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Abstract
Opioid use disorder (OUD) is diagnosed using the qualitative criteria defined by the Diagnostic and Statistical Manual
of Mental Disorders, Fifth Edition (DSM-5). Diagnostic biomarkers for OUD do not currently exist. Our study focused on
developing objective biological markers to differentiate chronic opiate users with OUD from chronic opiate users
without OUD. Using biospecimens from the Golestan Cohort Study, we compared the metabolomics profiles of high
opium users who were diagnosed as OUD positive with high opium users who were diagnosed as OUD negative.
High opium use was defined as maximum weekly opium usage greater than or equal to the median usage (2.4 g per
week), and OUD was defined as having 2 or more DSM-5 criteria in any 12-month period. Among the 218 high opium
users in this study, 80 were diagnosed as OUD negative, while 138 were diagnosed as OUD positive. Seven hundred
and twelve peaks differentiated high opium users diagnosed as OUD positive from high opium users diagnosed as
OUD negative. Stepwise logistic regression modeling of subject characteristics data together with the 712
differentiating peaks revealed a signature that is 95% predictive of an OUD positive diagnosis, a significant (p < 0.0001)
improvement over a 63% accurate prediction based on subject characteristic data for these samples. These results
suggest that a metabolic profile can be used to predict an OUD positive diagnosis.

Introduction
More than fifty years have passed since Dole and Nys-

wander described opioid addiction as a metabolic disease,
suggesting that opioids disrupt homeostasis to produce
drug-seeking behavior in the face of adverse con-
sequences1. An important issue in the addiction is that
people exposed to opioids may develop dependence, but
not Opioid Use Disorder (OUD)2. OUD is a chronic
recurrent disorder that increasingly causes undesirable
emotional states by involving the brain’s reward system
and could include impaired social functioning3,4.

Despite significant advances in the genetics and neu-
robiology of addiction as a brain disease, and preliminary
studies to discover biomarkers of OUD, validated systemic
biomarkers for OUD do not exist5. Differential diagnosis
of OUD is obtained through interview or questionnaire to
determine if the patients meet the DSM-5 diagnostic
criteria. These criteria include impaired control, social
impairment, risky use, tolerance, withdrawal, craving, and
continued use despite problems. Having at least two of the
11 criteria meets the diagnoses of OUD with the number
of criteria met as an indicator of the severity of the OUD6.
Iran is a country with a high rate of opiate use. Opium is

the main opiate used7. Our study focused on a random
sample of opium users in the Golestan Cohort Study
(GCS) in Iran, where more than 8400 individuals (about
17% of the participants) reported chronic opiate use with
a median duration of use of 19 years8. 75% of the opium

© The Author(s) 2021
OpenAccessThis article is licensedunder aCreativeCommonsAttribution 4.0 International License,whichpermits use, sharing, adaptation, distribution and reproduction
in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if

changesweremade. The images or other third partymaterial in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to thematerial. If
material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Correspondence: Reza Malekzadeh (dr.reza.malekzadeh@gmail.com) or
Susan C. J. Sumner (Susan_sumner@unc.edu)
1Department of Nutrition, Nutrition Research Institute, University of North
Carolina at Chapel Hill, Chapel Hill, NC, USA
2Digestive Oncology Research Center, Digestive Diseases Research Institute,
Tehran University of Medical Science, Tehran, Iran
Full list of author information is available at the end of the article
These authors contributed equally: Reza Ghanbari, Yuanyuan Li

12
34

56
78

90
()
:,;

12
34

56
78

90
()
:,;

1
2
3
4
5
6
7
8
9
0
()
:,;

12
34

56
78

90
()
:,;

http://orcid.org/0000-0003-3876-7584
http://orcid.org/0000-0003-3876-7584
http://orcid.org/0000-0003-3876-7584
http://orcid.org/0000-0003-3876-7584
http://orcid.org/0000-0003-3876-7584
http://orcid.org/0000-0002-5199-5744
http://orcid.org/0000-0002-5199-5744
http://orcid.org/0000-0002-5199-5744
http://orcid.org/0000-0002-5199-5744
http://orcid.org/0000-0002-5199-5744
http://orcid.org/0000-0002-5494-0722
http://orcid.org/0000-0002-5494-0722
http://orcid.org/0000-0002-5494-0722
http://orcid.org/0000-0002-5494-0722
http://orcid.org/0000-0002-5494-0722
http://orcid.org/0000-0003-3381-6084
http://orcid.org/0000-0003-3381-6084
http://orcid.org/0000-0003-3381-6084
http://orcid.org/0000-0003-3381-6084
http://orcid.org/0000-0003-3381-6084
http://creativecommons.org/licenses/by/4.0/
mailto:dr.reza.malekzadeh@gmail.com
mailto:Susan_sumner@unc.edu


users in the full cohort used a combination of teriak and
shireh with only 4 people reporting heroin use8.
We investigated urinary metabolomic profiles to reveal

biomarkers that could differentiate high opium users who
were diagnosed as OUD positive from high opium users
who were diagnosed as OUD negative. Our investigation
is important because optimized treatment relies on
accurate diagnosis of OUD. The DSM-5, the predominant
diagnostic instrument in psychiatry, has known limita-
tions for diagnosis of substance abuse disorders9. Objec-
tive biological markers can improve the diagnosis that is
currently based on subjective DSM-5 questionnaire. In
addition metabolites that are increased or decreased in
opium users diagnosed with OUD (compared with opium
users not diagnosed with OUD) can be used to determine
pathway perturbations, and lead to the identification of
druggable or nutritional targets.

Materials and methods
Study population
The details of the GCS (a cohort of over 50,000 adults

aged 40–75 living in Golestan Province, Northeast Iran)
have been previously published10. The GCS was approved
by appropriate ethics committees at Tehran University of
Medical Sciences, the US National Cancer Institute (NCI,
IRB# 07-C-N120), and the International Agency for
Research on Cancer (IARC).
In 2018, a random sample of 451 GCS participants who

reported long-term opium use and 92 never-users were
recalled. They underwent a detailed interview using
modified Persian and Turkman versions of the Section L
of WHO Composite International Diagnostic Interview
(CIDI, version 2.1) to diagnose lifetime OUD7, based on
the Diagnostic and Statistical Manual of Mental Dis-
orders, 5th edition (DSM‐5). The presence of 2 or more of
the 11 criteria during any 12-month period of life was
defined as lifetime OUD.
Variables considered for adjustment of the logistic

regression models (see below) included age at enrollment,
gender, tobacco use (current/former/never), BMI, and route
of opium use (ingestion/inhalation). OUD diagnosis was the
outcome for the models. Alcohol use was not included in
the analysis, because it was rare in this population, and only
3.5% of participants reported ever using alcohol.
No subjects participated in drug-related treatment for

addiction as part of the GCS. Cohort participants gave
non-fasted spot urine samples which were stored at
−20 °C until 2015 when they were transferred on dry ice
to the NCI Biorepository and stored at −80 °C. Aliquots
were then shipped to UNC Chapel Hill.

Sample selection
In this sample selection, we excluded individuals who

had discordant reports of their opiate use compared with

baseline (baseline users who reported no lifetime opium
use at the recall visit and vice versa, n= 24), and those
without a urine sample available (n= 8). We also
restricted the current analysis to high opium users
reporting equal to or more than the median intake (2.4 g
per week), to reduce the chance of misclassification. The
final sample used in the current study included 138 urine
samples from high opium users who were diagnosed as
OUD positive, and 80 urine samples from high opium
users diagnosed as OUD negative. Urine samples were
selected from an additional 80 subjects who reported that
they had never used opium.

Untargeted metabolomics via ultra-performance liquid
chromatography (UPLC) high-resolution mass
spectrometry
Details of the sample preparation, data acquisition, data

preprocessing and metabolite identification and annota-
tion are provided in the Supplementary Material Section.
In brief, urine samples were prepared according to pub-
lished methods11, and untargeted metabolomics data were
acquired on a Vanquish UHPLC systems coupled with a
Q Exactive™ HF-X Hybrid Quadrupole-Orbitrap™ Mass
Spectrometer (UPLC-HR-MS; Thermo Fisher Scientific).
Data were processed using Progenesis QI (Waters Cor-
poration). Peaks detected by UPLC-HR-MS were identi-
fied or annotated. Signals detected on our untargeted
platform are matched to an in-house physical standards
library that was developed by acquiring data for over 2000
chemical standards run under the same conditions to the
study samples. The evidence basis for metabolite identi-
fications and annotations are based on matching to our
in-house library physical standards library (Ontology
Level, OL), as well as to Public Databases (PD), and are
detailed in the supplementary material.

Hypothesis testing
Statistical tests for the normalized peaks in the meta-

bolomics profiles were conducted using a two-tailed t-test
with the Satterthwaite correction for unequal variances or
the chi-square test. Statistical analyses were conducted
using SAS 9.4 (SAS Institute Inc., Cary, NC). In this
exploratory metabolomics study, p-values were not
adjusted for multiple testing12,13. The nominal p-values
are reported for the following comparisons 80 high opium
users diagnosed as OUD negative versus 138 high opium
users diagnosed as OUD positive.

Logistic regression modeling
Logistic regression was used to model which peaks/

metabolites were predictive of a positive OUD diagnosis.
Several modeling approaches were used that included all
normalized metabolomics peaks, or included subsets of
peaks. Stepwise logistic regression procedures (criteria:
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model entry p < 0.1 and model removal p > 0.05) with
standardization of continuous variables, was used for
model selection. The Hosmer-Lemeshow goodness-of-fit
test was used to assess the final model for adequacy.
Receiver operating characteristics (ROC) curve and the
area under the curve (AUC) were used to evaluate
metabolites as predictors of OUD. Stepwise models were
conducted, with and without subject characteristics as
potential covariates, using:
(a) 712 peaks which differentiated high opium users

who were diagnosed as OUD positive from high
opium users who were diagnosed as OUD negative.

(b) 40 identified/annotated metabolites that
differentiated the high opium users who were
diagnosed as OUD positive from high opium
users who were diagnosed as OUD negative (26
of these 40 metabolites also differentiated opium
users from non-opium users).

(c) 14 identified/annotated metabolites that were
unique to differentiation of high opium users who
were diagnosed as OUD positive from high opium
users who were diagnosed as OUD negative (but
did not also differentiate opium users from non-
opium users).

Pathway enrichment: high opium users who were
diagnosed as OUD positive from the high opium users who
were diagnosed OUD as negative
Pathway enrichment was conducted using the

Mummichog software in Metaboanalyst 4.014. All features
(m/z) remaining after filtering data were entered together
with the p-value that was calculated for the comparison of
high opium users who were diagnosed as OUD positive
and high opium users who were diagnosed OUD as
negative. A p-value cut-off of 0.01 was used to determine
the size of the permutation group that the algorithm used
for selecting significant features to match for all possible
metabolites. A mass accuracy of 3 ppm was used as the
threshold for annotations used in identifying candidate
pathways. All possible metabolites which were matched
by m/z were searched in the human reference metabolic
network (hsamfn), and the null distribution of module
activities was estimated by using 100 permutations of
random lists drawn from the experimental reference
feature list. The candidate pathways were based on the
similarity of m/z.

Results
Sample characteristics
The subject characteristics for the 218 high Opium

users who were diagnosed as OUD positive (138 subjects)
or OUD negative (80 subjects) are provided in Table 1.
For these study samples, the OUD diagnosis was
associated at p < 0.1 with age at the time of enrollment

(p= 0.029, OUD positive were 2 years younger than OUD
negative), and route of opium exposure (p= 0.054, higher
by inhalation than by ingestion), but was not associated
with BMI, gender, or tobacco use.

Metabolic profiles of high opium user diagnosed as OUD
positive versus high opium user diagnosed as OUD
negative
Over 7714 UPLC-HRMS signals were obtained after

data preprocessing. Hypothesis testing and fold change

Table 1 Subject characteristics of high opium users
diagnosed as OUD positive and high opium users
diagnosed as OUD negative.

Characteristic OUD positive

(n= 138)

OUD negative

(n= 80)

p-value2

Age at enrollment (yrs),

mean (SD) [range]

49.0 (6.1)

[39.7, 67.5]

51.0 (6.6)

[40.5, 68.6]

0.029

Male (count, %) 110 (79.7%) 62 (77.5%) 0.700

Tobacco smoking status 0.141

Current smoker

(count, %)

76 (55.1%) 37 (46.2%)

Former smoker

(count, %)

11 (8.0%) 13 (16.3%)

Never smoker (count, %) 51 (36.9%) 30 (37.5%)

Opium use, maximum

nokhods/week, mean (SD)

[range]1

31.0 (16.8)

[12.0, 105.0]

29.8 (23.8)

[12.0, 168.0]

0.698

Ever used alcohol 0.790

Yes 35 (25.4%) 19 (23.8%)

No 103 (74.6%) 61 (76.3%)

Body mass index, mean

(SD) [range]

23.5 (4.2)

[15.5, 37.5]

24.2 (4.7)

[15.6, 37.3]

0.230

Route of opium

administration

0.054

Inhalation 73 (52.9%) 53 (66.3%)

Ingestion 65 (47.1%) 27 (33.7%)

Severity of opioid use

disorder, DSM-5

Absent 0 80 (100%)

Mild 65 (47.1%) 0

Moderate 43 (31.2%) 0

Severe 30 (21.7%) 0

1Nokhod is the local measurement for the amount of opium used, and is
equivalent to approximately 0.2 grams (42). The sample of 218 opium users was
selected from 430 opium users with the following distribution of maximum
nokhods per week: 119 subjects had low opium use (0.3–3.0), 93 subjects had
moderate opium use (3.5–10.5), and 218 subjects had high opium use (≥ 12.0).
2Bold values indicate statistical significance P < 0.1.

Ghanbari et al. Translational Psychiatry          (2021) 11:103 Page 3 of 10



were determined for the normalized peaks in the meta-
bolomics data set for the comparison of (a) high opium
users diagnosed as OUD positive vs high opium users
diagnosed as OUD negative, and (b) opium users vs non-
opium users. Over 700 peaks (712) tested different by t-
test (p < 0.10) between high opium users diagnosed as
OUD positive versus high opium users diagnosed as OUD
negative (Fig. 1). Forty of the 712 peaks were identified or
annotated through matching to the in-house physical
standards library (Table 2), while additional peaks were
annotated using big data analytics (Table S1).

Pathway enrichment
Pathway enrichment was conducted in Metaboanalyst14

using all 7714 peaks. A cut-off for pathway significance
(p < 0.01) was used to determine the size of the permu-
tation group that the algorithm used to determine the
enrichment between high opium users diagnosed as OUD
positive versus high opium users diagnosed as OUD
negative. The candidate pathways based on the match of
exact mass (<3 ppm) of key metabolites that are included
in the known pathway map are provided in Table S2. The
distribution plot of the Enrichment Factor versus −log10
(P) is shown in Fig. 2. High opium users diagnosed as
OUD positive versus those diagnosed as OUD negative
had an enrichment for pathways involving biotin (vitamin
B7), folate (vitamin B9), cytochrome P450 metabolism,
purine metabolism, keratan sulfate degradation, N-glycan
degradation, and R group synthesis. Vitamin absorption,
bioavailability, and utilization are known to be impacted
by drug addiction15. Cytochrome P450s are involved in the
metabolism of opium, and the slow versus fast metabo-
lism has been associated with addiction16. Opioid use has
been shown to alter purine metabolism17. Keratan sulfate
is a glycosaminoglycan that is at significant levels in
central and peripheral nervous systems18. N-glycan is

required to express the correctly folded form of the delta-
opioid receptor19. R group synthesis is associated with the
FAD/FADH2 conversion of fatty acids.

Modeling approach 1
Stepwise logistic regression was used to determine

which of the 712 peaks were predictive of an OUD posi-
tive diagnosis. First, the area under the ROC curve (AUC)
was calculated using the subject characteristics (Table 1)
of age at the time of enrollment and route of opium use.
This base model resulted in an AUC of 0.625 (Figure S1a).
Second, all 712 peaks that differentiated (p < 0.10) the
high opium users diagnosed as OUD positive from high
opium users diagnosed as OUD negative was modeled
without including subject characteristics. This resulted in
an AUC of 0.720 which was significantly different (p=
0.042) from the base model. Third, all 712 peaks that
differentiated (p < 0.10) the high opium users diagnosed as
OUD positive from high opium users diagnosed as OUD
negative was modeled with age at the time of enrollment
and opium use as covariates. This resulted in an AUC of
0.946, which was significantly increased (p < 0.0001) over
the base model. Using this modeling approach, only 16
peaks were selected that were predictive of an OUD
positive diagnosis (Table 3). Two of the 16 peaks matched
to pterin (OL1) and tryptophan (OL2b) using the in-
house physical standards library. Annotations using
public databases are provided for 6 additional peaks, while
8 of the peaks remained unknown unknowns.

Modeling approach 2
Forty of the 712 peaks that differentiated (p < 0.10) high

opium users diagnosed as OUD positive from high opium
users diagnosed as OUD negative could be matched to the
in-house physical standards library (Table 2, Fig. 1). Major
differentiators included metabolites derived from opium

Fig. 1 Over 3700 peaks differentiated high opium users from non-opium users. 712 peaks differentiated high opium users diagnosed as OUD
positive from high opium users diagnosed as OUD negative. 193 peaks were unique to the differentiation OUD positive versus OUD negative high
opium users. Metabolites were identified or annotated using an in-house physical standards library, and peaks were annotated using big data
analytics.
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Table 2 Signals that differentiated (p < 0.10) high OUD positive opium users from high OUD negative opium users
(Fig. 1) matched to 40 metabolites in the in-house physical standards library.

Ontology Metabolite p-Value Fold change Derivationa

OL1b Pterine 0.001 1.3 (+)c Vitamin B9 metabolism

OL2A Deoxyadenosine 0.002 1.6 (+) Purine metabolism

OL1 Morphine-6-beta-D-glucuronide 0.002 1.6 (+) Opium use

OL1 Morphine-3-beta-D-glucuronide 0.004 1.6 (+) Opium use

OL2B Naloxone-3-beta-D-glucuronide 0.005 2.4 (+) Opium use

OL1 Morphine 0.005 1.5 (+) Opium use

OL2B Octopamine 0.006 1.5 (+) Tryptophan metabolism

OL1 Cotinine 0.006 1.6 (+) Tobacco use

OL1 Codeine 0.007 1.4 (+) Opium use

OL1 Codeine-6-beta-D-glucuronide 0.013 1.4 (+) Opium use

OL2B Morphine-3-beta-D-glucuronide 0.015 1.4 (+) Opium use

OL2B Serine 0.017 1.7 (−) Amino acid metabolism

OL2B Morphine 0.019 1.5 (+) Opium use

OL2A 6-Carboxyhexonate 0.021 1.3 (−) Fatty acid metabolism

OL2A N-Acetyl-S-(3,4-dihydroxybutyl)-L-cysteine 0.023 3.5 (−) Butadiene and acrylamide

OL1 Sarcosine 0.026 1.2 (+) Amino acid methylation

OL2A Codeine isomer or derivative 0.030 1.4 (+) Opium use

OL1 Hydroxycotinine 0.034 1.4 (+) Tobacco use

OL1 N-Acetyl-DL-tryptophan 0.035 1.2 (−) Amino acid acetylation

OL2B Tryptophan 0.038 1.3 (−) Tryptophan metabolism

OL1 Codeine 0.040 1.3 (+) Opium use

OL2B Dihydromorphine 0.042 1.5 (+) Opium use

OL1 N-Acetylcystine 0.048 1.1 (−) Amino acid acetylation

OL1 Mono-isobutyl phthalate 0.049 2.1 (+) Environmental exposure

OL1 N-Methyl-D-aspartic acid 0.049 1.2 (+) Amino acid methylation

OL2B Lauroylcarnitine 0.057 1.9 (−) Carnitine metabolism

OL2A Kynurenine 0.060 1.4 (−) Tryptophan metabolism

OL1 Nicotine 0.068 1.5 (+) Tobacco use

OL2B N-Acetylproline 0.069 1.3 (−) Amino acid acetylation

OL1 2,4-Dihydroxypteridine 0.069 1.2 (+) Vitamin B9 metabolism

OL1 Azelate 0.071 1.4 (−) Fatty acid oxidation

OL2B N-Acetylcysteine 0.072 1.2 (−) Amino acid acetylation

OL2A Creatinine 0.079 1.1 (−) Amino acid metabolism

OL2A N-Acetylproline 0.081 1.1 (−) Amino acid acetylation

OL2B Glycocholate 0.082 1.4 (+) Bile acid metabolism

OL1 N-Acetyl-S-(2-carbamoylethyl)-L-cysteine 0.084 1.2 (−) Butadiene and acrylamide

OL2B Mono ethyl hexyl phthalate 0.085 1.4 (+) Environmental exposure
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use, tobacco use, involved in biopterins and vitamin B9,
tryptophan metabolism, acetylation of amino acids, bile
acids, fatty acids, and carnitine metabolism. In addition, N-
Acetyl-S-(3,4-dihydroxybutyl)-L-cysteine (p= 0.023) and
N-Acetyl-S-(2-carbamoylethyl)-L-cysteine (p= 0.083) were
lower in urine of high opium users diagnosed as OUD
positive vs high opium users diagnosed as OUD negative.
N-Acetyl-S-(3,4-dihydroxybutyl)-L-cysteine and N-Acetyl-
S-(2-carbamoylethyl)-L-cysteine (p= 0.083) are metabolic
products of butadiene20 (BD) and acrylamide21 (AM),

respectively. These metabolites have previously been
detected in biospecimens from tobacco users at sig-
nificantly higher levels than non-tobacco users. They are
attributed to the metabolism of the parent compounds
(AM and BD) that form during the curation process, or on
combustion of tobacco22. They could also be formed in the
curing and combustion of opium or other plant material.
Stepwise logistic regression using these 40 metabolites

resulted in an AUC of 0.76, which was significantly
increased (p= 0.0049) over the base model (Figure S1b).

Table 2 continued

Ontology Metabolite p-Value Fold change Derivationa

OL2B 3-Methylhistamine 0.087 1.4 (−) Amino acid methylation

OL2A N-Acetylphenylalanine 0.094 1.2 (−) Amino acid acetylation

OL1 Phosphorylcholine 0.096 1.9 (+) Choline metabolism

Fourteen of these metabolites (bold) were unique to the differentiation (p < 0.10) of high opium users who were diagnosed as OUD positive versus OUD negative.
aDerivation: Metabolites were derived from endogenous metabolism, opium use, tobacco use, or environmentally related exposure.
bOntology: OL1, highly confident identification based on matching with in-house physical standard library (IPSL) via retention time (RT, with RT error ≤|0.5| min), exact
mass (MS, with mass error <5 ppm), and tandem mass similarity based on experimental fragmentation spectra (experimental MS/MS, with similarity ≥30); OL2a,
confident identification based on matching with IPSL via MS and RT; OL2b, annotation for the isomer or derivatives of the compound listed, based on matching with
IPSL via MS and MS/MS.
cDirection of change. +/−, increased/decreased in OUD positive.

Fig. 2 The distribution plot of the Enrichment Factor versus −log10(P) of the pathway enrichment analysis. Mummichog was used to
evaluate the pathway enrichment of all features (m/z) with p < 0.01 based on the t-test for the comparison of high opium users who were diagnosed
as OUD positive versus high opium users who were diagnosed OUD as negative was used as the threshold to determine the size of the permutation
groups used by the algorithm.
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Including subject characteristics of age at the time of
enrollment and route of opium exposure resulted in an AUC
of 0.80, also significantly (p < 0.0001) increased from the
base model. Metabolites that were predictive of an OUD
positive diagnosis (Table 3) included tryptophan, pterine,
sarcosine, N-acetylproline, azelate, octopamine, serine,
and nicotine.

Metabolic profiles unique to the OUD positive versus OUD
negative diagnosis
Five hundred and nineteen of the 712 peaks that tested

different between OUD positive high opium users versus
high OUD negative high opium users, also differentiated
the opium users from non-opium users (Fig. 1). To pro-
vide a focus on only metabolites that are important to the
diagnosis of OUD, the 519 signals that were also impor-
tant to differentiation of opium users from non-opium
users were excluded for this analysis. This resulted in 193
peaks unique to the differentiation (p < 0.10) of subjects
diagnoses as OUD positive versus those diagnoses as
OUD negative. Of these 193 peaks, only 14 peaks that

defined the OUD diagnosis matched to the in-house
physical standards library. These 14 metabolites are listed
in Table 2, while the additional annotated peaks through
public databases are provided in Table S1.
Eleven of the 14 peaks that matched to the in-house

library that were most important to defining
OUD included the following endogenous metabolites:
pterine (p= 0.0011), 2,4-dihydroxypterine (p= 0.0695),
sarcosine (p= 0.0263), phosphorylcholine (p= 0.0962),
6-carboxyhexonate (p= 0.021), lauroylcarnitine (0.0574),
glycocholate (p= 0.0816), 3-methylhistamine (0.087),
azelate (p= 0.0713), n-methyl-D-aspartic acid (p=
0.0488), and tryptophan (0.0378).
The biological significance of these 11 endogenous

metabolites is summarized:
(a) Pterin is part of biopterin and folate. Biopterins are

cofactors for aromatic amino acid hydroxylases,
which are involved in the synthesis of dopamine,
norepinephrine, epinephrine, and serotonin, and
trace amines23. The active form of folate (vitamin
B9) is tetrahydrofolate which accepts and donates

Table 3 Metabolites predictive of a positive OUD diagnosis in high opium users.

Ontologya Model 1b Model 2b Model 3

16 peaks (Table S3) 8 metabolites (Table S4) 5 metabolites (Table S5)

OL1 Pterine (+)c Pterine (+) Pterine (+)

OL1 – Sarcosine (+) Sarcosine (+)

OL2b Tryptophan (−) Tryptophan (−) Tryptophan (−)

OL1 – Azelate (−) Azelate (−)

OL2b – N-acetylproline (−) –

OL2b – Octopamine (+) –

OL2b – Serine (−) –

OL1 – Nicotine (+) –

OL2a – N-Acetyl-dihydroxybutyl-cysteine (−)

PDdd 2-Polyprenyl-3-methyl-5-hydroxy-6-methoxy-1,4-benzoquinone – –

PDa 5α-androst-16-en-3α-ol – –

PDa L-Tyrosinamide – –

PDb D-1-[(3-Carboxypropyl)amino]-1-deoxyfructose – –

PDc Alanyl-Proline – –

PDc Phlorisobutyrophenone 2-glucoside – –

Age at time of enrollment and route of opium use were covariates in the model. Model 1 used 712 peaks that differentiated high opium users diagnosed as OUD
positive from high opium users diagnosed as OUD negative. Models 2 and 3 included peaks matched using the in-house physical standards library.
aOntology: OL1, highly confident identification based on matching with in-house physical standard library (IPSL) via retention time (RT, with RT error ≤|0.5| min), exact
mass (MS, with mass error <5 ppm), and tandem mass similarity based on experimental fragmentation spectra (experimental MS/MS, with similarity ≥30); OL2a,
confident identification based on matching with IPSL via MS and RT; OL2b, annotation for the isomer or derivatives of the compound listed, based on matching with
IPSL via MS and experimental MS/MS.
bEight of the 16 peaks that predicted OUD under Model 1 were identified or annotated, while 8 peaks (not listed) remained unknown.
cDirection of change. +/−, increased/decreased in OUD positive.
dPD, Public Data Base. PDa, annotation based on matching with PD via MS and experimental MS/MS (could be the listed compound, or the isomer or derivatives of the
listed compound); PDb, annotation based on matching with public database via MS and predict MS/MS; PDc, annotation for the listed compound based on matching
with public database via MS and isotopic similarity or adducts; PDd, annotation for the listed compound based on matching with public database via MS.
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one carbon unit (methyl group). Dihydroxypteridine
is involved in folate and riboflavin pathways24.

(b) Phosphorylcholine is derived from phosphorylation
of choline25, and sarcosine is an intermediate in the
metabolism of choline to glycine26.

(c) N-Methyl-d-aspartic acid (NMDA) is an agonist
at the NMDA receptor and mimics the
action of glutamate27, and tryptophan is in the
neurotransmitter pathway28. Azelaic acid (AZA)
is a competitive inhibitor of tyrosinase in vitro29.

(d) Lauroylcarnitine is associated with fatty oxidation
disorders involving acyl CoA dehydrogenase
deficiency, and carnitine palmitoyltransferase I and
II deficiency30. 6-Carboxyhexanoic acid is a
medium-chain fatty acid derived from
heptanedioic acid and is involved in the gut
microbial biosynthesis of biotin31.

(e) Glycocholate is a secondary bile acid, produced in the
microbial flora of the colonic environment by
bacteria32, and is absorbed and recirculated. Bile
acids are important for absorption of hydrophobic
nutrients, dietary fats and vitamins, and the regulation
enzymes involved in cholesterol homeostasis.

(f) 3-Methylhistamine is a prominent metabolite of
histamine, which has a role in allergy, inflammation,
gastric acid secretion, and neurotransmission33.

Three metabolites (Table 2) derived from exogenous
exposures were also important to the differentiation of the
high opium users who were diagnosed as OUD positive
from high opium users who were diagnosed as OUD
negative. These included mono-isobutyl phthalate (p=
0.0485,+) and mono ethyl hexyl phthalate (p= 0.0852,+),
which could arise as metabolic products following inges-
tion of phthalates that leach from plastics used in inha-
lation of opium. N-Acetyl-S-(3,4-dihydroxybutyl)-L-
cysteine was also a differentiator (p= 0.0228, −), and is
presumably derived as a metabolic product of BD intake
associated with the curing or combustion of plant matter.

Modeling approach 3
Stepwise logistic regression using the 14 metabolites

unique to the differentiation of OUD positive versus OUD
negative, together with covariates of age at the time of
enrollment and route of opium use resulted in an AUC of
0.751, which was significantly increased (p < 0.0005) over
the base model (Figure S1c). Stepwise logistic regression
using only the 14 metabolites (with no subject char-
acteristics) resulted in an ACU of 0.706, which was not
significantly increased (p= 0.127) over the base model.
Results from Model 3 (with or without the covariates of
age at time of enrollment and route of opium use) show 5
of the 14 metabolites (pterine, sarcosine, tryptophan,
azelate, and N-Acetyl-S-(3,4-dihydroxybutyl)-L-cysteine)
as predictive of a positive OUD (Table 3).

Discussion
Our study revealed metabolomics signatures of OUD in

a predominantly Turkmen population of chronic high
opium users. We provide metabolite identifications and
annotations for 712 features detected using untargeted
mass spectrometry that are important to the differentia-
tion of high opium users diagnosed as OUD positive from
high opium users diagnosed as OUD negative. None of
these identifications are known metabolites derived from
other drugs of abuse. Pathway enrichment analysis points
to a general disruption in vitamin B9 (folate), vitamin B7
(biotin), cytochrome P450, purine, and glycan metabo-
lism, and FAD/FADH2 conversion of fatty acids.
Stepwise logistic regression analysis of these 712 peaks,

together with subject characteristics, resulted in 16 can-
didate peaks that predict 95% of the high opium users
who were diagnosed as OUD positive.
Forty of the 712 features which differentiate high opium

users who were diagnosed as OUD positive from high
opium users who were diagnosed as OUD negative mat-
ched to an in-house physical standards library. Models
constructed with only these 40 metabolites predicted 80%
of the subjects diagnosed as OUD positive, selecting 8
metabolites as predictors. Predictors of an OUD diagnosis
in these high opium users included an increase in three
endogenous compounds (pterine, sarcosine, and octopa-
mine), a decrease in four endogenous compounds (tryp-
tophan, azelate, N-acetylproline, and serine), and an
increase in nicotine. Fourteen metabolites were deter-
mined to be unique to OUD diagnosis, after subtracting
analytes known to overlap with opium use. Models using
these 14 metabolites predicted 75% of the subjects testing
OUD positive and replicated pterine, sarcosine, trypto-
phan, and azelate as metabolite predictors.
Many identified or annotated metabolites that differ-

entiated high opium users who were OUD positive from
high opium users who were OUD negative play a sig-
nificant role in neurotransmitter synthesis and signal
transduction34. Tryptophan is the major amino acid pre-
cursor of serotonin (5HT). 5HT deficits have been
implicated in physical symptoms and emotional dysphoria
following withdrawal from opioids35. Alterations in sar-
cosine, serine, kyneurate, NMDA found in this study are
consistent with the observations that glutamatergic sig-
naling is disrupted by opioids36. Sarcosine (methyl-gly-
cine) acts as an NMDA receptor agonist and a glycine
receptor agonist37. Serine is converted to D-serine by
serine racemace. D-serine acts as co-agonist with gluta-
mate to activate NMDA receptors38. Kyneurate a meta-
bolite of tryptophan metabolized to quinolinic acid acts as
a NMDA receptor agonist39. Octopamine is a trace amine
that is an agonist of TAAR1 receptors implicated in
mediating the actions of drugs of abuse40. Methylhista-
mine is a histamine receptor (H3) agonist that inhibits the
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firing of cholinergic neurons in the ventral striatum and
decreases dopamine release41.
Limitations of the current study include the (a) use of

self-report for the amount of opium consumed, (b)
assumption that symptoms over any 12-month period-of-
time are accurately recalled, (c) estimated amount/grams
of opium may vary within or among regions, and be
underestimated42, (d) analyses were not stratified by the
route of administration or type of opiate used due to the
sample size, and because this paper focuses on a marker of
OUD independent of route, (e) that the current study was
not powered for multiple testing, and (f) that the meta-
bolomic profiles are not quantitated, or replicated in this
cohort or across cohorts.
The year that the individuals met a DSM-5 OUD diag-

nosis during their history of opium use is unknown because
the DSM-5 interview was not conducted at the time of
baseline urine collection. These urinary baseline metabo-
lomic profiles presented herein could result from chronic
opium use, and/or from inherent individual metabolic dif-
ferences present prior to the acquisition of OUD.
Chronic use of opiates and opioids without meeting the

criteria for DSM-5 OUD is not unique to the Turkman
population for opiate use. Some chronic pain patients trea-
ted with prescription opioids and chronic users of illicit
opioids do not meet the criteria for DSM-5 OUD. This
suggests that the approaches used in this study are likely to
be generalizable to other cohorts. This is also consistent with
other substance use disorders where heavy use does not
necessarily imply a substance used disorder43.
Research on biomarkers for OUD and other substance

use disorders has focused on neuroimaging (MRI, fMRI,
and PET) and EEG studies44. While these biomarkers
may eventually be clinically validated in other popula-
tions, they will be costly to implement. In contrast,
validation of biomarkers in other populations in
accessible biological fluids (e.g., urine, blood, saliva) will
be less costly, and easier to implement in general
medical practice. In addition, these non-invasive bio-
markers will be important complements to results from
neuroimaging studies.
In conclusion, if the current results are replicated, the

identification of peripheral biomarkers for OUD would
represent a significant advancement in defining and
managing the disease. It would further validate the Dole
and Nyswander hypothesis that OUD is a brain disease in
which metabolism is disrupted, and would provide bio-
markers for OUD that could be used to optimize treat-
ment. In addition, validation of the discovered metabolic
perturbations related to vitamins and fatty acids could
lead to the development of a nutrient cocktail to test in
clinical settings for efficacy to mitigate symptoms that
lead to the diagnosis of OUD.
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