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Balanced modulation 
of neuromuscular synaptic 
transmission via M1 and M2 
muscarinic receptors 
during inhibition of cholinesterases
Oksana A. Lenina1 & Konstantin A. Petrov1,2*

Organophosphorus (OP) compounds that inhibit acetylcholinesterase are a common cause of 
poisoning worldwide, resulting in several hundred thousand deaths each year. The pathways activated 
during OP compound poisoning via overstimulation of muscarinic acetylcholine receptors (mAChRs) 
play a decisive role in toxidrome. The antidotal therapy includes atropine, which is a nonspecific 
blocker of all mAChR subtypes. Atropine is efficient for mitigating depression in respiratory control 
centers but does not benefit patients with OP-induced skeletal muscle weakness. By using an ex vivo 
model of OP-induced muscle weakness, we studied the effects of the M1/M4 mAChR antagonist 
pirenzepine and the M2/M4 mAChR antagonist methoctramine on the force of mouse diaphragm 
muscle contraction. It was shown that weakness caused by the application of paraoxon can be 
significantly prevented by methoctramine (1 µM). However, neither pirenzepine (0.1 µM) nor atropine 
(1 µM) was able to prevent muscle weakness. Moreover, the application of pirenzepine significantly 
reduced the positive effect of methoctramine. Thus, balanced modulation of neuromuscular synaptic 
transmission via M1 and M2 mAChRs contributes to paraoxon-induced muscle weakness. It was shown 
that methoctramine (10 µmol/kg, i.p.) and atropine (50 µmol/kg, i.p.) were equieffective toward 
increasing the survival of mice poisoned with a 2xLD50 dose of paraoxon.

Abbreviations
ACh	� Acetylcholine
AChE	� Acetylcholinesterase
CNS	� Central nervous system
i.p.	� Intraperitoneal
LD50	� Median lethal dose
mAChRs	� Muscarinic acetylcholine receptors
nAChRs	� Nicotinic acetylcholine receptors
NMJ	� Neuromuscular junction
OP	� Organophosphorus
POX	� Paraoxon

Poisoning with organophosphorus (OP) compounds as pesticides is a serious public health problem, with over 
200,000 deaths and several million nonfatal cases occurring every year1. Moreover, weaponized OP compounds 
(e.g., VX, sarin, Novichok) also represent an immense danger, as they could be readily accessible by terrorist 
organizations and can be used in criminal acts2–5.

OP compounds act as irreversible inhibitors of the enzymes acetylcholinesterase (AChE) and butyrylcho-
linesterase leading to the excessive accumulation of acetylcholine (ACh) in synapses and the subsequent over-
stimulation of cholinergic receptors6. This leads to so-called cholinergic syndrome. Death generally results from 
respiratory arrest due to a combination of peripheral acute cholinergic effects and central apnea1.
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Emergency therapy for OP poisoning consists of atropine to prevent overstimulation of muscarinic acetyl-
choline receptors (mAChRs), oximes to reactivate the activity of cholinesterases and benzodiazepines to control 
seizures caused by weaponized OP compounds7.

It was shown that early rapid atropinization is efficient for mitigating autonomic signs and can prevent 
depression of respiratory control centers during poisoning with OP compounds1. However, it was shown that 
mAChRs have also been found at neuromuscular junctions (NMJs) and modulate ACh release. At vertebrate 
NMJs, activation of the M2 subtype of mAChRs inhibits but activation of the M1 subtype stimulates ACh release 
from motor nerve endings8. Downregulation of ACh release via activation of nicotinic acetylcholine receptors 
(nAChRs) is one of the pathways that decreases the safety factor of neuromuscular synaptic transmission during 
AChE inhibition9,10. Thus, it can be assumed that balanced regulation of neuromuscular synaptic transmission via 
activation of mAChRs can also contribute to OP-induced muscle weakness. The present study was designed to 
test this hypothesis using contractions of isolated mouse diaphragms as an ex vivo model of OP-induced muscle 
weakness. Paraoxon (POX) was used as a model OP compound. POX is the active metabolite of the agricultural 
insecticide parathion, which is converted to POX by the hepatic microsomal system11. The results presented 
here demonstrate that muscle weakness caused by ex vivo application of POX can be significantly prevented 
by pretreatment with the M2/M4 mAChR antagonist methoctramine. However, the M1/M4 mAChR antago-
nist pirenzepine or the nonspecific (M1-M5) mAChR antagonist atropine were unable to significantly prevent 
POX-induced impairment of mouse diaphragm contractility. In addition, the application of the M1/M4 mAChR 
blocker pirenzepine or the M1-M5 mAChR blocker atropine led to a significant decrease in the strength of muscle 
contractions, even when AChE was active. The application of pirenzepine after methoctramine led to a decrease 
in the protective effect of methoctramine against POX. Thus, modulation of synaptic transmission at NMJs via 
competition between pathways activated by M1 and M2 mAChRs contributes to POX-induced impairment of 
mouse diaphragm contractility. It was also shown that methoctramine at a dose of 8 mg/kg (10 µmol/kg) and 
atropine at a dose of 15 mg/kg (50 µmol/kg) were equieffective toward increasing the survival of mice poisoned 
with a 2xLD50 dose of POX (0.42 mg/kg).

Results
Effect of treatment with atropine, methoctramine or pirenzepine on paraoxon‑induced mus-
cle weakness ex vivo.  It was shown that incubating the mouse diaphragm for 30 min with 0.5 μM POX 
decreased the force of muscle contraction to 30 ± 1% of the control value (p = 0.0001; n = 10 muscles; Figs. 1, 2A). 
Preinhibition of the mouse diaphragm with atropine (1 µM) slightly but significantly decreased the diaphragm 
muscle contraction force to 88 ± 2% of the control value (p = 0.0001; n = 10 muscles). Pretreatment of the mouse 
diaphragm with pirenzepine in concentrations of 1 nM and 10 nM did not have a significant effect on the force 
of muscle contractions. However, when the concentration of pirenzepine was increased to 100 nM and 1 μM, the 
mean force of contractions significantly decreased to 89 ± 2% (p = 0.001; n = 10 muscles) and 91 ± 1% (p = 0.001; 
n = 10 muscles) of the control value, respectively (Figs. 1, 2A). Thus, blockade of M1 receptors ex vivo signifi-
cantly decreased the mean force of diaphragm muscle contraction even when AChE was active. Importantly, 
methoctramine in concentrations of 10 nM, 100 nM, 1 µM or 10 µM did not have a significant effect on the force 
of contractions (Figs. 1, 2A).

Figure 1.   Representative contractions of mouse diaphragm muscle recorded in the presence of 0.5 μM 
paraoxon (POX), 1 µM atropine (ATR), 1 µM methoctramine (MET) and 0.1 µM pirenzepine (PIR).
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Then, POX was applied after pretreatment with mAChR blockers (atropine, pirenzepine or methoctramine). 
It was shown that after pretreatment with atropine (1 µM), POX decreased the mean force of the diaphragm 
muscle to 34 ± 2% of the control (p = 0.0001; n = 10 muscles). A similar effect was observed after pretreatment with 
pirenzepine (1 nM, 10 nM, 100 nM, 1 µM), POX decreased the mean force of the diaphragm muscle to 33 ± 1%, 
32 ± 1%, 34 ± 1% and 38 ± 1% of the control (p = 0.0001; n = 10 muscles), respectively (Figs. 1, 2A). However, 
after pretreatment with methoctramine, POX had a significantly smaller effect. The muscle contraction force 
was reduced only to 40 ± 1%, 47 ± 1%, 61 ± 3% and 64 ± 1% of the control value (p = 0.0001; n = 10 muscles) when 
methoctramine was applied in concentrations of 10 nM, 100 nM, 1 µM and 10 µM, respectively (Figs. 1, 2A).

In the next series of experiments, we blocked synaptic transmission at the NMJs with D-tubocurarine (1 µM) 
and then performed direct stimulation of muscle fibers by depolarizing impulses. It was shown that if muscle 
action potentials were triggered directly (via electrodes on muscle fibers), atropine (1 µM), methoctramine 
(1 µM), pirenzepine (100 nM) and POX (0.5 µM) had no significant effect on mouse diaphragm muscle con-
traction (Fig. 2B). This indicates that POX and mAChR blockers affect precisely synaptic transmission. Thus, 
ex vivo pretreatment of mouse diaphragm muscles with M2/M4 mAChR blocker but not with M1/M4 blocker 
or nonspecific M1-M5 blocker is able to decrease the action of POX on neuromuscular synaptic transmission.

It can be assumed that there is competition between M1 and M2 mAChR blockers under these experimental 
conditions. To test this hypothesis, pirenzepine was applied after methoctramine.

It was shown that after pretreatment with methoctramine (1 µM), pirenzepine in concentrations of 1 nM and 
10 nM did not have a significant effect on the force of muscle contractions (Fig. 2C). However, in concentrations 

Figure 2.   Relative changes in the force of diaphragm muscle contraction: (A) The mean force of diaphragm 
muscle contraction in presence of 0.5 μM paraoxon (POX), 1 µM atropine (ATR), 10 nM–10 µM 
methoctramine (MET) and 1 nM–1 µM pirenzepine (PIR). (B) Direct stimulation of diaphragm muscle 
in presence of 0.5 μM paraoxon (POX), 1 µM atropine (ATR), 1 µM methoctramine (MET) and 100 nM 
pirenzepine (PIR), when synaptic transmission was blocked by D-tubocurarine (1 µM). (C) Relative changes 
in the force of diaphragm muscle contraction in the presence of 1 µM methoctramine (MET) and after the 
subsequent application of pirenzepine (PIR) in concentrations of 1 nM–1 µM and 0.5 μM paraoxon (POX). 
The amplitude of muscle contractions in the control was taken as 100%. Data are expressed as the mean ± SEM. 
*p < 0.05 compared to contractions of intact control muscles. #p < 0.05 compared to contractions in the presence 
of paraoxon. &p < 0.05 compared to contractions in the presence of methoctramine during nerve stimulation. 
Statistical analysis was performed using the Mann–Whitney test.
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of 100 nM and 1 µM pirenzepine significantly decreased the mean force of diaphragm muscle contraction to 
79 ± 2% (p = 0.003; n = 10 muscles) and to 79 ± 2% (p = 0.001; n = 10 muscles) of the control, respectively (Fig. 2C). 
Subsequent application of POX (0.5 μM), when pirenzepine was applied in concentrations of 1 nM, 10 nM, 
100 nM and 1 µM, additionally reduced the contractions to 55 ± 2% (p = 0.001; n = 10 muscles), to 48 ± 2% 
(p = 0.01; n = 10 muscles), to 46 ± 1% (p = 0.001; n = 10 muscles) and to 38 ± 1% (p = 0.001; n = 10 muscles), respec-
tively (Fig. 2C). Thus, blockade of M1 mAChRs in a concentration dependent manner reduces the positive effect 
of POX-induced muscle weakness treatment with M2 mAChR blocker.

Effect of atropine or methoctramine treatment on paraoxon toxicity in vivo.  During the next 
sets of experiments, we compared the efficiency of atropine and methoctramine as antidotes against poisoning 
with a 2xLD50 dose of POX (0.42 mg/kg). Atropine or methoctramine was administered intraperitoneally (i.p.) at 
different doses one minute after challenging the mice with POX. Atropine at a dose of 15 mg/kg had the strongest 
antidotal effect against POX (Table 1). Unexpectedly, methoctramine had the strongest antidotal effect against 
POX at a dose of 8 mg/kg (Table 2).

The relative risk (RR) of death after poisoning with POX as a function of precocity (from min to hours) of 
treatment with atropine at a dose of 15 mg/kg or methoctramine at a dose of 8 mg/kg was calculated according to 
Cox survival analysis over a period of 10 h12. As expected, it was shown that RR = 1 in mice exposed to a 2xLD50 
dose of POX. However, among animals treated with 15 mg/kg atropine, mortality was lower (RR = 0.75; Fig. 3). 
The same RR of death after poisoning with POX was calculated, and mice were treated with methoctramine at a 
dose of 8 mg/kg. We compared the RR of death after antidotal therapy with atropine and methoctramine. There 
were no statistically significant differences between the efficacy of antidotal therapy with atropine at a dose of 
15 mg/kg and methoctramine at a dose of 8 mg/kg (p = 0.45; n = 24 mice). Thus, the blockade of M2/M4 mAChRs 
is able to increase the survival of animals poisoned with POX as a blockade of M1–M5 mAChRs.

As a next step, we tried to replace atropine with methoctramine in the “cocktail” used for the treatment of 
OP poisoning. The results showed that administration of a "cocktail" of pralidoxime (30 mg/kg, i.p.), atropine 
(15 mg/kg, i.p.), diazepam (2 mg/kg, i.p.) one minute after poisoning saved 4 of 24 mice that received POX at a 
dose of 3xLD50 (0.63 mg/kg, i.p.) (Table 3). After replacing atropine with 8 mg/kg methoctramine, 5 of 24 mice 
that received POX at a dose of 3xLD50 survived (Table 3). Thus, methoctramine at a dose of 8 mg/kg has a similar 
effect to atropine at a dose of 15 mg/kg in the composition of the “cocktail”. However, it is important to note 
that the molecular weight of methoctramine is higher than that of atropine. Therefore, to compare the effective 
doses of methoctramine and atropine, we expressed them in terms of "μmol/kg". In this case, the effective dose 
of methoctramine (10 μmol/kg) was five times lower than the effective dose of atropine (50 μmol/kg). Thus, the 
results of this toxicological experiment suggest that blockade of M2/M4 mAChRs could be more effective for 
survival than nonselective blockade of all mAChR subtypes.

Table 1.   Selection of atropine dose for antidotal therapy of mice poisoned by 2xLD50 of POX. *n number of 
mice survival 120 h after POX poisoning. N total number of mice in the group. POX—0.42 mg/kg, i.p.

Group n/N*

POX 0.42 mg/kg, i.p. 0/24

POX + Atropine 6 mg/kg, i.p. 0/24

POX + Atropine 8 mg/kg, i.p. 2/24

POX + Atropine 10 mg/kg, i.p. 6/24

POX + Atropine 15 mg/kg, i.p. 11/24

POX + Atropine 20 mg/kg, i.p. 10/24

Table 2.   Selection of methoctramine dose for antidotal therapy of mice poisoned by 2xLD50 of POX. *n 
number of mice survival 120 h after POX poisoning. N total number of mice in the group. POX—0.42 mg/kg, 
i.p.

Group n/N*

POX 0.42 mg/kg, i.p. 0/24

POX + methoctramine 3 mg/kg, i.p. 2/24

POX + methoctramine 4 mg/kg, i.p. 4/24

POX + methoctramine 6 mg/kg, i.p. 7/24

POX + methoctramine 8 mg/kg, i.p. 10/24

POX + methoctramine 10 mg/kg, i.p. 8/24
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Discussion
Atropine and oximes were first used for the treatment of OP compound poisoning in the 1950s, and this approach 
has not significantly changed over the last 60 years. However, a better understanding of the multiple respiratory 
complications of OP poisoning offers additional therapeutic opportunities1. Respiratory failure due to OP poison-
ing occurs with two distinctive clinical patterns. An early form is likely to be central and can be mitigated with 
rapid titration of antimuscarinic agents such as atropine. This is in contrast to late respiratory failure, which has 
been shown to be associated with neuromuscular dysfunction13. Unfortunately, standard antidotes have no benefit 
to patients who develop neuromuscular dysfunction. The only therapy currently available for late respiratory 
failure is intubation and mechanical ventilation, which is often required for a few weeks14,15.

One of the main objectives of the present study was to test the hypothesis that suboptimal inhibition of 
mAChRs at NMJs can decrease the efficiency of therapy for respiratory muscle weakness following OP poisoning.

mAChRs are members of the G-protein-coupled receptor family and consist of five distinct subtypes of 
mAChRs, denoted M1, M2, M3, M4, and M5. M1, M3 and M5 mAChRs couple to the Gq/11 proteins to activate 
phospholipase C, whereas M2 and M4 couple to the Gi/o proteins, thereby stimulating downstream activities, 
such as inhibition of adenylyl cyclase16. The degree of interplay of these pathways in the central and peripheral 
nervous systems during AChE inhibition remains to be revealed.

It has been found that mAChRs of at least four subtypes (M1, M2, M3 and M4) are present at the NMJs17. It 
is known that at NMJs and mAChRs participate in the autoregulation of ACh release10. In some cases, exogenous 
mAChR agonists can suppress ACh release, while in other situations, they conversely enhance ACh release18–22. 
It was shown that the activation of M2 mAChRs is responsible for the depressive effect and that the activation of 
M1 mAChRs stimulates the process of ACh release23–26. A very similar effect was described in central synapses, 
and blockade of M2 mAChRs led to an increase in ACh release27.

The dominant mechanism of ACh-induced muscle paralysis is the depolarization block of muscle action 
potential generation, which is similar to the action of depolarizing myorelaxants (e.g., succinylcholine)28,29. Thus, 
the usefulness of antidepolarizing drugs targeting postsynaptic nAChRs is mainly discussed mainly as a potential 
therapy for OP-induced respiratory muscle weakness14. However, because the main parameter changing dur-
ing the process of autoregulation of ACh release is the amplitude of the excitatory postsynaptic potentials, such 
balanced regulation via activation of M1 and M2 mAChRs can also be related to the modulation of the safety 
factor of synaptic transmission during OP poisoning.

Unfortunately, the level of ACh release cannot be directly estimated after inhibition of AChE at the NMJs 
due to nonlinear summation of the postsynaptic effect of the individual ACh quanta30. Nevertheless, taking the 

Figure 3.   Cox analysis of survival data for mice treated with atropine (ATR) at a dose of 10 mg/kg or 
methoctramine (MET) at a dose of 8 mg/kg against a 2xLD50 dose (0.42 mg/kg, i.p.) of paraoxon (POX).

Table 3.   Replacement of atropine on methoctramine in the “cocktail” used for the treatment of mice poisoned 
by 3xLD50 of POX. *n number of mice survival 120 h after POX poisoning. N total number of mice in the 
group. POX—0.63 mg/kg, i.p. Composition of the “cocktail”: pralidoxime (30 mg/kg, i.p.), atropine (15 mg/
kg, i.p.) or methoctramine (8 mg/kg, i.p), diazepam (2 mg/kg, i.p.). Components of “cocktail” were i.p. 
administrated within 1 min after POX.

Group n/N*

POX + pralidoxime + atropine + diazepam 4/24

POX + pralidoxime + methactromine + diazepam 5/24
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present data on muscle contraction and the abovementioned studies together, it can be suggested that presyn-
aptic M2 mAChRs involved in the downregulation of ACh release at NMJs can be considered a new target for 
the treatment of OP-induced respiratory muscle weakness. In addition, the effects of M1 mAChR blockade that 
decrease the efficiency of the treatment could explain the low efficacy of atropine in the therapy of OP-induced 
late respiratory failure.

The mechanisms of early respiratory failure following acute OP poisoning are also not fully understood. Ani-
mal studies support the idea that early OP-induced respiratory failure results from the effects of OP compounds 
on muscarinic brainstem circuits, thereby interfering with respiratory rhythmogenesis and local pulmonary 
muscarinic effects (e.g., bronchoconstriction and bronchorrhea)13,31–34. The results of our toxicological experi-
ments raise the question about the possible important role of M2 and/or M4 mAChRs during the acute phase 
of OP poisoning because antidotal treatment with methoctramine has the same effect as atropine. However, the 
possibility of cross-talk between mAChRs of different types could also explain the results of these toxicological 
experiments. The cross-talk between M1/M2 and M2/M3 mAChRs has been described35,36. In these complexes 
of mAChRs, one pathway can modulate the response of the second pathway37.

The above findings support the hypothesis that specific blockers for selected subtypes of mAChRs could be 
efficient for the treatment of OP poisoning. Thus, further studies are needed to determine the contributions of 
the different mAChR pathways activated during OP poisoning.

Methods
Ex vivo twitch tension measurements.  All experiments involving animals were performed in accord-
ance with the guidelines set forth by the European Union Council Directive 2010/63/EU, and conducted in 
accordance with ARRIVE guidelines, the protocol of experiments approved by the Animal Care and Use Com-
mittee of Kazan Federal University. CD-1 mice weighing 25–30 g, 6-week old, were purchased from the Labora-
tory Animal Breeding Facility (Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Puschino, 
Moscow Region, Russia) and were allowed to acclimate to their environment in vivarium for at least 1 week 
before experiments. Animals were kept in sawdust-lined plastic cages in a well-ventilated room at 20–22 °C in a 
12-h light/dark cycle, 60–70% relative humidity and given ad libitum access to food and water.

Ex vivo twitch tension measurements was performed as previously described38. Hemidiaphragm muscles with 
their associated phrenic nerves were bathed in oxygenated Ringer-Krebs’ solution at 25 °C. For twitch tension 
measurements the force sensor TRI201AD (AD Instruments, Sydney, Australia) was used. Contractions were 
evoked by stimulating the phrenic nerve via wire electrodes by supramaximal current pulses, 0.1 ms in dura-
tion. Data were recorded using Power Lab system and LabChart 6 software (AD Instruments, Sydney, Australia, 
https://​www.​adins​trume​nts.​com/​produ​cts/​labch​art). Paraoxon (Sigma-Aldrich, St. Louis, MO, USA), atropine 
(Sigma-Aldrich, St. Louis, MO, USA) pirenzepine (Sigma-Aldrich, St. Louis, MO, USA) and methoctromine 
(Sigma-Aldrich, St. Louis, MO, USA) were applied in Ringer-Krebs solution.

Data were expressed as mean ± SEM. Drug effect was expressed as percentage of contraction amplitude in 
control. Statistical significance was assessed by Mann–Whitney test at the level of p < 0.05.

In vivo antidotal therapy of poisoning with paraoxon.  Animals were observed for 120 h after i.p. 
injection of POX. POX LD50, dose (in mg/kg) causing lethal effects in 50% of CD-1 mice was determined 
previously38. Atropine or methoctramine were i.p. administered at different doses 1 min after i.p. injection of 
2xLD50 of POX (0.42 mg/kg). The ratio of number of mice surviving after intoxication with POX to the total 
number of mice in each group was used as a criterion of efficiency of antidotal therapy.

COX analysis of the RR of death was performed using SPSS Statistics software (IBM, USA). Statistical sig-
nificance was assessed by Mann–Whitney U test at the level of p < 0.05.
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