibited 
the constitutive activation of MET pathway sig-
naling, and resulted in inhibition of MET in cell 
lines with MET alterations.51–54

Recondo et al. reported a patient harboring MET 
exon 14 skipping who experienced PD on crizo-
tinib, and a resistance MET mutation of Y1230C 
was detected both in plasma and tumor tissue at 
the time of progression. This patient had a PR 
after switched to merestinib.55 These results sup-
ported that merestinib may provide a therapeutic 
option to patients with METex14. The first-in-
human phase I study was to evaluate the safety 
and tolerability of merestinib including three 
types of tumor without NSCLC. Overall, 60 
(32%) of the 186 patients enrolled in the study 
had a best response of SD, and recommended a 
dosing of merestinib at 120 mg once daily based 
on acceptable exposure and safety.56 A phase II 
study conducted by Awad et al. was to evaluate 
the safety and efficacy of merestinib in patients 
with advanced METex14 NSCLC or patients 
with advanced cancer with NTRK rearrange-
ments (NCT02920996).54 

Glesatinib. Glesatinib (MGCD265; Mirati Ther-
apeutics) is another orally bioavailable, type II, 
multi-targeted inhibitor with potential anti-tumor 
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activity. Glesatinib binds to and inhibits the phos-
phorylation of several RTKs, including the MET 
receptor, the TEK/TIE-2 receptor, RON, SMO, 
and VEGFR types 1, 2, and 3. Preclinical studies 
showed that glesatinib resulted in a dose-dependent 
inhibition of cancer cell growth with an IC50 value 
of 80 nM on NSCLC H1299 cells.57 A patient 
with METex14 NSCLC showed response to gle-
satinib after relapsing to crizotinib, including a 
reduction in size of a MET Y1230H mutation-
positive liver metastases and concurrent loss of 
detection of this mutation in plasma DNA.58

Amethyst NSCLC trial is a global phase II trial 
enrolling patients with NSCLC with MET  altera-
tions in tumor tissue or blood and who have 
received prior therapy. Patients were treated with 
glesatinib in 21-day cycle until PD or unaccepta-
ble toxicity.59 It was shown that in patients har-
boring MET-activating mutations in tumor tissue 
(n = 28) versus in ctDNA (n = 8) taking 750 mg 
b.i.d. tablet or 1050 mg b.i.d., ORR was 10.7% 
(95% CI: 2.27–28.23) versus 25% (95% CI: 
3.19–65.09), mPFS was 3.95 (95% CI: 2.11–
4.18) months versus 3.39 (95% CI: 1.28–not 
reached) months, and 1-year survival rate was 
50.47% (95% CI: 27.49–69.62) versus 54.69% 
(95% CI: 13.72–83.24). The OS data were 
immature due to the small number of events.60

The above-reviewed clinical trials have indicated 
that ORR with MET small molecule inhibitors for 
METex14 NSCLC patients range from 25% to 
68%, with median PFS varying between 7.6 and 
13.8 months (Table 1). These data were compel-
ling to establish METex14 as an actionable driver-
oncogene for NSCLC and for oncologists to 
provide the approved MET inhibitors to METex14 
NSCLC patients. In the meantime, these data also 
support that acquired resistance develops over 
time with TKI treatment. The spectrum of resist-
ance mechanisms to MET TKIs is likely to be sim-
ilar to other targeted therapies, such as EGFR or 
ALK. Both secondary resistance mutations and 
bypass activation mechanisms have been reported. 
D1228 and Y1230 were common sites for resist-
ance mutations for type I inhibitors, whereas 
L1195 and F1200 were common sites for type II 
inhibitor-associated resistance.61–63 This configu-
ration enables type II inhibitors to act against MET 
kinase domain mutations that confer resistance to 
type I inhibitors, and vice versa. Therefore, switch-
ing between type I and type II MET inhibitors 
might be an effective strategy in patients with 
acquired specific resistance mutations following 

either type of inhibitor exposure.55 Other resist-
ance mechanisms were also reported, including 
upregulation of bypass signaling pathways (such as 
RAS-MAPK) and/or the acquisition of additional 
oncogenic mutations (such as KRAS and EGFR 
mutations); it is recommended that a combination 
therapy targeting different markers may enhance 
clinical outcomes.64

Antibody-based therapies against MET/HGF
Different than ATP-competitive small molecule 
inhibitors interacting with the kinase domain of 
MET, antibodies against HGF and MET sup-
press the signaling pathway by inhibiting interac-
tions between HGF and MET (Figure 1b). 
Compared with small molecule inhibitors that 
often target multiple RTKs, biologics more spe-
cifically inhibit the HGF/MET signaling path-
way. Multiple therapeutic antibodies targeting 
the HGF/MET signaling pathway are currently in 
preclinical and clinical development. Because the 
mechanism of action of the antibody-based thera-
pies is interrupting HGF/MET binding, most of 
the trials are selecting for MET over-expression, 
not restricted to METex14.

Sym-015
Sym-015 (Symphogen A/S) is a mixture of two 
humanized IgG1 monoclonal, Hu9006 and 
Hu9338, which recognize non-overlapping 
epitopes in the Sema domain of MET, preventing 
the binding of HGF. This inhibits MET-
dependent tumor cell growth, survival, angiogen-
esis, invasion, and metastasis.65,66 An open-label, 
phase Ia/IIa clinical study of sym-015 enrolled 12 
METex14 NSCLC patients, who were treated 
with the recommended P2 dose as 18 mg/kg on 
cycle 1 day 1 followed by 12 mg/kg Q2W. Three 
of the 12 patients achieved PR and five achieved 
SD. Sym-015 was well tolerated at P2 dosage 
with a good response to NSCLC harboring MET 
exon 14 skipping mutations (NCT02648724).67

Telisotuzumab vedotin
Telisotuzumab vedotin (ABBV-399, ABT-700; 
ABBVie) is an antibody-drug conjugate composed 
of telisotuzumab, a monoclonal antibody against 
the tumor-associated antigen and proto-oncogene, 
MET receptor tyrosine kinase conjugated to the 
cytotoxic agent monomethyl auristatin E (MMAE) 
via a valine-citrulline (vc) peptide linker (vc-
MMAE; vedotin), with potential tumor activity. 
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Upon binding, internalization, and enzymatic 
cleavage, the cytotoxic agent MMAE is released 
into the cytosol, binds to tubulin and inhibits tubu-
lin polymerization, which results in G2/M phase 
arrest and tumor cell apoptosis.68,69

Forty-six patients were enrolled in the first-in-
human trial (NCT02099058)70 of ABBV-399, 
and 35 (60%) of 58 patients were NSCLC with 
MET positivity. Of 16 patients with MET-
positive NSCLC who were treated at a dose of 
2.4–3.0 mg/kg, three (18.8%; 95% CI: 4.1–45.7) 
achieved a PR (mDOR, 4.8 months; mPFS, 
5.7 months; 95% CI, 1.2–15.4). Only one patient 
with lung squamous carcinoma was confirmed to 
have METex14 with MET immunohistochemis-
try (IHC)-positive, and achieved PD as the best 
response. An ongoing phase II clinical study 
(NCT03539536) is evaluating the safety and effi-
cacy of ABBV-399 in patients with MET-positive 
NSCLC (MET IHC-positive or MET gene 
amplification).

As MET amplification is an established resistance 
mechanism to EGFR TKI therapy, many anti-
bodies targeting MET/HGF were evaluated in 
the EGFR-mutant NSCLC with TKI resistance 
setting, including onartuzumab,71–73 ficlatu-
zumab,74 rilotumumab,75 and emibetuzumab.76 
Most recently, bispecific EGFR and MET anti-
bodies have been developed and are in develop-
ment for EGFR and MET mutation lung cancers. 
Two promising compounds are amivantamab 
and LY3164530. Amivantamab (JNJ-61186372, 
JNJ-6372; Janssen) is an EGFR-MET bispecific 
antibody with an active Fc backbone (IgG1) that 
targets activating and resistant EGFR mutation 
and MET mutations and amplification.77 A phase I, 
first-in-human, open-label, multicenter study on 
JNJ-6372 (NCT02609776) showed promising 
efficacy (36% ORR) with a manageable safety 
profile in patients with heavily pretreated EGFR 
exon 20 ins NSCLC.78 Supported by this trial, 
FDA has granted Breakthrough Therapy 
Designation for JNJ-6372 for the treatment of 
patients with metastatic NSCLC with EGFR 
exon 20 insertion mutations, whose disease has 
progressed on or after platinum-based chemo-
therapy. LY3164530 (Eli Lilly) is another bispe-
cific antibody targeting to both the MET and 
EGFR receptors, which consists of an IgG4 to 
MET (emibetuzumab, LY2875358) and a single-
chain variable fragment to EGFR fused to the 
N-terminus of each heavy chain. The first-in-
human study (I7H-MC-JNBA, NCT02221882) 
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showed an ORR of 10.3% with toxicities associ-
ated with EGFR inhibition.79

Immunotherapy for METex14 NSCLC
In contrast with EGFR/ALK-positive NSCLC hav-
ing zero or low PD-L1 expression, METex14 
NSCLC tumors were found to express high levels of 
PD-L1; 41% of 111 patients had a PD-L1 level of 
⩾50% in a study from the US and 69% of 13 
patients in a study from China,80,81 and both were 
much higher than a large cohort analysis for 1398 
unselected NSCLC cohort (20.9%).82 Awad et al.83 
presented a large cohort of 1387 METex14 NSCLC, 
and the results showed that MET exon 14-altered 
patients were enriched for high PD-L1 positivity versus 
wild-type NSCLC (48% versus 29%). Although 
PD-L1 expression might be high in METex14 
NSCLC, tumor mutational burden (TMB) distri-
bution across the METex14 tumors was much lower 
than general NSCLC (3.6 versus 7.0 mut/mb). 
Another study with 298 METex14 NSCLC reported 
that the average TMB in cases with METex14 was 
6.9 mut/mb, compared with 10.7 mut/mb for unse-
lected lung cancers in this cohort.84

The efficacy of immunotherapy for METex14 
NSCLC remains controversial. Some of the case 
reports and case series studies showed that immu-
notherapy might not be effective for METex14 
NSCLC patients despite high PD-L1. One 
hypothesis underlying the potential inferior 
response to immunotherapy was low TMB. Baba 
et  al. reported that a patient with 95% PD-L1 
METex14 NSCLC did not respond to pembroli-
zumab.85 Reis et al. reported another two similar 
cases.86 In a retrospective study conducted by 
Sabari et al.,80 24 METex14 cancers received sin-
gle-agent (n = 22) or combination immunother-
apy, including 11 patients treated as first-line 
therapy, and the ORR was 17% (95% CI: 
6–36%), the mPFS was 1.9 (95% CI: 1.7–2.7) 
months. Responses to immunotherapy were not 
predictable by PD-L1 expression nor TMB. 
These findings suggest that optimized predictive 
markers, besides PD-L1 expression and TMB, 
need to be explored for immunotherapy response 
for METex14 NSCLC. Furthermore, with the 
evident clinical activity of MET inhibitors, combi-
nation of MET inhibitors with immune check-
point inhibitors might be a promising treatment 
strategy for METex14 NSCLC patients.

A preclinical study revealed a role for the HGF/
MET pathway in neutrophil recruitment and 

function, and suggested that MET co-treatment 
may improve responses to cancer immunotherapy 
in patients with MET-dependent tumors.87 In an 
in vitro study of a gastric cancer cell line (Hs746T) 
harboring both METex14 and MET amplifica-
tion, it was found that MET pathway and PD-L1 
expression can suppress immune cell function.88 
The COSMIC-021 trial is a multicenter phase Ib 
clinical trial to evaluate the safety and efficacy of 
cabozantinib in combination with atezolizumab 
in patients with multiple tumor types, including 
NSCLC. The dose-escalation phase of this study 
determined the optimal dose of cabozantinib to 
be 40 mg daily in combination with atezoli-
zumab.89 In ASCO 2020, Neal et  al.90 reported 
the results from cohort 7 of NSCLC with 
unknown MET status patients after prior immune 
checkpoint inhibitor (ICI) therapy. In the 
30-patient cohort, confirmed ORR was 27%; 
time to response was 1.4 months; median DOR 
was 5.7 months; DCR was 83%; median PFS was 
4.2 (95% CI: 2.7–7) months. The response rate 
was greater than previously observed with cabo-
zantinib monotherapy (NCT00940225). This 
study demonstrated a preliminary response and 
acceptable safety profile of concurrent therapy 
with MET TKI and ICI; however, the MET gene 
status and PD-L1 expression has not been 
reported yet.

Some other studies investigating safety and effi-
cacy of MET TKI combined with ICI therapy 
have been conducted recently, including cap-
matinib with anti-PD1 therapies (pembrolizumab 
combination NCT04139317 and nivolumab 
combination NCT02323126). In summer of 
2020, a double-blind, placebo-controlled, rand-
omized study evaluating the efficacy and safety of 
capmatinib and spartalizumab (PD-1 antibody) 
versus capmatinib and placebo as first-line treat-
ment for advanced METex14 NSCLC patients 
(NCT04323436, Novartis) just started enroll-
ment. The primary endpoints are ORR and PFS 
to formally evaluate the benefit of MET TKI with 
ICI in METex14 NSCLC.

Conclusion
METex14 skipping alterations have defined a spe-
cial genomic subtype of non-small cell lung can-
cers. With multiple small molecule inhibitors that 
have demonstrated clinical efficacy and safety in 
clinical trials, METex14 has been rightfully estab-
lished as an actionable driver-oncogene in 
NSCLC. Other than developing more potent and 
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type II small molecule inhibitors, antibody-based 
therapy as well as combination immunotherapy 
have shown initial promise. Future prospective 
studies are warranted on efficacy and safety across 
lines of therapy to optimize clinical strategies.
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