
antibodies

Review

Antibody Structure and Function: The Basis for
Engineering Therapeutics

Mark L. Chiu 1,* , Dennis R. Goulet 2 , Alexey Teplyakov 3 and Gary L. Gilliland 3

1 Drug Product Development Science, Janssen Research & Development, LLC, Malvern, PA 19355, USA
2 Department of Medicinal Chemistry, University of Washington, P.O. Box 357610, Seattle, WA 98195-7610,

USA; dennisrgoulet@gmail.com
3 Biologics Research, Janssen Research & Development, LLC, Spring House, PA 19477, USA;

dr.alexey.teplyakov@gmail.com (A.T.); garygilliland911@gmail.com (G.L.G.)
* Correspondence: mchiu@its.jnj.com

Received: 16 October 2019; Accepted: 28 November 2019; Published: 3 December 2019
����������
�������

Abstract: Antibodies and antibody-derived macromolecules have established themselves as the
mainstay in protein-based therapeutic molecules (biologics). Our knowledge of the structure–function
relationships of antibodies provides a platform for protein engineering that has been exploited
to generate a wide range of biologics for a host of therapeutic indications. In this review, our
basic understanding of the antibody structure is described along with how that knowledge has
leveraged the engineering of antibody and antibody-related therapeutics having the appropriate
antigen affinity, effector function, and biophysical properties. The platforms examined include the
development of antibodies, antibody fragments, bispecific antibody, and antibody fusion products,
whose efficacy and manufacturability can be improved via humanization, affinity modulation,
and stability enhancement. We also review the design and selection of binding arms, and avidity
modulation. Different strategies of preparing bispecific and multispecific molecules for an array of
therapeutic applications are included.
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1. Introduction

Currently, all antibodies and antibody-derived macromolecules being developed for a wide
spectrum of therapeutic indications [1,2] require protein engineering. The engineering approaches
being used are based on our knowledge of protein structure and, in particular, our knowledge
of how the structures are linked to their function [3]. Our knowledge of the three-dimensional
structure of antibodies has emerged from crystallographic studies reported from numerous laboratories
beginning in the 1970s. At present, the Protein Data Bank (PDB) [4] contains over 3500 structures of
antibody fragments (Fabs, Fvs, scFvs, and Fcs), as well as a small number of intact antibody structures.
The structural data includes complexes of these molecules with proteins, other macromolecules,
peptides, and haptens. The overall structure of antibodies, including the folding pattern of the
individual domains and basic features of the antigen-combining sites, has been the subject of several
reviews [3,5–8].

Human immunoglobulins are Y-shaped proteins composed of two identical light chains (LCs) and
two identical heavy chains (HCs). In natural systems, the pairing of one LC with one HC associates with
another identical heterodimer to form the intact immunoglobulin. The HC and LC of the heterodimer
are linked through disulfide bonds. The two HCs of the heterotetramer are also linked by disulfide
bridges. Human LCs can be one of two functionally similar classes, κ or λ. Both LC classes have two
domains, a constant domain (CL) and a variable domain (VL). In comparison, human antibody HCs
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can be one of five isotypes, IgA, IgD, IgE, IgG, and IgM, each with an independent role in the adaptive
immune system. IgAs, IgDs, and IgGs have three constant (C) and one variable (V) domains. IgEs and
IgMs have one variable and four constant domains. The IgA and IgM isotopes have an additional
J-chain, which allows the formation of dimers and pentamers, respectively. The other isotypes are
monomeric (a monomer is defined here as a pair of HC-LCs.).

The general features of antibodies described below will focus on the IgG1 framework.
Our knowledge of how antibody structure relates to function is being exploited to create antibodies
and antibody-related biologics with the appropriate functional and biophysical properties to address
specific therapeutic needs. The engineering approaches applied to antibodies, antibody fragments,
antibody, and antibody fusion products include effector function engineering, antibody humanization,
affinity modulation, and stability enhancement to improve efficacy and manufacturability.

1.1. Overall Features of the Immunoglobulin

The intact antibody molecule shown in Figure 1 has three functional components, two Fragment
antigen binding domains (Fabs) and the fragment crystallizable (Fc), with the two Fabs linked to the
Fc by a hinge region that allows the Fabs a large degree of conformation flexibility relative to the Fc.
Each of the Fabs have identical antigen-binding sites (or what is often called antigen-combining sites)
for binding to a specific target antigen. The Fv region of the Fab is composed of a pair of variable
domains (VH and VL) contributed by the HC and LC. In contrast, the glycosylated Fc region binds to a
variety of receptor molecules providing the effector function profile that dictates how the antibody
interacts with other components of the adaptive and humoral immune system.

All the domains of heavy and light chains are approximately 110 amino acid residues in length
whose conformations have been termed the “immunoglobulin fold” (Figure 2) [9,10]. The fold is
comprised of two tightly packed anti-parallel β-sheets. One of the two β-sheets of the C domains
has four β-strands, ↓A ↑B ↓E ↑D, and the other three β-strands, ↓C ↑F ↓G. The overall fold is often
referred to as a Greek key barrel. The two β-sheets are covalently linked together by an intra-domain
disulfide bridge formed between two cysteine residues in the ↑B and ↑F β-strands. The C domains are
in general compact, with short loops connecting the β-strands. The two β-sheets pack together using
the non-covalent interactions of the side chains of amino acid residues on the complementary faces.
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Figure 2. The immunoglobulin fold. The left ribbon image (cyan and red) of the heavy-chain variable
(VH) domain illustrates the V domain immunoglobulin folding pattern (VH of Fab 388, PDBid 5i1a) [12].
The V domain complementarity-determining regions (CDRs) are shown in red. The right ribbon image
(green) illustrates the similar folding pattern of a typical C domain (CL of Fab 5844, PDBid: 5i18 [12].

The V domains of the immunoglobulin structure, which interact with the target antigen, are at the
N-termini of the HCs and LCs. These domain structures are like that of the C domains but with some
differences. The two β-sheets have a configuration like that found in the C domain. The four-stranded
β-sheet, formed from four β-strands, ↓A ↑B ↓E ↑D is like the corresponding β-sheet in the C domain.
The other β-sheet has five β-strands, ↓C” ↑C’ ↓C ↑F ↓B, instead of the three found in the C domain.
An insertion of two β-strands, ↓C” ↑C’ is present between β-strands ↓C and ↑D. Just as in the C domain,
an intra-domain disulfide bridge is formed between β-strands ↑B and ↑F. The less-compact V domains
in general have longer loops connecting the β-strands.

1.2. Fab Region

1.2.1. Fab Overall Features

The Fab regions of an immunoglobulin are formed by the pairing of VL and CL of the LCs with
VH and CH1 of the HCs. The pairing of VL and VH, form the antigen-binding site. The two β-sheets
formed with β-strands ↓C” ↑C’ ↓C ↑F ↓B pack together, forming a barrel-like structure that aligns
the connecting loops (complementarity determining regions or CDRs, see below) and forming the
antigen-binding site. In contrast, the CH1 and CL domains pack tightly in an almost perpendicular
mode using the complementary faces of the opposite ↓A ↑B ↓E ↑D β-sheet.

The overall arrangement of the HC and LC domains of the Fab are characterized by what is
called the elbow bend or elbow angle. This is defined by the angle between the pseudo-two-fold axes
relating the two pairs of domains (VH, VL and CH1, CL) [10,13]. The switch region, an extended
polypeptide chain, connects the V and C domains. The orientation of the V domains with respect to
the C domains is referred to as the elbow angle or elbow bend, which can vary significantly. In an early
survey of Fabs with kappa (κ) light chains, the angle was shown to vary from 116◦ to 226◦ [14]. Fabs
with lambda (λ) light chains have a wider range of angles, indicating higher levels of flexibility. This
may result from the presence of an extra amino acid residue (usually a glycine) present in the switch
region of λ LCs. An early analysis of the elbow motion in Fabs discovered a conserved feature that is
referred to as a molecular ball-and-socket joint [15]. This occurs in the HC at the interface between
VH and CH1. The ball consists of conserved amino acid residues Phe148 and Pro149 in VH and the
socket is formed by conserved amino acid residues Leu/Val11, Thr110, and Ser112 in the CH1 domain.
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This interaction could restrict the elbow angle to a maximum of 180◦. However, larger angles were
reported for subsequent Fab structures (e.g., [16]) in which the ball and socket move apart, allowing
elbow angles >180◦ [14].

1.2.2. The Fab Antigen-Binding Site

The antigen-binding site is formed by the pairing of the Fab VH and VL with the N-terminal
region designated as the Fv region. As shown in Figure 3, each domain contributes three
complementarity-determining regions CDR-L1, CDR-L2, and CDR-L3 for VL and CDR-H1, CDR-H2,
and CDR-H3 for VH. These hypervariable regions were identified by early amino acid sequence
variability analyses [17,18] that pre-dated our knowledge of the structure of the antibodies. The six
CDR loops are in proximity to each other, resulting from the orientation of VL and VH after the
formation of the Fv. This is a result of the packing of the β-sheets composed of the ↓C” ↑C’ ↓C ↑F ↓B
from the two domains. This configuration brings the three CDRs of the VL and VH domains together
to form the antigen-binding site. The strands of the two β-sheets and the non-hypervariable loops are
referred as to framework regions (FRs).
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in red (Fv of Fab 388, PDBid: 5i1a) [12].

Both the number of amino acid residues and the sequences can vary for the CDRs. Genetic
recombination of the V, D, and J gene segments for VH and V and J gene segments for VL with
subsequent somatic hypermutation in mature B cells accounts for antibody CDR sequence diversity.
In the two domains, the CDRs are composed of amino acid residues in the loops connecting the
framework β-strands ↑B and ↓C for CDR-L1 and CDR-H1, ↑C’ and ↓C” for CDR-L2 and CDR-H2, and
↑F and ↓G for CDR-L3 and CDR-H3.

The Fv amino acid residues in contact with the antigen have been called specificity-determining
residues (SDRs) [19]. Antibodies in complex with haptens, proteins, or peptides show distinctive SDR
patterns [19,20]. Anti-hapten antibodies have small and deep binding pockets at the VH–VL interface.
The antigen-binding sites specific for peptides are groove-shaped depressions between VH and VL,
while anti-protein antibodies tend to have extended and larger binding sites compared to those of the
other two classes of antibodies. These structural features of antibody recognition sites for different
classes of antigens have been employed in the development of productive synthetic antibody libraries
for the specific recognition of haptens [21], peptides [22], and proteins [23].
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1.2.3. Relationship between Binding and Affinity

The antigen binding of antibodies often results in conformational changes in the contact surface
areas of both the antibody and the antigen. These events have been studied in detail by many
laboratories in the structure determinations of both an antibody fragment (Fabs or Fvs) alone and in
complex with its antigen (for reviews, see [8,24]. When discussing antigen–antibody interactions, the
general modes of binding are cited: Lock and key, induced fit, and conformational selection. In the lock
and key model, the two molecules interact in a manner that minimizes changes in the conformations of
the two protein surfaces from that observed in the unbound and bound states. Thus, the backbone
conformations of the antibody and antigen are essentially the same in both the unbound and bound
states. In contrast, the conformational changes for the antibody and antigen in the induced-fit mode
can be quite extensive. Both the side chain and backbone atoms in the contact region can undergo
conformational changes after the binding takes place, especially in the CDR regions. Of all the CDRs,
the CDR-H3 most often has changes in conformations when the unbound and bound structures are
compared. In addition, differences in the orientation of VL with respect to VH are often seen. Lastly,
the Fab elbow angle may differ in the two forms. It has been suggested that the induced-fit mode of
binding introduces plasticity into the antigen-binding site, expanding antibody diversity beyond that
resulting from amino acid residue changes [25]. In the conformational selection model, the antigen
samples a population of different conformational states prior to binding [26,27]. Antibody binding can
then depend on pre-activation states of the antigen, which can be affected by the microenvironment
around the antigen [28]. Sorting out the kinetics of target engagement also provides a guideline of how
to optimize pharmacology. Understanding this aspect of binding can drive the development of better
in situ antibody therapeutic design [29]. This also serves as a reminder that binding affinity may not be
directly linked with pharmacology [30].

1.2.4. Canonical Structures of the CDRs

An early structural analysis of antigen-binding sites of the small set of structures of immunoglobulin
fragments available at the time revealed that the conformations of five out of the six hypervariable loops
or CDRs had a limited set of main-chain conformations or ‘canonical structures’ [31,32]. The canonical
structure model implied a paradigm shift in the field, replacing the notion that each antibody has
unique hypervariable loop conformations. A canonical structure is defined by the loop length, the
conformation of the loop, and the conserved amino acid residues within the hypervariable loop and
FRs. Based on this model, studies of antibody sequences indicated that from the total number of
possible combinations of canonical structures only a few occur [33–35]. This suggested that structural
restrictions at the antigen-binding site may affect antigen recognition. Subsequent work [36] reported
that the hypervariable loop lengths are the primary determining factor of the antigen-binding site
topography, as they are the primary factor determining the canonical structures [31,37].

This early work was extended to include conformational analysis of the CDRs of 17 high-resolution
antibody fragments [37]. The CDRs of the light chain CDR-L1, CDR-L2, and CDR-L3 were all
found to have preferred sets of canonical structures based on the length and amino acid sequence
composition. This was also found for CDRs of the heavy chain CDR-H1 and CDR-H2, but not for
heavy chain CDR-H3, which is the most variable in length and amino acid sequence. This limited
set of CDR canonical structures was included in macromolecular modeling strategies for antibody
structures [31,32]. The early assignments of canonical structures have been extended using an
algorithm that clusters the CDRs from a set of antibody fragments with low temperature factors
and low conformational energies [38]. The results are frequently updated and available online
(http://dunbrack2.fccc.edu/PyIgClassify/default.aspx) from the Dunbrack Laboratory.

http://dunbrack2.fccc.edu/PyIgClassify/default.aspx
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1.2.5. CDR-H3

One of the CDRs, CDR-H3, has a large range of lengths and amino acid sequence diversity and
usually plays a primary role in the antibody–antigen interactions. The CDR-H3 conformation is quite
variable in nature and canonical structures were not defined in the early cataloging efforts. In later
studies, the residues in the loop nearest the framework (torso) and residues in the extended region of
the loop (head) have been found to have defined conformations [39–41]. One interesting discovery
by this work was that the backbone of the CDR-H3 base region can have either an ‘extended’ or
‘kinked’ conformation. The kinked conformation is a beta-bulge in the backbone of the stem region.
In early studies of CDR-H3 structures, the kinked form was more prevalent than the extended one [41].
A recent study reported 16 representative Fab structures of a germline library, all having the same
CDR-H3 amino acid sequence [12]. In fourteen of these structures, CDR-H3s were found in the kinked
conformation, whereas in two structures CDR-H3s were in the extended conformation. This finding
supports the hypothesis that the CDR-H3 conformation is controlled both by its sequence and its
environment [42].

1.2.6. Antibody Modeling

The knowledge of canonical structures enabled the development of antibody modeling (Fv
region) [43]. In therapeutic antibody development programs, where the number of candidates being
considered far exceeds the capacity of the crystallographic structure determination process, antibody
modeling has become increasingly more important. Because of this need, approaches for antibody
modeling continue to evolve along with the field of protein structure prediction. Recently, antibody
modeling assessment studies have been undertaken to gain insight into the quality of the results
of antibody structure prediction software. These blinded studies [44,45] involved providing the
antibody structure prediction software groups with the sequence of Fv regions for which structures
had been determined but were not yet publicly available. Once the predictions were completed by the
participants, the results were submitted to the organizers and the models were assessed and compared
with the unpublished structures. In the second study [45], after the prediction of the structures of
the entire Fv were completed, the participants were provided with the Fv structures without their
CDR-H3s. The structures of the CDR-H3s were then predicted and submitted. This was done to
assess whether more accurate structures of CDR-H3 could be predicted if the context (the Fv structural
environment) was provided. The participants included Accelrys, Inc. [46], Chemical Computer Group
(CCG) [47], Schrödinger [48], Jeff Gray’s lab at John Hopkins University [49] Macromoltek [50], Astellas
Pharma/Osaka University [51], and Prediction of ImmunoGlobulin Structure (PIGS) [52,53]. While only
Accerlys, Inc. and Chemical Computer Group (CCG), and PIGS participated in the first assessment, all
other aforementioned parties participated in the second assessment. In both studies, all the antibody
modeling methods produced similar and reliable models for the FR, but with some exceptions in the
CDRs. Each of the methods applied in these studies had different strengths and weaknesses. Overall,
the second antibody assessment revealed an improved quality of the models with an incremental
improvement in the accuracy of the predictions from the first assessment, but further development to
improve these methods is clearly warranted [54].

1.3. Fc Region

In the 1950s, it was discovered that proteolysis of intact IgGs with papain produced large fragments
about a third of the size of the intact molecule [55,56], and it was eventually discovered that one of the
fragments could bind antigen and act as an inhibitor to the binding of the intact antibody. This turned
out to be what we call today the Fab fragment. Another fragment approximately the same size turned
out not to inhibit binding, and it was easily crystallized [57]. This crystallizable fragment is what we
call the Fc. The structural features of this region of the antibody were defined in the initial structure
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determination of the human IgG1 Fc [58] and they have remained constant as the structures of many
other Fcs have been determined (see a partial list of Fc structures in Teplyakov et al., 2013 [59]).

The three-dimensional structure of the Fc [58] revealed how the two constant domains, CH2
and CH3, of the each of the HCs interact with one another (see Figure 4). The CH3s pack tightly
with each other while the CH2s have no observable protein–protein contacts with one another.
Rather, the space separating the CH2s is filled in part by the carbohydrate attached at Asn297.
In some structures, the two carbohydrate chains interact through hydrogen bonds, either directly
or through bridging water molecules. The flexibility imparted to the CH2s contributes to their role
in the interaction with C1q and the FcγRs. The Fc region of an IgG can engage with Fc gamma
receptors (FcγR) and the first subcomponent of the C1 complex (C1q) to mediate antibody-dependent
cellular cytotoxicity (ADCC), complement-dependent cytotoxicity (CDC), antibody-dependent cellular
phagocytosis (ADCP), trogocytosis, induction of secretion of mediators, and endocytosis of opsonized
particles, as well as modulation of tissue and serum half-life through interaction with the FcRn [60–62].
The Fc has been the focus of significant engineering to modulate effector function activities found
on monocytes, macrophages, dendritic cells, neutrophils, T and B lymphocytes, and natural killer
cells [63]. Since there is often an interchange of mAbs coming from different mammalian forms, a
systematic comparison of human Fc binding to mouse, cynomolgus, and human FcγRs have been
made to correlate in vitro and in vivo Fc activity [64].
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1.3.1. The Fc CH2–CH3 Interface

The Fc CH2–CH3 interface has been recently characterized in a report of the structures of two
crystal forms of the IgG2 Fc [59]. The interface is dominated by non-covalent interactions between
the two domains supplemented by the presence of ordered water molecules. When the structures
were compared with the structures of homologous IgG1 Fcs [65–67], it was observed that the CH2s
change position relative to the CH3s. Further analysis revealed an Fc ball-and-socket joint between
CH2 and CH3 that allows the CH2 domain to pivot around its Leu251 side chain, which is buried in a
pocket formed by CH3 residues Met428, His429, Glu430, and His435. The movement of the CH2s is
constrained by residues from both domains found at the CH2–CH3 interface and the hinge region.
This Fc ball-and-socket joint is analogous to the one that is found in the Fab structures mentioned
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above [14,15,68], but in the Fc case, it is reversed relative to that found in Fab regions with the ball in
the CH2 domain and the socket in CH3. The subset of CH2–CH3 interface residues associated with the
Fc ball-and-socket are highly conserved among human IgG1, IgG2, IgG3, and IgG4 [59], indicating
that it is a general structural feature that facilitates the motion of CH2 relative to CH3 in human IgGs.
The positions of the amino acid residues at the interface vary as the domains change their relative
orientation to one another, increasing or decreasing the gap between the domains. As the domains
move, the water structure associated with the CH2–CH3 interface also adjusts. Future Fc engineering
efforts can consider altering residues associated with the Fc ball and socket that could impact the
flexibility of the Fc, potentially altering effector function activity.

1.3.2. The Fc CH2 Carbohydrate

The Fc CH2 carbohydrate covers a hydrophobic face of the domain and helps to fill the void
between the two HC CH2s. Each of the domains has covalently bound carbohydrate with the structure
described in Figure 5. This structure may vary considerably by the addition of other sugar residues,
such as sialic acids, N-acetylglucosamines, and galactoses, and in some cases, the absence of fucose [69].
The presence of the glycans contributes to the biophysical stability of the protein structure [70]. Several
Fc crystal structures with different glycoform variants [65,71,72] and aglycosylated forms [73,74] have
been reported. In these structures, the composition of the carbohydrate dictates the separation distance
between the CH2s. The composition of the carbohydrate of the Fc can substantially influence the
effector functionality of the antibody as well as the pharmacokinetic profile [75].
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numbering of the glycosidic linkages are shown for oligosaccharides found in IgG 
molecules. The 1-4 N acetyl glucosamine can be found in human IgG structures. (C). Major 
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Figure 5. (A) Schematic representation of the most abundant recombinant N-linked oligosaccharide
from human IgG Asn 297 (G2S2F) with glycosidic linkages. A similar representation of recombinant
human IgG1 G2S2F is shown. The monomeric saccharides are shown as blue squares as N acetyl
glucosamine; green circles as mannose; yellow circles as galactose; red squares as fucose; and purple
rhombi as sialic acid or N acetyl neuraminic acid. (B) The glycosidic linkage numbers for representative
oligosaccharides. The numbering of the glycosidic linkages are shown for oligosaccharides found
in IgG molecules. The 1-4 N acetyl glucosamine can be found in human IgG structures. (C) Major
species of N-linked oligosaccharides found in recombinant IgGs expressed in Chinese hamster ovary
(CHO) cells may vary considerably by the addition of other sugar residues, such as sialic acids,
N-acetylglucosamines, and galactose.

1.4. Hinge

The HC polypeptide region bridging CH1 and CH2 is called the hinge region and functionally
allows the Fabs a large degree of conformational flexibility relative to the Fc. This facilitates the Fabs
binding to multiple targets and allows the Fc to interact independently with other components of the
immune system [76]. Structural knowledge of the IgG hinges is based upon the structures of intact
mAbs, of Fcs, and of Fc:FcγR complexes. A review of structures deposited in the PDB [4] now reveals
that there are 7 intact antibody structures, 87 Fc structures, and 15 FcγR complexes. There are ongoing
efforts to utilize individual particle electron tomography to determine the diversity of conformational
changes [77].
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The antibody hinge can be divided into three regions, the upper hinge, core hinge, and lower
hinge, each with a different functional role [66] (see Figure 6). On the N-terminal side, the upper hinge
allows the movement and rotation of the Fabs. The central core hinge contains a variable number of
cysteine residues depending on the IgG subtype that forms disulfide bonds, stabilizing the association
of the HCs. On the C-terminal side is the lower hinge that allows movement of the Fc relative to the
Fabs and whose amino acid residues can be involved in FcγR binding.
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The hinges of Human IgG subtypes vary significantly in the number of residues and the number
of possible disulfide bridges between the two heavy chains. This contributes to the overall stability of
the antibody. For example, of all the IgGs, IgG4 is the only subtype that undergoes natural Fab-arm
exchange producing antibody molecules that are bispecific [78]. In addition, this variability, including
the differences in amino acid sequence, contributes in part to the strength of the interactions of IgGs
with FcγRs.

An aspect of stability for antibodies and the hinge region is protease sensitivity. Papain [57] and
other proteases [79] are used to cleave the upper hinge of IgGs, generating Fab and Fc fragments.
Cleavage of the lower hinge single leads to single-clipped IgG or a double-clipped IgG with F(ab’)2 and Fc
fragments. In humans, this cleavage can take place during inflammation, in tumor micro-environments
or during bacterial infection by matrix metalloproteases, such as MMP-3, MMP-12, and MMP-7(matrix
metalloproteases), and others like cathepsin G, GluV8, pepsin, and IdeS [80]. Mutations in the IgG1 [81],
IgG2 [82], and IgA [83,84] hinge regions can mediate some levels of resistance to such enzymes. Such
mutations can prevent hinge clipping to preserve the Fc effector function of therapeutic Abs in the
inflamed tissue environment.

2. Structure-Based Antibody Engineering

Nobody is perfect, and the same applies to antibodies. Molecular engineering aims to improve the
biochemical and biophysical properties of the antibodies of interest to make them good therapeutics
and convenient research tools. Methodologically, there are two strategies to achieve this goal.
Rational methods are based on structural knowledge derived from X-ray crystallography, Nuclear
Magnetic Resonance (NMR) spectroscopy, and in silico modeling, and typically lead to the generation
of a small set of variants. In contrast to rational, empirical methods are based on generating large
libraries by employing phage, ribosome, or yeast display and rely on screening to select the desired
variants [85]. This section of the review is focused on rational methods to engineer the antigen-binding
function of the Fab arm of the antibody. The enormous progress that has been achieved in modifying
the Fc-related effector function of the antibody has been reviewed recently [86–88] and will be discussed
later in this review.

The availability of the three-dimensional structure of the antibody–antigen complex or even Fab
alone greatly facilitates the design of the antibody variants with improved characteristics. Advances of
X-ray crystallography over the last two decades coupled with the modern molecular biology and
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protein purification techniques have transformed structure determination into a routine procedure that
requires minimal time and effort. Continual adaptations of the downstream process have included
alternative purification schemes [89]. The benefits of the structural knowledge are manifold. For
humanization, it helps to identify the critical positions outside of the complementarity-determining
regions (CDRs) that must be preserved and positions within CDRs that may be replaced. For affinity
maturation, it may point to a residue, which is otherwise unlikely to be considered as a game changer.
For solubility improvement, modifications of the hydrophobic patches on the antibody surface (often
not apparent in the linear sequence) are required.

In addition to crystallography, NMR and recently cryogenic electron microscopy (cryo-EM) have
evolved as complementary techniques to obtain 3-D structures especially of Fab–Ag and Ab–Ag
complexes. In the absence of experimental structural information, homology models are often
considered as a decent alternative. However, despite the obvious development in algorithms and
computer power, the quality of antibody structure prediction, particularly regarding CDR-H3, remains
inadequate, and the results of antibody–antigen docking are also disappointing [90]. While homology
models cannot fully substitute the experimental data, they can initiate the process for in silico design
and evaluation of antibody mutants. We review such applications below.

2.1. Humanization

Historically the first and perhaps the most frequent application of antibody engineering was to
reduce the immunogenicity of therapeutic antibodies of murine origin [91]. A variety of non-human
species, including rodents, chicken, and rabbits, are employed today escape tolerance to obtain
antibodies against human targets. All such non-human antibodies require humanization. The simplest
approach was to make a chimera by combining the variable domains of non-human antibodies with
human constant domains to generate molecules with 70% human content [92]. In many cases, chimeric
antibodies demonstrated reduced immunogenicity but still elicited some human anti-therapeutic
antibody response [93]. To further minimize immunogenicity, a CDR-grafting approach was proposed
by G. Winter and coauthors [94]. The procedure involves the transfer of CDRs from a non-human
(very often murine) “parental” antibody to the scaffold of a human antibody. The method was initially
applied to a murine anti-hapten antibody. The CDRs from the heavy-chain variable region of the mouse
antibody were substituted for the corresponding CDRs of a human anti-myeloma antibody. Following
this experiment, a similar procedure produced a humanized anti-lysozyme antibody D1.3 [95], proving
that CDR grafting can be used for antibodies that recognize protein antigens.

Besides CDR grafting, alternative humanization methods based on different paradigms, such
as resurfacing [96], super-humanization [97], or human string content optimization [98], have been
developed. All of them require the analysis of the amino acid sequence to evaluate the potential
impact of the amino acid substitutions on the antibody structure and function. Typically, a relatively
small number of humanized variants are produced and tested for antigen binding and functional
activity. If the variants fail to meet the functional criteria, a new cycle of design, modification, and
characterization is carried out to improve binding.

First, we consider CDR grafting as the principle method of antibody humanization. The procedure
involves three tasks: (1) Defining the boundaries of the CDRs for grafting, (2) selecting human
sequences to be utilized as framework (FR) donors, and (3) identifying residues within human FRs
that may need to be replaced to maintain antibody binding. Although the tasks may seem consecutive,
they are interrelated, and in practice should be carried out together.

2.1.1. CDR Definitions

Amino acid residues that constitute the CDRs were identified by Kabat [99] based on their
high variability as compared to the other regions of the antibody (Figure 3). By analyzing the first
crystal structures of Fabs, Chothia and Lesk [31] proposed a definition based on the conserved
conformations of the antigen-binding loops named canonical structures. Accumulation of the
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structures of antibody–antigen complexes has led to the Martin CDR definition [100], which considers
the involvement of residues in antigen binding. Symmetrical CDRs, where the N- and C-terminal
residues are opposite each other in the structure, were used for the purpose of canonical structure
classification [38] as implemented in the PyIgClassify database [101]. In comparison to the Martin
definition, CDRs L2, H3, and H1 include an extra one, two, and three residues, respectively, at the
N-terminal end of the CDRs. Universal schemes that are applicable to immunoglobulins, T-cell receptors,
and major histocompatibility complex (MHC) molecules have also gained popularity [102–104].
A comparison of different CDR definitions is presented in Table 1.

Table 1. CDR definitions in Chothia numbering.

CDR Kabat Chothia Martin * PyIgClassify ** IMGT **

L1 24–34 24–34 24–34 24–34 27–32 (M − 5)
L2 50–56 50–56 50–56 49–56 (M + 1) 50–52 (M − 4)
L3 89–97 89–97 89–97 89–97 89–97
H1 31–35 26–32 26–35 (K + C) 23–35 (M + 3) 26–33 (M − 2)
H2 50–65 52–56 50–58 (K − 7) 50–58 51–57 (M − 2)
H3 95–102 95–102 95–102 93–102 (M + 2) 93–102 (M + 2)

* Martin CDRs in comparison to Kabat (K) and Chothia (C). ** PyIgClassify and IMGT CDRs in comparison to
Martin (M).

For the purposes of CDR grafting, the choice of the CDR boundaries is free and not limited by the
common definitions. However, two factors should be considered. First, the CDRs should be as short as
possible to minimize the number of non-human residues. Second, the CDRs should include at least
all residues in direct contact with the antigen. All definitions have advantages and disadvantages in
terms of CDR grafting. The ImMunoGeneTics information system (IMGT) [104,105] rightfully includes
residues 93 and 94 in CDR-H3 as they are very important for the CDR conformation. On the other
hand, the IMGT convention excludes residues 35 and 50 from CDRs H1 and H2, respectively, although
they are often involved in antigen binding. Considering all the pros and cons, the Martin definition
is a good compromise (Table 1). Basically, it combines the Kabat and Chothia definitions and differs
from them only in the heavy chain, where CDR-H1 includes all residues of Kabat and Chothia while
CDR-H2 is seven residues shorter than that defined by Kabat. Those seven residues are in the loop
between β-strands C” and D and are never directly involved in contact with the antigen. In the light
chain, there are no deviations between Kabat, Chothia, and Martin CDR definitions.

Regardless of the choice of CDRs, about 20% of the residues that bind the antigen fall outside
the CDRs [106,107]. Moreover, these residues are at least as important to antigen binding as residues
within the CDRs, and in some cases, they are even more important energetically. Therefore, for CDR
grafting, the CDR definition is a good starting point, but the framework residues interacting with the
antigen must be considered. Typically, for shorter CDRs, more FR residues, and for longer CDRs, fewer
FR residues will need to be considered for back mutations.

Residue numbering schemes evolved in parallel with the CDR identification and aimed at
the correct positioning of insertions and deletions in the antigen-binding loops. Since the Chothia
numbering scheme [32] was based on structural considerations, it represents the best choice and is
widely used in many applications. An advantage of a universal numbering versus sequential is that
all structurally identical positions are numbered identically, which is convenient for alignments and
comparisons. The Chothia numbering of residues is used throughout this review.

2.1.2. Human Germline Selection

The second step in the humanization process is to identify human FR donors. Initially, human
antibodies of a known structure were used regardless of their homology to the non-human antibody in
the so-called fixed FR approach [94,95,108]. Moreover, both VH and VL donors were often selected
from a single antibody to ensure optimal pairing. However, this approach often resulted in a significant
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or even complete loss of affinity and was replaced with a method termed “best fit” [109], where
human VH and VL sequences with the highest homology to the non-human antibody were selected.
Comparison of the fixed FR and best fit strategies showed that the latter yields humanized antibodies
with a higher affinity than variants obtained by the fixed FR method [110]. Another strategy of selecting
human FRs as a template for humanization is by generating consensus sequences [111,112].

Regardless of the method chosen to select human FRs, there are two sources of human
sequences: Mature and Germline. Mature sequences generated by the immune response carry
somatic mutations [113] and therefore are potentially immunogenic. In contrast, human germline
sequences are considered least immunogenic and have been recently used as FR donors almost
exclusively [114].

The human repertoire consists of several dozen germline genes coding VH regions and
approximately an equal number of VL genes, which are divided between κ and λ types [105].
Both heavy and light chain germlines are grouped into families according to sequence similarity.
Among VH germlines, families 1, 3, and 4 are the most ubiquitous. The majority of λ VL germlines fall
into families 1, 2, and 3, whereas the rest are distributed among families 4 to 10. Kappa VL germlines
are almost entirely distributed over three families (1, 2, and 3) except for two genes, IGKV4-1 and
IGKV5-2, which represent families 4 and 5. The sequence identity within families is close to 90% while
it can be as low as 50% for two germlines from different families.

Methods of human germline selection for CDR grafting are varied. One option is to base the choice
on the overall sequence similarity between the non-human antibody and human germline within the
variable domains. A more focused and more common approach considers sequence similarity only in
the FR while neglecting the CDRs. The idea behind this is that homologous FRs provide the same
scaffold for the CDRs and ensure their conformation, while the CDRs themselves are not changed at all
(they are grafted). An alternative approach considers sequence similarity within the CDRs and relies
on the canonical structures that are defined largely, although not exclusively, by the CDR sequence.
The latter method is called super-humanization and will be discussed below.

Typically, a single germline is selected for the entire variable domain, one for VH and one for VL.
However, one may apply a hybrid approach when a donor for each FR is selected independently, so that
the resulting sequence will be assembled from different germlines [115]. This method has an obvious
advantage of more flexibility and a potential for selecting human germlines with higher similarity
score. It is believed, however, that mosaic constructs may exhibit impaired stability when compared to
intact germline sequences owing to suboptimal VH-VL pairing and potential clashes in the core of the
variable domain. Residues that come from different FRs may appear mutually incompatible when
composed from different germlines.

A combination of sequence and structural criteria in the selection of human germlines was
utilized in the humanization of mouse anti-glycoprotein VI Fab ACT017 developed for the treatment
of arterial thrombosis [116]. The choice of templates for VH and VL was based upon the following four
independent criteria: (1) Human germline sequences most similar to mouse germlines of the parental
antibody; (2) high sequence identity and identical canonical structures of the CDRs; (3) high sequence
identity and closely related CDR canonical structure; and (4) the same antibody template for both
V-domains even at the cost of a less optimal template for one of the chains. Additionally, the human
myeloma antibodies NEW (for VH) and REI (for VL) were selected because they are well-characterized
in terms of stability and expression and they are frequently used in a fixed-FR strategy of humanization.
Owing to some overlapping among the best candidates selected by applying these criteria, there were
only 4 variants for each chain, resulting in a total of 16 VH-VL pairs. The 16 Fabs were expressed and
evaluated for antigen binding, and only four of them showed the desired level of binding. One of the
binders was based on bevacizumab, the FR donor for both VH and VL according to the selection criteria
(4). The requirement of the identical canonical structure worked well only for VH and produced the
best variant, which had the light chain FR from human antibody REI. Curiously, none of the variants
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using the VH template with the human germline most like the mouse parent retained significant
binding activity.

2.1.3. VH–VL Pairing

When selecting suitable human germlines for the heavy and light chains, considerations of the
VH–VL pairing is important from two points of view. Firstly, selected germlines should form a
stable Fv, and secondly, the mutual orientation of the VH and VL domains should correspond to that
observed in the parental antibody. While the first requirement seems obvious, the second is debatable.
A completely opposite reasoning, namely that the VH–VL interface should preserve the interactions of
the donor FRs, was indeed utilized (without success) in some studies [117].

The importance of maintaining the VH–VL orientation during the humanization process was
demonstrated in the study of anti-lysozyme murine antibody HyHEL-10 [118]. Following humanization,
the affinity dropped 10-fold. Structural analysis indicated that all interactions between antibody and
antigen were conserved; however, the relative orientation of VH and VL had changed. Amino acid
differences between the mouse and humanized mAbs were then mapped onto the structure. In two
positions in the FR of the heavy chain, there were rather unusual residues K39 and Y47 in the parental
antibody that were replaced during humanization by the conserved Q and W, respectively. A single
back mutation W47Y in the humanized mAb completely recovered the affinity. The double mutant
W47Y/Q39K showed a further two-fold improved affinity. The crystal structure of the final variant
confirmed the VH–VL orientation to be exactly as in the parental antibody.

Early studies have established the promiscuous nature of VH and VL pairing [119–121].
The remarkable ability of the human antibody repertoire to adapt to a specific target by generating a
highly diverse panel of antibodies was recently demonstrated by analyzing antibodies raised against
a single protein, B-lymphocyte stimulator [122]. Over 1000 antibodies, all different in amino acid
sequence, have utilized 42 functional VH, 19 λ, and 13 κ VL germlines. Analysis of the sequences
revealed that a given VH sequence can pair with many light chain sequences of both λ and κ types.

Another and much broader study included over 800 different antibodies generated against 28
clinically relevant antigens and isolated from human B cells from 160 donors [123]. Nearly all possible
functional germlines (45 VH, 28 λ VL, and 30 κ VL) were represented in the experimental set. The V
gene usage indicated no strong bias toward any VH–VL pairing. However, the VH1-λ VL1 germline
family pairings were preferentially enriched and represented a remarkable 25% of the antigen-specific
selected repertoire.

Somewhat contradictory to previous observations was the conclusion from the analysis of a large
dataset of paired light and heavy chains from the Kabat database (Kabat et al., 1991) that VH–VL
pairing does not occur at random [124]. Apparently, germline pairing preferences do occur in human
antibodies, but only for a small proportion of germlines. The VH1 family shows a strong preference
for VK3. On the other hand, no correlation was found between the germline pairing and the VH–VL
packing angle.

Although the total number of human germlines and hence the VH–VL pairs is quite limited,
relative affinities for each possible pair have not been tabulated. A major reason is that CDR-H3 forms
a significant part of the VH–VL interface and therefore affects the pairing potential. In other words,
the pairing propensity of any two given germlines depends to a large extent on the sequence and
conformation of CDR-H3, which is highly variable. However, for a given CDR-H3 (as is the case in
humanization), the differences between various pairings may be substantial.

An interesting, albeit limited, study of VH–VL pairing has reported thermostability values of
a panel of 16 Fabs that were produced by all combinations of four VH germlines and four VL (κ)
germlines with a fixed CDR-H3 [12]. It was found that the melting temperatures (Tm) of the Fabs
differed by more than 20 degrees. For each given light chain, the Fabs with germlines IGHV1-69 and
IGHV3-23 are substantially more stable than those with germlines IGHV3-53 and IGHV5-51. Germline
IGKV1-39 provides a much higher degree of stabilization than the other three light chain germlines
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when combined with any of the heavy chains. These results indicate that the selection of the right
VH–VL pair is of prime importance during humanization.

For a given CDR-H3, the task of selecting the optimal VH–VL germline pair is reduced to the
preservation of residues at the VH–VL interface. This is an additional consideration for human germline
selection besides the sequence similarity to the parental antibody. Since the CDRs are grafted as they
are, only a small set of FR positions should be considered. These positions may be deduced from a
simple analysis of the VH–VL interface in crystal structures. The minimal set of VH–VL interface
residues includes seven residues from VH and eight residues from VL (Figures 7 and 8). Besides two
residues flanking CDR3, all other residues are in FR2 in both VH and VL. Most of these residues are
conserved between human and mouse germlines and across human germlines. However, in those cases
when they are different, either because of human vs. mouse differences or due to somatic mutations,
the so-called back mutation may be required, as discussed below.
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Computer programs predicting the VH–VL packing may provide some guidance in finding
the best pair of germlines. Several tools have been developed recently along with the realization
of the VH–VL orientation as a key parameter in antibody humanization and antibody modeling in
general. A straightforward but effective approach has been implemented by Narayanan et al. [125],
who used side-chain rotamer sampling for the interface residues followed by molecular mechanics
energy calculations. The original main-chain conformations were from the crystal structures. A similar
approach was implemented in the Rosetta Antibody modeling software [126].

A machine-learning approach to predict the VH–VL packing angle has been developed and trained
on sets of interface residues taken from 567 crystal structures [127]. Rather than selecting interface
residues for predicting the packing angle, a genetic algorithm was used to perform feature selection.
It was designed to select a maximum of 20 interface positions that were optimal in training the neural
network. Thirteen positions were identified as the most influential in determining the packing angle.
The results showed an approximately normal distribution of errors with a half width at half maximum
of about 2◦, which is within the error observed in the crystal structures of antibodies [54].

Yet another approach for determining the VH–VL orientation [128] is also based on the identification
of important residues. To describe the VH–VL orientation, six measures (five angles and a distance)
were used. Correspondingly, six sets of key positions were identified, with few overlaps between them,
35 positions in total (24 in VL and 11 in VH). To consider so many positions in germline selection is
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impractical. Instead, the VH–VL packing orientation in the humanized variant may be predicted with
one of the computational tools and compared to that of the parental antibody.
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2.1.4. Back Mutations

Straightforward CDR grafting may result in reduced target binding even if the VH–VL interface
residues are preserved. This problem often arises when non-human CDRs and human FRs are mutually
incompatible. Therefore, any CDR grafting protocol must include a step to identify FR positions that
are critical for maintaining the CDR conformation. In germline selection, these critical positions should
have higher priority than the overall sequence similarity because of their direct impact on the CDR
conformation. If a non-human residue in a critical position cannot be preserved because there are no
such human sequences, one usually applies the so-called back mutation, i.e., a mutation of a residue in
the human FR to the amino acid that occurs in the non-human parent. Such a mutation reduces the
humanness score of the resulting variant, but the change should improve the binding affinity.

Foote and Winter [129] identified 30 residues underlying and in direct contact with the CDRs
that potentially influence CDR conformations. These residues constitute the so-called Vernier zone.
Four of them, heavy chain residues 27–30, are considered part of CDR-H1 in the Chothia, Martin,
and IMGT definitions (Table 1). The remaining 26 residues are divided equally between VH and
VL (Figures 7 and 8). One of the most recognized examples of a Vernier zone residue is position
71 of the heavy chain that defines the canonical structure of CDR-H2 [130]. Humanization of a few
mouse antibodies, including anti-lysozyme mAb D1.3 [95], anti-acetylcholine receptor mAb 198 [131],
and anti-tumor-associated glycoprotein mAb B72.3 [132], illustrates the importance of preserving the
original residue in this position. However, this is not always the case. For instance, residue 71 was
not a major factor in the humanization of anti-cytomegalovirus mAb 37 [133]. Similarly, substitution
of Arg for Ala71 during humanization of anti-tissue factor mAb 10H10 was also well tolerated [134].
Hence, one may conclude that the importance of each critical residue depends on the involvement of
different CDRs in antigen binding.

Unfortunately, it became a common practice to back mutate most of Vernier zone residues, just to
reduce the possibility of a negative impact of human residues on binding [135,136]. However, this will
inevitably add several ‘non-human’ residues to the humanized antibody. Together with CDRs, this
may amount to 40% of residues in the variable domains of the antibody, which can hardly be called
human. Therefore, a careful analysis of the importance of each Vernier zone position in the context
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of given CDRs and antibody–antigen interactions is the cornerstone of the humanization process.
The availability of the crystal structure of the antibody–antigen complex greatly facilitates the design
of humanized variants as it instructs on the FR positions that are indeed critical for antigen binding.

Computer modeling may to a certain extent replace the experimental structure, particularly in
the regions at the periphery of the binding site where germline sequences and canonical structures
dominate the landscape. The central zone around CDR-H3 remains problematic for accurate modeling,
which was confirmed by the latest antibody modeling exercise [54]. Besides the limitations of antibody
models, the lack of information on the CDR involvement in antigen binding often leads to an excessive
number of back mutations in the humanized antibodies. To avoid such outcomes, each potentially
critical position should be tested for back mutation and only those mutations that affect binding should
be incorporated into the final antibody.

Back mutations may be applied not only to restore the binding affinity but also to improve the
expression of the humanized variants. In the course of humanization of anti-lysozyme scFv F8, it was
noticed that FR substitution of Y90F in the VH domain dramatically reduced the bacterial expression of
all variants [137]. The back mutation in this position restored the expression and yielded a stable and
fully functional antibody. Alternatively, there have been efforts to minimize the affinity of certain Fab
domains by introducing more germline sequences [138]. This has been used to increase the potential
toxicity of some binding arms.

2.1.5. Deimmunization

While some positions in FRs may require back mutation, several positions within CDRs may
be converted to human germline residues when they are not involved in the interactions with
antigen or they do not influence the CDR conformation. There is no need to keep non-human
residues in such neutral positions. This approach was used for the humanization of three mouse
antibodies targeting CD25, vascular endothelial growth factor (VEGF), and tumor necrosis factor
alpha (TNFα) [139]. Successive and iterative explorations of the human germline repertoire using
semi-automated computational methods allowed the selection of functional humanized mAbs with the
highest level of humanness. The resulting antibodies retain the potency of the corresponding chimeric
mAbs and have in vitro activity comparable to that of their respective marketed drugs, daclizumab,
bevacizumab, and infliximab.

The idea of incorporating human germline residues into the CDRs is related to the finding
that CDRs are likely the only segments in humanized and fully human antibodies to contain CD4+

T-cell epitopes [140]. Analysis of a set of eight humanized antibodies representing different VH
and VL regions from different genomic segments and affinity maturation processes indicated that
prominent CD4+ T-cell epitopes are found only in CDRs and never in FRs. The immunogenic potential
of the antibodies could be reduced while retaining their binding properties by incorporating just
one or two amino acid substitutions within each T-cell epitope. The approach, which is termed
deimmunization, may be considered as complementary to back mutations. It was successfully applied
during humanization of an anti-prostate-specific membrane antigen mAb J591 [141], a therapeutic
mAb specific for the protective antigen from Bacillus anthracis [142], and an antibody against the αv
subunit of human integrin [143].

A structure-guided deimmunization method, called EpiSweep, was developed by Parker et al. [144].
The algorithm identifies sets of mutations in potentially immunogenic peptide fragments making
optimal trade-offs between structure and immunogenicity, embodied by a molecular mechanics energy
function and a T-cell epitope predictor, respectively. Although the program was developed for any
therapeutic protein, apparently it may be used specifically for deimmunization of antibodies.

Regarding terminology, some authors consider chimeric antibodies with human constant domains
as deimmunized antibodies [145]. We use this term here for a humanized antibody that was additionally
modified to enhance the human content.
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2.1.6. Resurfacing

An alternative way of reducing immunogenicity risk of the humanized antibody is to replace only
the surface residues in the non-human antibody with the residues present in human germlines [146].
Contrary to CDR grafting, resurfacing retains the non-exposed residues of the non-human antibody.
This procedure is expected to eliminate potential B-cell epitopes while minimizing the perturbation of
residues determining the antigen-binding properties of the antibody.

A systematic analysis of antibody structures was performed to determine the relative solvent
accessibility distribution of residues in murine and human antibodies [96]. It appeared that residues
in identical positions on the surface of human and murine variable domains are conserved with 98%
fidelity across species. Thus, very few amino acid changes are needed to convert a murine Fv surface
pattern to that of a human Fv surface.

The method was applied to two murine mAbs targeting CD56 and CD19 [147]. Two different
procedures for selecting a human sequence were compared. For one mAb, a database of clonally
derived human VL-VH sequence pairs was used while for the other, sequences for VL and VH were
independently selected from the Kabat database [148]. Both resurfaced antibodies retained the affinities
for their cell surface ligands.

Although most humanization projects in recent years have employed some version of the
CDR-grafting method, resurfacing is still in use. For example, to reduce immunogenicity for
clinical applications, mouse anti-CD34 mAb was humanized using the resurfacing approach [149].
The structural model was built using templates from the PDB to identify solvent-exposed positions
for amino acid replacements with the threshold set at 30%. There were 28 solvent-accessible residues
in VH and 35 in VL. Human germline sequences with the highest identity to mouse variable regions
were identified, which led to amino acid substitutions in only four FR positions in VH and in five FR
positions in VL. The resulting mAb retained the biological functions of the mouse mAb.

Similarly, a murine mAb, which specifically recognizes the pathogenic form of the prion protein,
was resurfaced [150]. The design was based on sequence alignments and computer modeling and
resulted in an scFv version bearing 13 mutations as compared to the murine parent. The deimmunized
antibody demonstrated unaltered binding affinity and specificity. This is not surprising since resurfacing
introduces a minimal number of mutations that are located on the surface of the molecule and are
unlikely to cause conformational changes in the variable domains. Therefore, retaining affinity is
virtually guaranteed, which is not the case in the CDR-grafting humanization. However, the amino
acid sequence of the variable domains remains essentially non-human and may present potential
epitopes for MHC class II molecules regardless of their surface exposure. Presentation of the epitope
peptides to T cells may cause their activation, leading to the induction of signaling pathways [151].

2.1.7. Super-Humanization

Human FRs for CDR grafting may be selected in two different ways, by the highest sequence
similarity in the FRs or within CDRs. In the second approach, the FR homology is irrelevant. This method
was applied to the humanization of murine anti-CD28 antibody and was called super-humanization [97].
The donor FRs were selected from the human germline gene repertoire based on CDR canonical
structures. The super-humanized antibody exhibited a 30-fold loss in affinity.

Another example involving the super-humanization of the murine anti-lysozyme mAb D1.3
was relatively successful. The affinity loss of super-humanized D1.3 was only six-fold [152]. In a
final example, the application of the method to the murine mAb 1A4A1, which was raised against
Venezuelan equine encephalitis virus, yielded an antibody that retained antigen-binding specificity
and neutralizing activity [153]. However, given the mediocre results of the method, it has not
gained popularity.

It should be noted that the term super-humanization has also been used in a different sense,
particularly when human or simian antibodies contained somatic mutations in FRs and were modified
to increase their humanness, as measured by, e.g., the germinality index [154]. Obviously, no CDR
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grafting was needed in those cases, and super-humanization simply reflected a higher human content
of the engineered antibody.

2.1.8. Humanness Optimization

The humanness of the antibody can be assessed by any indicator that is able to distinguish human
from non-human sequences. The human string content (HSC) score evaluates the proportion of human
germline residues within a given sequence [98]. It can be calculated for a peptide in the target sequence
by counting the number of residues identical to their counterparts in the most similar aligned peptide
from a human germline. The validity of the HSC score was confirmed by analyzing 513 murine, 32
chimeric, 61 humanized, and 279 human antibody sequences from the IMGT database [155]. Human
and humanized sequences produced significantly higher HSC scores when compared to murine
and chimeric antibodies. Interestingly, the light chain scores were higher, perhaps due to relatively
less diversity among light chains than among heavy chains. The HSC may be used for antibody
humanization by maximizing the score rather than using a global identity measure to generate multiple
diverse humanized variants. The method was successfully applied to the humanization of four
antibodies with different antigen specificities [98]. The resulting variable domains differ fundamentally
from those of CDR-grafted antibodies since they are immunologically more human because of being
derived from several discrete germline sequences.

Because HSC optimization derives local information from multiple germlines, consideration of
three-dimensional information is prudent to avoid clashes. A computational filter that screens for
mutual compatibility of different fragments, called analogous contact environments (ACE), evaluates
structural patches of amino acids for precedence in a database of antibody sequences [155]. For a given
position, the structural precedence score measures the degree of match, weighted for distance and
similarity, to the most homologous patch in the database. Averaging over all residues provides the
global structural precedence for the sequence. Although a low precedence value does not necessarily
mean low structural viability, a higher precedence value indicates that similar structural environments
are sampled in the database, suggesting that the test sequence is more likely to behave favorably.

The humanness scores that are based on pairwise sequence identity between the sample and a set
of germline human sequences may consider the average similarity [156], or the average among the
top 20 sequences [157], or the highest similarity over windows of 9 residues [98,155]. In a different
approach [158], the score function accounts both for local preferences and for pair correlations between
residues at different positions. The method does not distinguish CDRs from FRs, which may be a
plus since the latter may contain antigen-binding residues. Moreover, the relationship between the
humanness score and the observed immunogenicity in patients was also considered [159].

With the growing wealth of sequence databases, statistical-inference methods could become an
increasingly relevant tool, with a range of applications well beyond antibody humanization. Within a
humanization protocol, the advantage of this approach over CDR grafting is that it proposes a set of
candidate sequences, at increasing distance from the non-human parent toward the highest humanness
score, instead of requiring the introduction of arbitrary back mutations.

2.2. Lambda to Kappa Chain Switching

Upon humanization, the type of the light chain of the parental antibody is usually not changed,
i.e., if it was λ in the non-human antibody, the FR for a humanized variant is selected from the human λ
repertoire. In some situations, switching the light-chain type may provide certain benefits. For instance,
the production of bispecific antibodies from two mAbs might involve a purification step, which could
be easily optimized if the mAbs contain light chains of different classes.

Technically, there are several significant differences between κ and λ chains that complicate the
task. One is a deletion of a residue at position 10 in λ that is present in κ. Another is a different set
of canonical structures for CDR L3, which are longer in λ chains and lack a conserved cis-proline at
position 95. Also, λ CDR L1s differ from those of κ by being longer and fold into a helical structure.
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The overall sequence similarity between κ and λ germlines is below 50%. However, the FRs sequence
similarity of around 60% of identical residues is higher than between some κ sequences (e.g., IGKV4-1
and IGKV5-2, which share only 51% identity in FRs). More importantly, all eight residues at the VH–VL
interface are conserved between κ and λ types (Figure 8). Therefore, light-chain type switching seems
feasible, and this has been confirmed in a few reports.

As part of a bispecific antibody, the Fab arm directed against FcγRIII was humanized by CDR
grafting [117]. In a first attempt, the murine λ VL was converted to a humanized λ chain, which led
to a complete loss of antigen binding and extremely poor folding efficiency. Initial humanization
applied a fixed-FR approach using the human myeloma protein KOL as the FR donor, which had
only 51% to 54% identity to the mouse antibody. Despite several back mutations in the Vernier zone,
the strategy failed. Hence, the CDRs were transplanted onto a human κ light chain using the same
strategy. Humanized anti-HER2 mAb 4D5, characterized by the VH subgroup III and VL subgroup I,
was selected as an FR donor. Residues in positions 46, 49, 66, and 71 in VL and 71, 73, and 78 in VH
were back mutated for various reasons. This resulted in a functional Fab, yet with a 100-fold decreased
antigen affinity, which was subjected to affinity maturation through random mutations in both VH
and VL. The optimized Fab exhibits an affinity within a factor of two from that of the original murine
antibody. This required nine mutations, six of which are in VH and three in VL. Interestingly, most of
the mutations occur at the VH–VL interface. Even if the humanization strategy was not optimal, it
demonstrated that switching λ to κmay be successful.

Another attempt of the λ-to-κ switch occurred during optimization of an anti-GCN4 murine
scFv [160]. The CDRs were grafted onto the FR of another murine scFv, which was selected due to its
high stability. In this process, the CDRs of the parental λ VL were transferred to the FR of the donor κ
VL. Homology modeling of the designed variant revealed some structural inconsistencies, particularly
a potential clash between CDR L1 and loop 66–71 (sometimes referred to as the DE loop or CDR4).
Therefore, this loop was back mutated to the original sequence. Additionally, eight residues in VH
were also back mutated. The resulting scFv was significantly more stable than the original, but lost
binding by three orders of magnitude. Back mutation of seven residues at the VH–VL interface to
restore the proper orientation of the domains further enhanced the stability of the construct, which still
had an order of magnitude reduction in the original scFv affinity.

A successful case of λ-to-κ conversion to improve the thermodynamic properties of scFv was
reported recently [161]. The heavy chain of this scFv originated from the IGHV1-69*01 germline,
whereas the light chain appeared to contain a fusion of two genes, IGLV3-19*01 and IGLV1-44*01,
likely resulting from PCR aberration during library construction. The idea to replace the λ light chain
by κ IGKV3-20 was based on the observation that this germline commonly pairs with IGHV1-69 to
give highly expressed stable antibodies [162]. To guide the design process, a homology model of
the converted scFv was constructed that revealed a potential clash between CDR L1 and loop 66–71.
Analysis of a large set of PDB structures confirmed that this problem is typical for a λ-to-κ conversion.
To facilitate CDR grafting, the DE loop from the original antibody was retained. No back mutations
were necessary in VH. The resulting scFv showed increased thermostability and expression levels
while retaining the binding affinity to the target. The scFv variant with the κ DE loop was less stable
while also retaining binding.

These results indicate that λ and κ chains may be swapped without compromising the functional
properties of the antibody. This strategy may be applied in antibody humanization or may prove
useful for optimizing the biophysical properties of therapeutic candidates.

2.3. Affinity Maturation

Natural antibodies, both human and non-human, often do not possess the binding properties
required for their therapeutic applications. This appears to be a consequence of the affinity ceiling that
characterizes the mammalian immune system and B-cell responses [163,164]. Increasing the binding
affinity is an important and almost inevitable step in the development of the lead candidate since it is
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related to the dose needed for treatment and the therapeutic efficacy. Different approaches, tools, and
strategies are available and have been validated through the engineering of antibodies directed against
various antigens. All of them can be divided into two groups according to the process of generating
antibody variants. One is the rational design of the variants, followed by their expression in the system
of choice. The other is the construction of a library of variants where several positions are diversified,
followed by their display in a system of choice with the appropriate selection method. Owing to the
large number of variants in a library covering the entire combinatorial space, the latter method is most
commonly used for affinity maturation. In cases when only a few positions and a few amino acids are
to be tested, perhaps the former approach may fulfill the task as it is fast and inexpensive. Whichever
method is used, structure-based computational design may facilitate the process by in silico evaluation
of the candidates to minimize either the library size or the number of mutants to be expressed.

A high-resolution structure of the antibody–antigen complex allows detailed analysis of the
antibody–antigen interactions and greatly facilitates the design of affinity-enhanced variants. Even the
structure of the Fab alone may instruct the selection of the most promising positions for mutagenesis.
There are new developments of using NMR relaxation dispersion and hydroge-deuterium exchange
experiments to map out regions for optimization of the affinity [165]. In the absence of any experimental
information, computer modeling may fill the gap to a certain extent, and several successful examples
based on theoretical models are discussed below.

First, we consider affinity maturation by structure-based rational design of the antibody variants
with improved side chain packing and electrostatic interactions. A case in point is the improvement
of the binding affinity of the anti-integrin antibody VLA1. Engineering increased the affinity by an
order of magnitude primarily through a decrease in the dissociation rate [166]. Inspired by the crystal
structure, a diverse set of single mutations (>80 variants) at the antibody–antigen interface were
generated. Mutations were made to nearly every antigen-contacting residue using suggestions from
computational methods. The most promising mutations were combined into a quadruple mutant with
two mutations in the light chain and two in the heavy chain, and its crystal structure confirmed the
predicted interactions.

A similar approach that focused on electrostatic interactions was employed to design single
mutant variants with improved affinity. Selection criteria based on calculations of the improved
binding electrostatics resulted in a success rate for single mutations of over 60%. By combining multiple
designed mutations, the affinity of antibodies specific for various antigens was improved 10-fold for
the anti-epidermal growth factor receptor antibody, cetuximab, and 140-fold for an anti-lysozyme
antibody D44.1, achieving 52 and 30 pM affinity, respectively [167,168].

While antigen-contacting residues at the center of the binding interface may be an intuitive choice
for mutations, many studies indicate that targeting peripheral residues may be more promising for
affinity maturation. The key residues at the center of binding sites are usually hydrophobic and tightly
packed and already well optimized for specific antigen interactions. In contrast, the surrounding
residues are often hydrophilic and solvent exposed. Incorporating charged residues at the periphery
of the interface may improve long-range interactions.

In the following example, the design strategy was based on two assumptions: (1) Mutation
positions should be at the periphery of the antibody–antigen interface, and (2) substitutions should
be those that frequently occur during affinity maturation in vivo. To improve the affinity of the
therapeutic mAbs trastuzumab and rituximab, in silico models for a series of mutants were generated
using crystal structures of the complexes, Monte Carlo-simulated annealing, and molecular dynamics
simulation [169]. Single mutations at each of the 60 CDR positions to the 20 common amino acids were
ranked by the total calculated binding free energy. The top 11 mutants were tested experimentally and
only two of them showed improved binding. Alternatively, when only amino acids with a high usage
in the binding sites of matured antibodies were considered for mutations, the success rate was 60%
to 70%.
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One of the most striking findings in this study was that affinity-enhancing mutations tend to
cluster around positions where in vivo somatic mutations often occur. It is known that somatic
hypermutation does not occur randomly within immunoglobulin V genes but is preferentially targeted
to certain nucleotide positions, termed hotspots [170]. This process mainly results in the introduction
of mutations that are located at or very near A/G|G|T/C|A/T and TAA sequences [171,172]. The results
of the study indicate that germline hotspot sequences may point to the mutation sites in the affinity
maturation process.

The combination of in silico calculations and thermodynamic analysis proved to be an effective
strategy to improve the affinity of an anti-MCP-1 mAb 11K2 [173]. Amino acid substitutions
were evaluated in each of the 62 CDR positions of 11K2, and all 20 amino acids were employed.
Based on the crystal structure of 11K2 in complex with MCP-1, a virtual library of mutations to
identify antibody variants of potentially higher affinity was generated. Each model of the mutated
antibody–antigen complex was optimized by a combination of simulated annealing and molecular
mechanics minimization. The variants were ranked by their electrostatic and van der Waals interaction
energies and the most promising candidates were tested in vitro. Only mutations in the light chain of
the antibody were effective at enhancing its affinity, suggesting that in this case, the interaction surface
of the HC is not amenable to optimization. The single mutation with the highest affinity, N31R in CDR
L1, yielded a variant with a five-fold higher affinity with respect to that of the wild-type antibody.

All these studies are examples of the fixed-backbone approach of computational design, where
the backbones are not altered beyond energy minimization. Incorporating backbone flexibility in
computational design allows conformational adjustments that may broaden the range of predicted
low-energy sequences. In some cases, backbone movements are critical, for instance, when dealing
with allosteric effects resulting from the changes in non-contacting residues. A comparison of different
protocols for modeling backbone flexibility was performed in the affinity maturation study of the
therapeutic mAb, trastuzumab [174]. An in silico approach based on the crystal structure of the
trastuzumab complex with its target human epidermal growth factor receptor 2 (HER2) identified a key
mutation D98W, which led to a three-fold affinity improvement of the already subnanomolar antibody.

Although the amino acid composition of protein–protein interfaces is quite diverse, there is
a significant bias toward specific residues [175]. It was demonstrated that high-affinity antibodies
could be obtained from restricted combinatorial libraries in which CDR positions are diversified
to a combination of as few as two amino acids, Tyr and Ser [176]. Encouraged by these results,
Inoue et al. [176] applied this binary code to the affinity maturation of an anti-lysozyme camelid
single-domain antibody. They also used in silico screening for the selection of potential amino
acid replacements. The scoring function was based on the interaction energy (IE) and electrostatic
complementarity (EC) criteria [177]. When introducing mutations into CDR1 and CDR2, conserved
amino acids were preserved, so that only about half of the residues were mutated to Tyr or Ser, giving
a total of 512 (29) theoretically possible mutants. Several variants that showed improved IE and EC
parameters were tested for binding. The best of them exhibited a five-fold improvement in KD values
from 2.8 to 0.5 µM. Then, based on the crystal structure of the antibody–antigen complex, two residues
in CDR2 in contact with the Ag were mutated to either Arg or Asp and tested for binding. This round
yielded a variant with a KD value of 0.14 µM, i.e., 20 times lower than in the parent mAb.

The design of mutants with improved affinities relies on the 3-D structure of antibody–antigen
complexes. A variety of structure-modeling tools can help in the absence of experimental data.
The following examples emphasize the value of computer modeling for affinity maturation of antibodies.
They emphasize the use of computational docking, the process of predicting the conformation of a
complex from its separated components.

In the first example, the binding of two antibodies to the stalk region of influenza hemagglutinin
was modeled by using only the structure of the target protein and compared to the known experimental
structures of the complexes [178]. This study demonstrated that some of the computational
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docking predictions can be very accurate, but the algorithm often fails to discriminate them from
inaccurate solutions.

In a second example, the binding affinity of an anti-hepatitis B virus antibody was improved.
For this study, both the antibody itself and the antibody–antigen complex were modeled (by docking
the 17-residue peptide) [179]. Inspection of the model instructed the design of point mutations in the
putative paratope, and two mutations, Y96S in VL and D98S in VH, were predicted to have the largest
drop in free energy. The double mutant indeed exhibited a 10-fold increase of affinity.

While in silico design of antibody mutants may be successful, combinatorial libraries provide a
common method to improve affinity. The selection of positions for diversification and the choice of
amino acids for mutations are two principal tasks in a library design. As evidenced in the literature,
the best results may be achieved if these tasks are fulfilled by a structure-guided approach.

A very convincing example of a stepwise structure-guided affinity maturation procedure was
reported for anti-gastrin scFv TA4 [180,181]. An impressive 454-fold improvement in affinity was
obtained by a combination of walking randomization [182] and a model-based approach that was
achieved without experimental 3-D information. A structural model of the antibody–antigen complex
was generated by docking a seven-residue peptide representing a linear epitope into the model of the
antibody. The docked complex was refined by molecular dynamics, which indicated that the peptide
adopts a helical conformation. Based on this model, four positions in CDR-H3 and five positions in
CDR L3 were selected for randomization. The first of the libraries, that based on CDR-H3, produced
a double mutant with an almost 10-fold improved affinity. The second library based on this mutant
and CDR L3 mutagenesis produced two variants with about a two-fold affinity improvement over the
double mutant. Again, the 3-D model guided the selection of positions in other CDRs for further affinity
improvement. This procedure yielded several variants, with the affinity in the low nanomolar range.

Analysis of the binding surface of the antibody and assessment of the relative involvement of
CDRs in target binding facilitates the strategy for library design. Depending on the CDR length and the
number of interactions with the antigen, central CDRs H3 and L3 may provide the best opportunities
for affinity maturation. This was the case in the development of an anti-VEGF scFv isolated from a
phage-displayed human antibody repertoire [183]. Two phage display libraries were constructed by
diversification of CDR-H3 and CDR L3. A competitive phage-selection strategy in the presence of the
parental scFv as a competitor was used to eliminate low-affinity binders. High-affinity variants were
retrieved from both libraries. An optimized VL variant was designed and constructed by combining
recurrent replacements found among selected variants into a single molecule, resulting in an additional
affinity increase. Further affinity improvements were achieved by combining this optimized VL with
the best VH variants. The final variant showed an 18-fold affinity improvement over the parental scFv
and exhibited an enhanced potency to block the binding of VEGF to its receptor.

An impressive example of affinity improvement was carried out for the anti-complement protein
receptors C5aR1/2 mAb [184]. The affinity of the parental antibody was improved by randomizing
amino acids in CDR-H3 and CDR L3 using a phage library displaying scFv fragments. Following
recombination of the two libraries and screening to identify additional synergistic increases in affinity,
the best variant was selected with four mutations in CDR-H3 and two mutations in CDR L3. This
variant binds its target with an affinity in the low pM range, demonstrating a gain of three orders of
magnitude with respect to the parental antibody affinity.

Quite often, central CDRs, particularly CDR-H3, are too heavily involved in the interactions with
the antigen, so that CDR-H2, and to a lesser extent CDRs H1 and L1, may be the focus of library design.
Increasing the number of diversified positions in each library and expanding the selection to all CDRs
inevitably results in a lower coverage. However, in certain cases, this approach may also be successful.
Simultaneous mutagenesis of all six CDRs in a non-human primate antibody that neutralizes anthrax
toxin was carried out using phage display technology [185]. The library contained 5 × 108 variants,
with each variant containing an average of four mutations. The best variant selected from the library
showed a 19-fold affinity improvement to 180 pM.
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While selecting the positions for mutagenesis to improve binding, one may consider not only
the paratope residues or surrounding residues in the Vernier zone but also positions in the core of
the variable domains or even at the elbow between the variable and constant domains. Exactly this
approach was realized during the development of the anti-tumor growth factor beta subunit 1 (TGF-β1)
antibody metelimumab [186]. Upon conversion from the parental single-chain variable fragment (scFv)
to IgG4, the binding affinity dropped by 50-fold. Following a hypothesis that this was due to decreased
conformational flexibility of the IgG, insertion mutants in the elbow region were designed and screened
for binding and potency. The insertion of two glycines in both the heavy chain and light chain elbow
regions restored the binding affinity. The crystal structure of the mutant confirmed that the insertions
provided enough flexibility for the variable domains to extend further apart than in the wild-type Fab,
allowing the CDRs to make additional interactions not seen in the wild-type Fab structure.

2.4. Specificity

Conventional antibodies are monospecific and typically recognize a single antigen exclusively,
owing to the binding of non-linear epitopes. Some antibodies do exhibit multi-specificity, particularly
if a very similar epitope is present on more than one antigen. Typical examples include species
cross-reactive antibodies that recognize orthologous proteins in different species [187,188] or antibodies
that interact with different members of a conserved protein family [189,190]. The species specificity has
often been a setback in assessing antibody utility as a therapeutic agent in various animal models. The
same combinatorial techniques that are used to improve antibody affinity have been used to modify
their cross-reactivity [191,192]. Specificity engineering also heavily relies on in silico design strategies
and the availability of experimental structural information [193].

Using the crystal structure and molecular mechanics-based energy function, cross-species
specificity was introduced into the antibody that inhibits cancer-associated serine protease MT-SP1 [194].
The mAb exhibits a KD value of 12 pM towards human antigen but only 4 nM towards the mouse
ortholog. There are only three residues on the protease surface that both make contact with the antibody
and that are different between the human and mouse versions of the enzyme, but these residues are
not critical for inhibition. Computational design was used to predict a suite of mutations that could
improve the affinity to the mouse antigen. Mutations were introduced at six positions within 5 Å from
these three epitope residues. Each of the selected residues, two in CDR-H1 and four in CDR-H3, was
mutated in silico to all possible amino acids, and for each substitution, the change in binding energy
was calculated. Most of the mutations were predicted to be neutral. Out of eight candidates tested
experimentally, one variant, T98R, improved the affinity by an order of magnitude without any effect
on the binding of the human ortholog.

The development of a promising therapeutic mAb targeting quiescin sulfhydryl oxidase-1 (QSOX1)
was hampered by the lack of reactivity against the mouse QSOX1 ortholog [195]. To understand the
molecular basis for species restriction, the crystal structures of mouse QSOX1 alone and human QSOX1
in complex with the Fab fragment were determined. Structural differences responsible for the species
specificity of the antibody were identified and used for the construction of small libraries, in which
up to four positions near key epitope positions were diversified. After several rounds of panning
and the combination of mutations from different libraries, the affinity toward mouse QSOX1 was
improved by at least four orders of magnitude, reaching the low nanomolar range and matching the
affinity toward human QSOX1. The crystal structure of the re-engineered variant complexed with its
mouse antigen revealed that the antibody accomplished dual-species targeting through altered VH–VL
domain orientation and, most importantly, through rearrangement of the CDR-H3 backbone because
of a quadruple mutation YYGS to SMDP.

In another study, a structure-based strategy was implemented to develop an anti-CD81 mAb
to enable animal model testing in cynomolgus monkeys [196]. The antibody would bind tightly to
human CD81 (KD vakue of 0.9 nM) but exhibited no detectable binding to cynomolgus (cyno) CD81.
The crystal structure of the scFv was determined in complex with human CD81 and used for guiding
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the library design. A phage-display library was constructed to diversify CDR-H2, which seemed to be
a major specificity determinant. Alternating rounds of binding selections with immobilized cyno and
human antigens yielded an antibody that was used as a template for the second round of selection
with libraries around CDR L1 and CDR-H1. The best variant exhibited robust binding to cyno CD81
and only showed a two-fold reduction in affinity for human CD81.

Whereas species cross-reactivity or broad neutralizing potential may be beneficial for a therapeutic
antibody, sometimes, the insufficient selectivity may be regarded as a liability. Although mAbs
are generally very selective, close analogs of the target molecule may pose a risk of side effects.
The development of anti-progesterone mAb C12G11 was hampered by its poor selectivity [197]. The
mAb has a picomolar affinity for progesterone but also strongly binds 5β- and 5α-dihydroprogesterone.
To reduce the cross-reaction with these analogs, a phage library randomizing five antigen-binding
positions in CDR-H2 and CDR L3 was constructed. The design was based on the homology model
of the antibody complemented by docking of the target molecules. Variants selected in the initial
screening were further optimized by the addition of second-sphere positions to the library. The best
variant demonstrates high specificity toward progesterone as compared with the 15- to 20-fold lower
cross-reactivity for the analogs. The improvements are linked to a change in the canonical class of
CDR L3.

Koenig et al. faced a similar task to fine-tune the specificity of an angiopoietin-2 (Ang2)/VEGF
dual-action Fab [198]. This antibody utilizes overlapping CDR sites for dual antigen interaction, with
affinities in the sub-nanomolar range. However, it also exhibits significant (KD value of 4 nM) binding
to Ang1, which has high sequence similarity to Ang2. An approach to specificity engineering that does
not require prior knowledge of the antibody–antigen interaction was employed in this study. A large
phage-displayed library of the Fab variants with all possible single mutations in all six CDRs provided
information on the effect of binding for each mutation. In silico analysis identified 35 mutations
predicted to decrease the affinity for Ang1 while maintaining the affinity for Ang2 and VEGF. Structural
analysis showed that some of the mutations cluster near a potential Ang1/2 specificity-determining
residue, while others are up to 15 Å away from the antigen-binding site and apparently influence
the binding interaction indirectly. The lack of information on antibody–antigen interactions in this
approach was compensated for by the size of the library.

The mechanisms of antigen recognition by antibodies vary significantly from the structurally
rigid key-and-lock mechanism to the adaptable induced-fit mechanism. Correspondingly, one of the
mechanisms of multispecificity lies in the plasticity of the antigen-binding site, which allows for the
recognition of structurally unrelated epitopes by the same antibody [199,200]. This principle was
utilized in a stepwise engineering strategy for generating dual-specific antibodies de novo, called
two-in-one antibody with dual-action Fab (DAF). The first proof-of-concept DAF was targeting VEGF
and HER2 [201,202]. The strategy was also successfully applied for the generation of duligotuzumab,
which targets EGFR and HER3 [203].

2.5. Chemistry, Manufacturing, and Control (CMC) Considerations

Recombinant mammalian cells are the dominant production system for antibody-based
therapeutics because of their ability to perform complex post-translational modifications (PTMs)
that are often required for efficient secretion, drug efficacy, and stability [204]. Because of the
nature of heterologous expression, there are modifications to the biologics, which include misfolding
and aggregation, oxidation of methionine, deamidation of asparagine and glutamine, variable
glycosylation, and proteolysis (see Table 2) [205,206]. Such unintended PTMs can pose challenges
for consistent bioprocessing and can affect the molecular physicochemical properties (such as shape,
size, hydrophobicity, and charge) that in turn can affect pharmacokinetic (PK) and pharmacodynamics
(PD) properties. For instance, electrostatic interactions between anionic cell membranes and the
predominantly positive surface charge of most antibodies can influence the blood concentration and
tissue disposition kinetics in a manner that is independent of antigen recognition. Thus, charge
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variation can result in shifts in isoelectric point values, which can change the tissue distribution and
kinetics; increases in net positive charge generally result in increased tissue retention and increased
blood clearance [207–209]. Protein and peptide deamidation can occur spontaneously in vitro under
relatively mild conditions that can be used to predict in vivo chemistries [210]. For antibodies and
other therapeutic proteins, great effort is placed in the manufacturing process and storage conditions
to minimize this form of degradation. Glycosylation control is typically controlled by the selection
of the manufacturing cell line and control of cell metabolism during bioreactor conditions [211,212].
The specific glycan attachments (fucosylation, sialylation, galactosylation, high-mannose, and bisecting
glycans) have great importance to the antibody properties [213,214] (See Figure 5). Simulations of the
dynamic interface between the glycans and the Fc domains have been described [215]. However, it
is also important to remember that under physiological temperature and pH conditions, antibody
deamidation, c terminal cleavage, and glycation kinetics do occur and can affect the serum lifetime of
antibodies [209,216,217].

During the process of discovery, the selection of candidate molecules should employ technologies
that increase the odds of identifying potent biologics that bind the desired biologically relevant
epitope. Concomitant with potency optimization, the biologics should be counter-screened to have
drug-like properties early in the process. Although the germline amino acid sequences are typically left
unchanged, mutagenesis of amino acids’ liabilities (sites of oxidation, deamidation, clipping, glycation,
glycosylation) in the CDRs should be considered. Such changes should be completed prior to the
manufacturing cell line development to minimize the risks of having a less-than-robust chemistry,
manufacturing, and control (CMC) process. Upstream consideration of developability metrics should
reduce the frequency of failures in later downstream development stages. Optimization of stability
in the early stages of discovery can reduce complications in upstream and downstream process
optimization as well as increase the potential for successful drug product formulations [218,219].
Nonetheless, downstream processing can minimize some levels of oxidation via the presence of free
radical scavengers, elimination of redox metal ions, addition of chelation agents, protection from light,
decrease in storage temperature, and reduction of exposure to oxygen.

Table 2. Common post-translational modifications to amino acids in monoclonal antibody
framework molecules.

Amino Acid Changes Chemistry Effect on Protein Effect on Biology

Asn-(Gly/Ser);
Asp-(Gly/Ser)

Asn deamidation,
Aspartic acid
isomerization

Protein degradation [220–222]; Tertiary
changes to Ab structure [223]; Isoaspartic

acid [224]; Aggregation [225]

Isomerization can affect IgG avidity
[226]; Deamidation affects binding
[227]; Deamidation affects PK [216]

Gln Gln deamidation Slower deamidation than Asn,
heterogeneity and stability [228] Biological activity on Fab and Fc *

Met Oxidation

Presence of oxidized methionine affects
charged state of proteins [229–231];

Methionine oxidation decreases affinity to
protein A and FcRn [232]

Methionine oxidation on Fc region
can modulate FcγRIIa engagement
[233]; FcRn and Fcγ receptors [234];

PK [235,236]

Trp Oxidation

Changes in Trp aromaticity [237]; color
changes [238]; Effects on detergent
excipients for Ab formulation [239];

Higher order structure [240]

Biological activity on Fab and Fc
[241,242]

Cys Oxidation

Cysteinylation;
Hinge disulfide chemistry with Cu2+ ion
results in hydrolysis or oxidation that can

lead to cleavage of the mAb [243–245]

Cysteinylation in CDRs leads to loss
of potency [246,247]; Changing

disulfide patterns in IgG subtypes
[248]

His Oxidation

Oxidized histidine react with intact
histidine, lysine, and free cysteine to

crosslink IgG [249].
Oxidized histidine [250,251]

Biological activity on Fab and Fc *

Asp-(Pro/Gly) Amide bond
hydrolysis

Cleavage at aspartic acid under acidic
conditions [252,253]; Clipping at CH2

domain leads to aggregation [254]
Biological activity on Fab and Fc *
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Table 2. Cont.

Amino Acid Changes Chemistry Effect on Protein Effect on Biology

N terminal Glu/Gln Pyroglutamate
formation

Cyclized N terminal glutamine [255];
Challenges with molecule comparability

[256]
Biological activity [256]

C terminal truncation Carboxypeptidase
substrate

Human IgG is produced with C-terminal
Lysines that are cleaved off in circulation.
There can be changes in charge variation

C terminal lysine loss can enhance
complement activation [257]

Glycation Reducing sugar
reaction with Lysines

Charge variants [218]; Structural
heterogeneity [258] Biological activity on Fab and Fc *

Glycosylation changes Changes in
glycosylation profiles

Glycan structure [67,69,259–263]; High
mannose and afucosylation affect stability
[264]; Sialylation [265]; Fucosylation [266]

Biological activity [267]; PK and PD
[268]; Clearance [269]

* Changes to critical amino acids linked to Fab-antigen or Fc-Fc receptor binding and functions.

2.5.1. Solubility

Low solubility or high viscosity of antibody formulations at concentrations over 100 mg/mL can
impede their development as products suitable for subcutaneous delivery. Antibody engineering,
especially when applied at the discovery stage, may be instrumental in overcoming the challenges
of the product development and pave the path to the clinic. The following examples highlight some
approaches that proved to be helpful in improving the solubility of antibodies. Several studies were
based on homology modeling rather than on experimental crystal structures, and in many cases,
this may be enough for developability purposes. Of course, this excludes the cases when antibodies
present unusual CDR in either HC or LC loops either in sequence or in length. Antigen-bound
co-crystals are also very useful for identifying mutants that are more likely to retain target binding
while optimizing solubility.

Structure-guided design of point mutations was carried out for the development of a therapeutic
mAb candidate that was unacceptably viscous at high concentrations [270]. The idea was to test the
effects of hydrophobic and electrostatic intermolecular interactions on the solution behavior of the
mAb by disrupting either aggregation prone regions or clusters of charged residues. The variable
region contained two hydrophobic surface patches and a negatively charged cluster. The disruption of
a hydrophobic patch at the interface of VH and VL via L46K mutation in VL destabilized the mAb
and abolished antigen binding. However, mutation at the preceding residue (V45K) in the same
patch increased the apparent solubility and reduced viscosity without sacrificing antigen binding
or thermal stability. Neutralizing the negatively charged surface patch by E60Y mutation in VL
also increased apparent solubility and reduced viscosity of the mAb, whereas charge reversal at the
same position (E60K/R) caused destabilization, decreased solubility, and led to difficulties in sample
manipulation that precluded their viscosity measurements at high concentrations. Both V45K and
E60Y mutations showed similar increases in apparent solubility. However, the viscosity profile of E60Y
was considerably better than that of the V45K, providing evidence that intermolecular interactions in
this mAb are electrostatically driven.

Aggregation of single-domain VH antibodies specific for Alzheimer’s amyloid β-peptide was
examined from the structural perspective [271–273]. These antibodies contained clusters of hydrophobic
residues within the HC and LC CDR3. Inserting two or more negative charges at each edge of the CDR3
domains potently suppressed antibody aggregation without altering binding affinity. Inserting charged
mutations at one edge of CDR3, either the N- or C-terminal, also prevented aggregation, but only if
such mutations were located at the edge closest to the most hydrophobic portion of CDR3. In contrast,
charged mutations outside of CDR3 failed to suppress aggregation. These findings demonstrate that
the CDR loops can be engineered in a systematic manner to improve antibody solubility without
altering binding affinity.
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The case of anti-IL-13 mAb CNTO607 presents three structure-based engineering approaches to
improved the solubility of a therapeutic candidate [274]. First, the isoelectric point was modified by
the incorporation of charged residues in the positions remote from the binding site. A mutant with a
modified pI showed a two-fold improvement in solubility while retaining full binding to IL-13. Second,
the overall surface hydrophobicity was targeted by mutating residues in a hydrophobic patch found
in CDR-H3. According to the crystal structure, the patch included residues F99-H100-W100a from
CDR-H3 flanked by hydrophobic residues from the light chain. The triad in CDR-H3 appeared to be
essential for the high affinity of the antibody to IL-13. Various mutations in these residues improved
solubility but negatively impacted affinity. Mutations in CDR L3 were more promising since this
CDR is less involved in antigen binding. The best variant with W91Y and M93S mutations gained
a two-fold improvement in solubility and exhibited a shorter retention time on HIC, while binding
to IL-13 remained in the low picomolar range. In a third approach, an N-linked glycosylation site
was introduced in CDR-H2 (D53N) to shield the aggregation patch in CDR-H3. This variant indeed
showed greatly improved solubility while maintaining affinity to IL-13 and proved to be the most
effective route for enhancing the solubility of CNTO607. Recently, there has been a description of
how optimization of the V domain framework can improve the biophysical qualities of a therapeutic
antibody candidate [275].

Another example of solubility improvement through computer modeling was reported for an
integrinα11-binding antibody [276]. A homology model of the parental Fv region revealed hydrophobic
patches on the antigen-binding surface. A series of 97 computationally designed variants focused
on the residues in the hydrophobic patches that were expressed, and their HIC retention times were
measured. As intended, many of the variants reduced the overall hydrophobicity as compared to the
parental antibody. Contrary to the previous study (CNTO607), replacement of aromatic residues W96,
Y97, and Y98 in CDR-H3 did not cause a loss of binding, apparently because they are not in contact
with integrin. Interestingly, adding charged residues in place of polar residues in the CDRs near the
hydrophobic patches did not reduce the retention time.

Three-dimensional protein property descriptors were developed and evaluated for their ability
to predict the hydrophobicity profiles of antibodies [276]. Analysis of recently published data for
137 clinical mAb candidates [277] indicated that the surface area of hydrophobic patches consistently
correlated to the experimental HIC data across a diverse set of biotherapeutics.

A general approach to predicting aggregation-prone regions on the basis of three-dimensional
structures has been realized in the algorithm termed AggScore [278]. The method uses the distribution
of hydrophobic and electrostatic patches on the surface of the protein, factoring in the intensity and
relative orientation of the respective surface patches into an aggregation propensity function that
has been trained on a benchmark set of 31 adnectin proteins. When applied to the experimentally
characterized antibodies in the clinical stage [277], AggScore accurately identified aggregation-prone
regions and predicted changes in aggregation behavior upon residue mutation.

As more biotherapeutics are entering pharmaceutical pipelines, more weight is put on the
early-stage developability assessment and optimization strategies. Computational methods for
assessing solubility, hydrophobic interactions, and other liabilities are in high demand. Successful
efforts have also been made to use rational design to reduce aggregation and improve solubility by
mutating key surface residues identified from a crystal structure or a homology model.

2.5.2. Stability

After the selection based on functional properties, antibodies may be modified to improve
developability or scale-up processes involving stability, expression, purification, and formulation.
The stability of an antibody is influenced by a number of factors that can include: (1) core packing of
individual domains that affects their intrinsic stability; (2) protein–protein interface interactions that
have impact upon the HC and LC pairing; (3) burial of polar and charged residues; (4) hydrogen-bonding
network for polar and charged residues; and (5) surface charge and polar residue distribution among
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other intra- and inter-molecular forces [279]. Potential structure-destabilizing residues may be identified
based upon the crystal structure of the antibody or by molecular modeling in certain cases, and the effect
of the residues on antibody stability may be tested by generating and evaluating variants harboring
mutations in the identified residues. One of the ways to increase antibody stability is to raise the thermal
transition midpoint (Tm) as measured by differential scanning calorimetry (DSC), differential scanning
fluorimetry (DSF), or thermal transitions [280–284]. In general, the protein Tm is correlated with its
stability and inversely correlated with its susceptibility to unfolding and denaturation in solution and
the degradation processes that depend on the tendency of the protein to unfold [285]. A few studies
have found a correlation between the ranking of the physical stability of formulations measured as
thermal stability by DSC and physical stability measured by other methods [169,286–289]. Formulation
studies suggest that a Fab Tm value can have implications for the long-term physical stability of a
corresponding mAb. Thus, the CDR sequence selection can impact the stability of the VH–VL domain,
and sequence–stability tradeoffs must be considered during the design of such libraries [290].

3. Engineering Antibody Activity

While mAbs are successful for many distinct applications, there are still limitations. First, the
surface area of the IgG variable region may not bind to the small extracellular loops of transmembrane
proteins, such as G-protein-coupled receptors (GPCRs). Secondly, animal models show that most
administered mAbs have limited distribution into the diseased tissue. A favorable pharmacokinetic
profile does require sufficient target occupancy in the diseased tissue, which ultimately requires
efficient tissue penetration and retention time in the diseased tissue. Thirdly, single agent mAb efficacy
can be limited because the disease phenotype can have more than one pathway that can mediate
resistance. Often, the in vitro properties of the candidate antibody that probe a limited array of
responses do not corroborate with in vivo profiles that can involve more complex mechanisms of
action. These limitations have prompted research in generating new antibody-based therapeutics that
can meet these aforementioned challenges by adopting antibody engineering approaches that can
include: Binding domain engineering; avidity modulation; antibody–drug conjugation; Fc activity
engineering; and bispecific antibody generation.

3.1. Binding Domain Engineering

The average surface area of an antibody epitope-containing surface is around 1600 to 2300 Å2 [291].
Although this surface area is ideal for modulation of most protein–protein interactions, there can be
target molecules with epitope surface exposures that are more restricted. For instance, there are limited
examples of the obtainment of functional antibodies against GPCRs. Recent crystal structures have
shown that there is limited access to epitopes due to the presence of N-terminal domain glycosylation
and limited surface exposure to the extracellular membrane protein loops [292]. For applications
that require smaller binding surfaces, single domain (12–15 kDa) antibodies (sdAbs, also known as
VHH Abs or nanobodies) can be more suitable as targeting proteins. For such applications, VHH
Abs, derived from camelid family heavy chain Abs, have smaller binding surfaces that could bind to
smaller cryptic regions of GPCRs. These single domain binding proteins show promise for stabilizing
active GPCR conformations and serve as chaperones for co-crystallization [293–297]. The VHH domain
structure lacks the human or mouse mAb HC-LC structure (which are hydrophobic at their pairing
interface), resulting in a surface that is much more hydrophilic than that of an IgG Fab region [298,299].
Therefore, camelid-derived VHH nanobodies tend to have favorable biophysical characteristics, like
high solubility and low aggregation, compared to human sdAbs [300]. The smaller molecular weight
can expand the range of drug-dosing modalities to include inhalation, needle free, oral, topical, and
ocular delivery [298,299,301,302].

In addition, the VHH CDR3 is often longer than the IgG VH CDR3, potentially allowing it to
form more favorable contacts with its binding epitope [300]. Recently, Caplacizumab (ALX-0081), an
anti-von Willebrand factor humanized VHH, was launched in 2018 for the treatment of thrombotic
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thrombocytopenic purpura and thrombosis [303]. Since in silico analysis showed that camelid VHH
sequences could be aligned to human IGKV and IGLV families based on canonical structure and
sequence homology, optimization of primary sequence is possible to minimize the potential of the
development of anti-drug antibodies (ADAs) [304].

Besides camelids, cartilaginous fishes produce a distinct heavy chain Ab subtype containing a
single variable region immunoglobulin new antigen receptors (VNARs), These 11- to 14-kDa domains
comprise two heavy chains with an antigen-binding region with no associated light chains [305]
and can bind with high affinity and specificity to target molecules [306,307]. These molecules have
8 beta strands instead of the 10 beta strands found in VHH and mammalian IgGs. In addition,
VNARs lack the CDR2 domains and longer hinge regions found in mammalian IgG molecules. Thus,
the diversity of VNARs depends primarily on the CDR3 domain. With their small size and single
domain format, VNARs are highly stable and can be produced at high levels using different expression
systems [308]. Because of their size, there are recognition niches that are unique for such therapeutic
sdAbs [309–311]. The development of libraries for selection has expanded the utility of generating
potent molecules [312,313]. As with nanobodies, these molecules can be engineered to be more
human-like and have been used to isolate binders to CXCR4, a druggable GPCR [314,315], HER2, PD1,
and glypican 3 [316].

3.2. Avidity Modulation

Because each antibody has two antigen-binding sites, antibody engagement to the antigen can be
multivalent when there is more than one antigen on the target surface [317]. For avidity to occur, the
antigen sites must be present at a sufficient density, such that once the first Fab has bound, the second
Fab can bind before the first Fab dissociates. Thus, the nature of an IgG engagement to the antigen can
be more complicated than a single binding event. Rather, the functional affinity or avidity represents
the accumulated strength of multiple affinities to an antigen [318,319]. In such cases, the Fab region
can modulate protein–protein interactions of the antigen. Occasionally, the structural nature of the
Fab region–epitope engagement can limit target neutralization via constrained avidity through steric
occlusion [320]. The pharmacokinetic profile of the molecule should allow for sufficient time to allow
for kinetics of avidity to occur. If not, there will be an apparent loss of potency even though there may
be steep saturation curves from in vitro experiments [321].

However, Fc region clustering due to FcγR interactions can contribute to Fab target avidity
[322–324]. The avidity due to Fc region–FcγR crosslinking can affect the immune cell effector function
that can contribute to autoimmune disorders [325–329]. In such indications, effective FcγR blockade
requires doses of intravenous immunoglobulin. However, this approach requires careful consideration
of potential safety concerns related to the induction of serious acute events, such as cytokine release,
platelet activation/aggregation, and complement activation [330].

Monoclonal antibodies that target the inhibitory immune checkpoint receptors, such as CTLA-4
and PD-1, stimulate antitumor immunity to treat advanced melanoma, lung cancer, and other types
of human cancer [331,332]. Such agonist antibodies against the immunostimulatory receptors on T
cells and antigen-presenting cells were designed to have more silent Fc regions to prevent Fc effector
function but retain Fab region avidity to stimulate antitumor immunity [333]. Immune effector cells
have stimulatory receptors belonging to the tumor necrosis factor (TNF) receptor superfamily (such
as OX40, CD27, 4-1BB, and GITR) [334,335]. There has been much effort to develop the use of their
respective ligands and agonist antibodies to activate these receptors to stimulate the proliferation and
activation of T cells [336–339] to mediate anti-tumor activities [340–342].

Agonistic activities of immunomodulatory antibodies require the engagement of different types
of Fc receptors and cell surface receptors. To activate downstream signaling pathways, TNF receptors
undergo higher-order clustering upon binding to their respective trimeric ligands [343]. Thus, regular
antibody binding may not be enough to induce the required threshold TNF receptor clustering that
can occur with the binding of trimeric ligands. Instead, antibody crosslinking via Fc engagement is
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necessary for receptor activation in in vitro assays [344–347]. The crosslinking of IgG Fc to FcγRIIB
receptors can multimerize more than one antibody molecule, which in turn can facilitate the clustering
of enough TNFR for signaling pathway activation. Recent studies in mice indicated that the engagement
to the inhibitory FcγRIIB receptor is critical for the agonistic activity of antibodies to a number of TNFR
targets, such as CD40 [340,348], death receptor 5 (DR5) [340,349], and CD95 [350]. If such antibodies
have Fc regions that can engage various activating FcγRs, effector functions, such as ADCC and ADCP,
can be induced and deplete these targeted immune cells. Nonetheless, the anti-OX40 and anti-GITR
antibodies may facilitate the selective elimination of intratumoral regulatory T cells in the tumor
microenvironment by the effector functions of the antibody [351,352]. Such antibody-mediated killing
of regulatory T cells may be more important than the antibody-mediated activation of effector T cells
for the anti-tumor activities of therapeutic anti-OX40 and anti-GITR antibodies.

By design, human IgG antibodies have low binding affinities to most human Fc receptors except
FcγRI [353]. To optimize the anti-tumor activity of agonist antibodies’ binding to immunostimulatory
TNF receptors, the Fc region of the IgG antibody was engineered to bind more strongly to the FcγRIIB
receptor. In particular, Chu et al. introduced the S267E/L328F mutations on an anti-CD19 IgG1 Fc
to enhance FcγRIIB-binding affinity that resulted in improved inhibition of B cell receptor-mediated
activation of primary human B cells [354]. However, this Fc variant also enhanced binding to the
R131 allotype of the activating FcγRIIA receptor [355]. Mimoto et al. utilized the V12 mutations
(E233D/G237D/P238D/H268D/P271G/A330R) in the IgG1 Fc to selectively enhance FcγRIIB engagement
without an associated increased binding to either the H131 or R131 allotype of the FcγRIIA receptor [356].
Mutations that abrogate FcγRIIIA binding can decrease the potential ADCC activity. An anti-CD137
agonistic antibody with the V12 mutations showed enhanced agonistic activity dependent on FcγRIIB
engagement with less ADCC activity that was linked to FcγRIIA binding. Alternatively, FcγRII-binding
Centyrins can be fused to therapeutic antibodies to bind to FcγRIIB receptor (FcγRIIB), thereby enabling
the antibody multimerization that drives TNFR activation [357].

Ab agonistic activity depending on FcγRIIB engagement depends on the FcγR expression in the
local microenvironment. To augment the agonism of immunostimulatory antibodies independent of
FcγR engagement, White et al. recently reported that human IgG2 subtype can impart super-agonistic
activity to immunostimulatory antibodies for CD40, 4-1BB, and CD28 receptors [358]. This activity
is conferred by a unique configuration of disulfide bonds in the hinge region of the IgG2 subtype
and is not dependent on FcγRIIB engagement. To add to the repertoire of Fc mutations that can
promote antibody multimerization without the need of FcγRIIB crosslinking, Diebolder et al. reported
that selective Fc mutations can facilitate hexamerization of IgG Abs upon binding targets on the cell
surface [359]. Specific noncovalent interactions between Fc regions resulted in the formation of ordered
antibody hexamers after antigen binding on cells. These hexamers recruit and activate C1q, the first
component of complement, to trigger the complement cascade. The interactions between neighboring
Fc segments could be manipulated to block, reconstitute, and enhance complement activation and
killing of target cells, using all four human IgG subclasses [360]. In contrast, the E345R mutation on an
anti-OX40 antibody had increased agonism by promoting the clustering of OX40 receptors without the
dependence on FcγRIIB cross-linking [361]. This cross-linking to FcγRIIB can lead to a further boost
of the agonism of the anti-OX40 antibody with an IgG1 Fc but not with the silent IgG2σ Fc region,
which lacks binding to FcγRs. The ADCC and CDC activities of the anti-OX40 antibody with the
E345R mutation were affected by the choice of IgG subtypes [362]. With so many oligomeric Ab targets,
there are continuing applications of hexameric therapeutic Abs that can affect downstream signaling
events [328,329,363].

Alternatively, when an IgG format does not achieve enough of an effect on a cell surface receptor,
the variable regions can be transferred to an IgM format to elicit the functional activity through
avidity. Clearly, the IgM’s higher valency can facilitate receptor crosslinking. For instance, when
anti-trail-receptor IgG did not elicit a strong response, the switch to an IgM format resulted in stronger
induction of trail-receptor-induced apoptosis [364]. Antibody formats that promote crosslinking are
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being assessed in clinical trials [365]. Likewise, other hinge and isotype formats also affect binding to
targets [366].

3.3. Antibody–Drug Conjugates

The high binding specificity of antibodies can be combined with the potent cytotoxicity of
small molecule agents to generate targeted therapies with higher therapeutic indices than traditional
chemotherapeutics. By delivering toxic payloads only to cells that express specified antigens, it is
possible to confine toxicity to malignant tissue while theoretically minimizing collateral damage.
Antibody–drug conjugates (ADCs) bearing cytotoxic moieties should ideally target antigens that are
present at significantly higher amounts on tumor cells. For many ADCs, it is also beneficial to bind to
internalizing receptors, which deliver the conjugate into the cell and allow the active moiety to elicit
its effects.

Many types of cytotoxic agents can be conjugated to antibodies for concentration into target
cells. Among these, the most common are natural products, such as the maytansinoids (derived
from the macrolide maytansine of Maytenus plants), auristatins (derived from Dolastatin peptides of
Dolabella auricularia sea hares), and calicheamicins (enediyne antibiotics from Micromonospora echinospora
bacteria). The auristatins, exemplified by monomethyl auristatins E and F (MMAE, MMAF), and the
maytansinoids, including DM1 and DM4, are microtubule inhibitors while calicheamicins like γ1 act
by creating double-stranded DNA breaks. Due to the remarkable cytotoxicity of these agents, they
must be tethered to antibodies for targeted delivery and reduction of systemic toxicity.

It was earlier recognized that the sub-picomolar potency of calicheamicins would allow for
efficient tumor killing when coupled to antibodies for specific delivery. In 1993, Hinman et al.
reported ADCs combining calicheamicins γ1, α2, α3, N-acetyl-γ1, or pseudoaglycone (PSAG) with a
monoclonal antibody against the internalizing antigen, polyepithelial mucin [367]. Hydrazide analogs
of the calicheamicins were prepared and conjugated to oxidized glycan residues on the antibody. A
comparison of conjugate analogs revealed the importance of the rhamnose sugar in the DNA-binding
region of the drug, whereas a distal amino sugar residue was more amenable to substitution or removal.
Stabilization of the linker with the addition of disulfide-proximal methyl groups served to increase the
therapeutic index of the ADCs.

Such calicheamicin-loaded ADCs have proven effective for the treatment of leukemia.
The first approved ADC was gemtuzumab ozogamicin, which demonstrated an ablation of
acute myeloid leukemia (AML) cells [368]. To form the ADC, gemtuzumab (anti-CD33) is
linked to N-acetyl-γ-calicheamicin dimethyl hydrazide via non-specific lysine conjugation and a
4-(4-acetylphenoxy) butanoic acid spacer. The average drug-to-antibody ratio (DAR) is two to three,
although some individual antibodies remain unconjugated and others have higher DAR values. After
its approval in 2000, the ADC was voluntarily withdrawn in 2010 due to concerns over its toxicity and
lack of efficacy. In 2017, the drug was re-approved after a meta-analysis and new clinical data indicated
a benefit for the treatment of AML (history reviewed in [369]). Meanwhile, inotuzumab ozogamicin, a
CD22 antibody conjugated to the same linker-drug moiety, demonstrated cytotoxicity against B cell
lymphomas and was approved for treatment of acute lymphoblastic leukemia (ALL) in 2017 [370,371].
Clearly, calicheamicins possess satisfactory potency that, when combined with antibody specificity,
allows for successful elimination of hematological malignancies.

Auristatins have also been conjugated to tumor-targeting antibodies to elicit specific and potent
tumor killing. Doronina et al. attached auristatin analogs to antibodies targeting Lewis Y antigen
and CD30 and compared the properties of ADCs containing acid-labile hydrazone linkers with those
containing protease-sensitive dipeptide linkers [372,373]. Drug conjugation was more site specific in
this case, using a maleimide group to form a covalent bond with reduced thiols from antibody cysteine
residues. Since antibodies contain four relatively exposed inter-chain disulfide bonds, uniform drug
loading of approximately eight auristatins per antibody was achieved. Peptide linkers, in particular, a
valine–citrulline linker between the antibody and monomethyl auristatin E (MMAE), showed increased
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stability compared to more traditional hydrazone linkers. As a result, such linkers allowed for more
specific delivery and lower systemic toxicity. Thus, optimization of conjugation and linker chemistry is
important for maximization of the therapeutic index.

Subsequent work with CD30-MMAE antibodies explored the effect of drug loading on the
therapeutic properties of ADCs [374]. By incubating antibodies with varying ratios of linker–drug
and purifying different species using hydrophobic interaction chromatography, ADCs with defined
DAR values of 2, 4, and 8 were generated. While in vitro ADC potency increased with increasing
DAR, the in vivo activity was less dependent on drug loading. At equal doses, DAR 4 and DAR 8
ADCs demonstrated similar efficacy in vivo, whereas the DAR 2 species had slightly lower activity.
Pharmacokinetic analysis revealed that the lower DAR species had longer half-lives and greater
exposure, explaining why the DAR 8 species with high in vitro activity was not more effective in the
mouse xenograft study. The intermediate DAR species progressed into clinical trials and was approved
in 2011 as brentuximab vedotin for the treatment of Hodgkin lymphoma and systemic anaplastic large
cell lymphoma [375].

The third main class of cytotoxic agents is the maytansinoids. In 1992, maytansine was derivatized
with a disulfide group, which could be reduced and conjugated to disulfide or maleimide groups
on a chemically modified HER2 antibody [376]. Chemical handles were added to the antibody via
non-specific amine coupling and allowed for DAR values ranging from 1 to 6. The DAR 4 ADCs were
shown to have maximal cytotoxicity in an in vitro assay. ADCs with the cleavable disulfide linker were
significantly more potent than ADCs with a non-cleavable thioether linkage, presumably due to the
more efficient release of the active drug within target cells. However, another study with auristatin
ADCs demonstrated that non-cleavable linkers may have better therapeutic windows because of less
non-specific drug release [9]. An important factor is the activity of the modified drug moiety that
results from proteolytic digestion of ADCs with non-cleavable linkers.

Trastuzumab emtansine represents a successful combination of HER2 antibody, DM1 maytansinoid,
and a non-cleavable linker. Lewis Phillips et al. compared trastuzumab-DM1 conjugates containing a
panel of reducible disulfide linkers and a non-reducible linker [377]. The ADC with a non-cleavable
linker based on thiol-maleimide conjugation to the maytansinoid and amine-succinimide conjugation to
the antibody unexpectedly caused the greatest tumor inhibition in vivo. An increase in pharmacokinetic
stability likely contributed to this effect, as the ADCs with reducible linkers were more likely to lose the
payload before delivery to target cells. While the bystander effect does not occur when a non-cleavable
linker is used due to the inability of the charged metabolite to cross membranes, lower systemic toxicity
and full targeted delivery of cytotoxic payloads seem to make up for this defect. Trastuzumab-DM1
ADCs using this non-reducible linker progressed to clinical trials, and in 2013, they were approved for
the treatment of HER2-positive breast cancer [378].

While the paradigm for successful ADCs has revolved around the most potent cytotoxic agents
and stable linkers, other strategies have also been explored. Sacituzumab govitecan is an ADC targeting
Trop-2 that contains the active metabolite SN-38 from the topoisomerase inhibitor irinotecan [379].
SN-38 is less toxic than traditional ADC payloads, having the half maximal inhibitory concentration
(IC50) in the nanomolar, rather than picomolar, range. Thus, a higher DAR (7–8 compared to the more
typical 3–4) is required to elicit sufficient tumor cytotoxicity. Additionally, the ADC makes use of a
pH-sensitive carbonate linker, which releases drug in the lysosome of target cells but also into the
circulation, with a half-life of approximately one day. This semi-stable linker is proposed to allow for
the bystander effect by which molecules of SN-38 diffuse to neighboring tumor cells that may have
a lower expression of Trop-2. While Trop-2 is expressed on a number of tumor types, sacituzumab
govitecan has been most studied in cases of triple negative breast cancer.

In addition to natural products, toxins have also been conjugated or fused to antibodies to generate
tumor-targeting immunotoxins. For example, Mansfield et al. described a disulfide-stabilized (HC
R44C, LC G100C) Fv targeting CD22 that was fused to a 38-kDa truncated form of Pseudomonas
endotoxin A (PE38) via the C-terminus of the VH domain [380,381]. The PE38 moiety contains



Antibodies 2019, 8, 55 34 of 80

translocation and ADP-ribosylating regions that allow it to inactivate elongation factor 2 within the
cytosol of the target cell after delivery by the Fv domain. This activity leads to an inhibition of protein
synthesis, induction of programmed cell death, and allowed for reduction in tumor growth in a
mouse xenograft model. Subsequently, the CDR3-H3 of the Fv domain was mutated to improve CD22
binding while the PE38 domain was stabilized with the R490A mutation to reduce proteolysis [382].
The resulting molecule, moxetumomab pasudotox, was approved in 2018 for the treatment of hairy
cell leukemia.

Radionuclides represent an additional class of payload that can be attached to antibodies to
create antibody–radionuclide conjugates (ARCs). In one case, yttrium-90 was conjugated to the CD20
antibody ibritumomab to generate ARCs for the treatment of lymphoma [383]. The 90Y isotope was
used due to its generation of beta particles, which penetrate several millimeters to elicit a bystander
effect, and its favorable decay half-life of 2.7 days. Conjugation was achieved using the linker-chelator
tiuxetan, whose isothiocyanate group forms a stable thiourea bond with antibody amines. Notably,
the 90Y ARC was used for therapeutic purposes while the same antibody-linker-chelator was coupled
to 111In for preliminary imaging and dosimetry. Ibritumomab tiuxetan was approved in 2002 for the
treatment of non-Hodgkin’s lymphoma.

A similar ARC, tositumomab-131I, was approved the following year for the same indication.
While both ARCs target CD20, tositumomab is conjugated to iodine-131, which is a β and γ emitter
with a longer physical half-life of 8 days [384]. Radiolabeling of tositumomab is achieved through
oxidative iodination of aromatic residues like tyrosine and histidine, rather than through chelation.
The ARC was withdrawn from the market in 2014. There is debate whether this withdrawal was due
primarily to a projected decline in sales related to the complexity of administration, or follow-up studies
that indicated no benefit over more traditional chemo- and immunotherapies [385]. The preceding
examples demonstrate the feasibility of bringing ARCs to the market, but also highlight the complexity
of generating and administering radioactive therapeutics.

3.4. Fc Activity Engineering

Although the differentiation of the antibody is often focused on the characterization of the Fab
engagement to the target epitope, not all antibodies that bind to a given target have efficient effector
cell function. This was demonstrated in the comparison of different anti-CD20 antibodies that had
different epitopes and subsequently different levels of effector functions [386–388]. Here, the avidity of
Fc presentation is critical for FcγR recognition of immune effector cells. Because mAbs depend on their
Fc region to elicit certain immune reactions, engineering of this domain allows for tactical modification
of activity as well as enhancement of the respective physicochemical properties. Sometimes, a
simple swap by moving V regions into other IgG subtypes can result in greater efficacy [389,390].
However, there can be a greater emphasis on specific Fc mutagenesis to obtain a more selective IgG
effector function [88,355,391–393]. In addition, the coupling of the Fab and Fc regions can impact the
therapeutic window for the safety and efficacy of antibodies and Fc fusion proteins [394–397]. We
outline several tactics to modulate Fc activity linked to FcγR for immune effector cell function and
FcRn for pharmacokinetic properties. Nonetheless, it is critical to keep in mind that the Fab domain
antigen binding can affect the Fc region activity via structural allostery [398–400]. Hence, evaluations
of specific Fc mutations should be confirmed empirically.

3.4.1. Mutations that Modulate Effector Function

Protein and glycan engineering can modulate effector activity of antibodies to modulate ADCC,
ADCP, opsonization, internalization, trogocytosis, and CDC activity. This engineering can also be
applied to Fc fusions that comprise toxins, radioactive molecules, chemotherapeutic agents, or nucleic
acids for targeted delivery [392].

Site-directed mutagenesis and X-ray crystal structures demonstrate that FcγRs make contact
to IgG1 Fc at P232-S239, Y296-T299, and N325-332. Notwithstanding, the residues outside of
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this area may be linked to conformational changes that affect the Fc–FcγR complex formation.
An abbreviated list of Fc modifications is shown in Table 2. Fc region residues can be mutated
to increase the binding of antibodies to the activating FcγR and/or to enhance antibody effector
functions. Mutations that decrease binding include G236A, S239D, F243L, T256A, K290A, R292P, S298A,
Y300L, V305L, K326A, A330K, I332E, E333A, K334A, A339T, and P396L mutations (residue numbering
according to the EU index) [345,391–393,401]. Experimentally, combination mutations that result in
antibodies with increased ADCC or ADCP are S239D/I332E, S298A/E333A/K334A, F243L/R292P/Y300L,
F243L/R292P/Y300L/P396L, F243L/R292P/Y300L/V305I/P396L, and G236A/S239D/I332E mutations
on IgG1.

Fc mutations to reduce binding of the antibody to the activating FcγR and subsequently to
reduce effector functions can include positions: K214T, E233P, L234V, L234A, deletion of G236,
V234A, F234A, L235A, G237A, P238A, P238S, D265A, S267E, H268A, H268Q, Q268A, N297A, A327Q,
P329A, D270A, Q295A, V309L, A327S, L328F, A330S, and P331S mutations on IgG1, IgG2, IgG3, or
IgG4. [391,402–405]. Combinations of Fc mutations for reduced ADCC on IgG1 include: L234A/L235A;
L234F/L235E/D265A; V234A/G237A; S267E/L328F; L234A/L235A/G237A/P238S/H268A/A330S/P331S;
or K214T/E233P/L234V/L235A/G236-deleted/A327G/P331A/D365E/L358M. Combinations of Fc
mutations for reduced ADCC on IgG2 include: H268Q/V309L/A330S/P331S or V234A/G237A
/P238S/H268A/V309L/A330S/P331S. Combinations of Fc mutations for reduced ADCC on
IgG4 include: F234A/L235A, S228P/F234A/L235A; S228P/F234A/L235A/G237A/P238S; or
S228P/F234A/L235A/G236-deleted/G237A/P238S. Hybrid IgG2/4 Fc regions with the Fc with residues
117–260 from IgG2 and residues 261–447 from IgG4 can result in having less FcγR activity. Crystal
structures and simulations of IgG1σ, IgG4σ1, and IgG4σ2 Fc variants reveal altered conformational
preferences within the lower hinge and BC and FG loops relative to wild-type IgG, providing a
structural rationalization for diminished Fc receptor engagement [406].

An X-ray crystal structure of the C1q-Fc region shows that complement C1q binds IgG1 at
D170-K322, P329, and P331 [407,408]. To enhance CDC, Fc positions mutations can include S267E,
H268F, S324T, K326A, K326W, E333A, E430S, E430F, and E430T. Combination mutations that result in
antibodies with increased CDC can include K326A/E333A, K326W/E333A, H268F/S324T, S267E/H268F,
S267E/S324T, E345R, and S267E/H268F/S324T [359,409,410].

The ADCC activity of antibodies can be enhanced by engineering their oligosaccharide composition.
Human IgGs are N-glycosylated at Asn297 with the majority of the glycans of the well-known
biantennary G0, G0F, G1, G1F, G2, or G2F forms (see Figure 5). N-linked glycosylation can be removed
by using the mutation N297A on IgG1, IgG2, IgG3, or IgG4. The aglycosylated species has less
FcγR activity.

Antibodies produced by non-engineered CHO cells typically have a glycan fucose content of
about at least 85%. The removal of the core fucose from the biantennary complex-type oligosaccharides
attached to the Fc regions enhances the ADCC of antibodies via improved FcγRIIIa binding without
altering antigen binding or CDC activity. Such mAbs may be produced using different methods
reported to lead to the successful expression of relatively low level fucosylated antibodies bearing
the biantennary complex-type of Fc oligosaccharides, such as the control of culture osmolality [411],
application of a variant CHO line Lec13 as the host cell line [412], application of a variant CHO line
EB66 as the host cell line [413], application of a rat hybridoma cell line YB2/0 as the host cell line [414],
introduction of small interfering RNA specifically against the α 1,6-fucosyltrasferase (FUT8) [415], or
co-expression of β-1,4-N-acetylglucosaminyltransferase III and Golgi α-mannosidase II or a potent
alpha-mannosidase I inhibitor, kifunensine [416–418]. Notwithstanding, careful monitoring of antibody
glycosylation is required to control the pharmacodynamics of Abs and Fc-fusion proteins [419]. Other
modifications to enhance ADCC include the introduction of bisecting N acetyl glucosamine and the
removal of sialic acid residues [420].

Fc-mediated effector functions are best avoided for some applications, such as targeting cell
surface antigens on immune cells or when engineering bispecific molecules to bring target diseased
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cells within the proximity of effector immune cells [421]. In each of these cases, it is best not to stimulate
unwanted cell and tissue damage or risk undesired effector cell activation, immune cell depletion, or
FcγR cross-linking that might induce cytokine release through engagement of Fc-mediated effector
functions [422]. The complexity of FcγR functional properties is increased by the varying densities
of activating and inhibitory receptors on the different effector cell populations [406]. Likewise, since
the threshold of activation can be variable with different patients, it would be prudent for safety
considerations to develop antibodies with a more silent Fc region. Thus, the development of completely
silent Fc regions can be critical for biologics that do not require FcγR- or C1q-mediated effector
functions [88,423,424].

3.4.2. Mutations that Alter Pharmacokinetics

The PK properties of IgG antibodies are largely governed by the neonatal Fc receptor (FcRn),
a heterodimer of the FcRn α chain and β2-microglobulin. Initially, FcRn was known for its role in
transferring IgG from maternal milk to the neonatal circulation via FcRn-expressing intestinal epithelial
cells [425,426] (and later, for transferring human IgG from the mother to fetus via FcRn-expressing
placental syncytiotrophoblasts [427]). Both of these transfer mechanisms require pH-dependent binding
of IgG to FcRn, with strong binding at pH < 6.5 in the acidic intestine or endosome, and significantly
weaker binding in blood (pH 7.4). While it was long recognized that an Fc-binding receptor might be
responsible for IgG catabolism in adults [428], the identity of this receptor as FcRn was not confirmed
until three decades later [429]. Differences in IgG-FcRn affinity with pH allow IgG to be salvaged from
acidic endosomes of endothelial cells and recycled back to the blood, and thus to circulate longer than
other proteins of a similar size. The IgG-binding site for FcRn was localized to the CH2-CH3 elbow,
which overlaps the site for staphylococcal protein A binding [430–432]. With an intact binding interface
at each heavy chain, a molecule of IgG can bind simultaneously to two molecules of FcRn [433].

Because FcRn is involved in lysosomal salvage and IgG serum persistence, the IgG–FcRn interaction
has been engineered to modulate the PK properties of antibodies. Enhanced serum stability may be
beneficial for both patients and manufacturers, as it allows for lower-level or less frequent dosing.
The combination of co-crystal structures of Fc–FcRn complexes and site-directed mutagenesis may map
the Fc region regions to cover L251-S254, L309-Q311, and N434-H435. Early work demonstrated that
mutagenesis of IgG to disrupt FcRn binding leads to profoundly accelerated IgG clearance [432]. The
mutations I253A, H310A, and Q311A in the CH2 domain, and H433A and N434A in the CH3 domain,
led to two- to five-fold decrease in the β-phase half-life of mouse IgG1 Fc fragments. Subsequent work
verified the feasibility of strengthening FcRn interaction at low pH, which could extend the half-lives of
Fc mutants. Ghetie et al. performed random mutagenesis of mouse IgG1 residues T252, T254, and T256
coupled with phage display to isolate variants with tighter FcRn binding at pH 6.0 [434]. Their LSF
mutant had 3.5-fold higher affinity for FcRn, which was driven primarily by a slower dissociation rate.
The same mutant had a half-life up to 1.6-fold longer than the wild type, which translated to a 4-fold
increase in exposure. These studies suggested a potential correlation between endosomal FcRn affinity
and the half-life of IgG antibodies, and initiated a search for long-lived IgG mutants that outcompete
endogenous antibodies for FcRn-mediated lysosomal salvage.

One historic IgG variant with altered FcRn binding and PK is the YTE (M252Y/S254T/T256E)
mutant. Initial studies using human IgG1 antibodies showed that the YTE set of mutations significantly
reduced antibody serum concentrations in mice, despite a 10-fold higher affinity to both mouse and
human FcRn at pH 6.0 [435]. The authors attributed this unexpected result to a concomitant increase
in FcRn binding at pH 7.4 that occurred for mouse, but not human, FcRn. Later work revealed that
cynomolgus FcRn, like human FcRn, binds YTE 10-fold more tightly than wild-type IgG at pH 6.0,
but not significantly differently at pH 7.4 [436]. When YTE antibody was administered to monkeys,
its half-life was four-fold longer than that of the control. Thus, IgG PK may be improved by using
engineering strategies to increase FcRn binding at low pH while maintaining weak FcRn affinity at
neutral pH. More recently, motavizumab (anti-RSV) containing the YTE substitutions became the first



Antibodies 2019, 8, 55 37 of 80

Fc-engineered antibody to be investigated in humans [437]. The YTE version of the antibody had a
half-life of up to 100 days, or two- to four-fold longer than that of its wild-type counterpart. Although
studies with intravenous administration have not indicated a higher risk of anti-drug antibodies, there
is some concern that subcutaneous administration of YTE mutants could induce immunogenicity and
therefore counteract any PK benefits [438].

IgG variants with altered FcRn binding not only have altered clearance; they may also have
enhanced activity due to greater exposure. For instance, Zalevsky et al. developed an IgG1 LS
mutant (M428L/N434S) with an 11-fold increased FcRn affinity and 3- to 5-fold increased half-life [439].
Notably, the half-life was extended for antibodies targeting a soluble antigen (vascular endothelial
growth factor) and an internalizing cell-surface receptor (epidermal growth factor receptor). Thus,
clearance was positively affected even in the context of an antibody with target-mediated disposition.
In mouse xenograft studies, the LS antibody increased inhibition of tumor growth relative to the wild
type when dosed every 10 days. Similarly, Gautam et al. showed that the LS substitutions could
increase protection of rhesus macaque monkeys when incorporated into broadly neutralizing human
immunodeficiency virus (HIV) antibodies [440]. Clearly, half-life extension via Fc mutation is a strategy
that can be applied to a broad range of therapeutics.

Although it is tempting to oversimplify the relation between FcRn binding and PK, it must
be emphasized that enhanced FcRn binding does not always translate to a longer half-life. In one
informative study, Datta-Mannan et al. generated three IgG1 Fc variants with enhanced FcRn affinity
at pH 6.0 and analyzed their PK profiles in cynomolgus monkeys and mice [441]. Despite up to
80-fold increases in cynomolgus FcRn affinity, the clearance of the variants in monkeys was unchanged.
Furthermore, clearance was accelerated in mice even though affinity to mouse FcRn was increased
almost 200-fold. As alluded to previously, the undesirable PK properties likely resulted from subtle
changes in the pH dependence of FcRn binding. Borrok et al. followed up on the importance of neutral
pH FcRn affinity by producing a panel of IgG1 Fc variants with variable FcRn binding at both pH 6.0
and 7.4 [442]. The authors suggest that pH 6.0 FcRn binding is directly correlated to half-life only
as long as pH 7.4 binding does not also increase beyond a certain threshold. Given the sharp pH
dependence required for efficient FcRn recycling, this group also proposed that half-life enhancement
via Fc engineering probably cannot be improved beyond the four-fold increase already achieved.

In the Fc region, part of the CH2-CH3 domains is responsible for FcRn binding that results in
recycling of antibodies for a long half-life [443–446]. mAbs with the same Fc can bind to FcRn differently,
which can affect their respective PK profiles [447]. Mutations along the CH2-CH3 domains can modulate
PK profiles. Single mutations that enhance the pH-sensitive binding include T250Q, M252Y, I253A,
S254T, T256E, P257I, T307A, D376V, E380A, M428L, H433K, N434S, N434A, N434H, N434F, H435A, and
H435R [436,439,441,442,448–454]. Combination mutations that can be made to increase the half-life of
the antibody are M428L/N434S, M252Y/S254T/T256E, T250Q/M428L, N434A, and T307A/E380A/N434A.
These mutations mediate pH-sensitive interactions with FcRn. In contrast, mutations that can reduce
binding to FcRn, thereby decreasing the half-life of the antibody or Fc region molecules, can include:
H435A, P257I/N434H, D376V/N434H, H435R, M252Y/S254T/T256E/H433K/N434F, and T308P/N434A.
Although these mutations provide a guide, much of the PK profiles are determined empirically because
of potential Fab–Fc non-covalent interactions [399].

A host of factors beyond FcRn interaction have been shown to affect the serum stability of
antibodies. Especially for antibodies targeting distinct antigens or containing different variable regions,
biological and physicochemical properties may supersede FcRn-binding properties in determining
clearance. Even for antibodies of the same specificity, differences in variable region sequence may lead
to altered biophysical properties like the charge and isoelectric point (pI), which can also affect PK.
Igawa et al. observed that antibodies with lower pI values tended to be more stable in vivo. In a panel
of four IgG4 molecules, the most acidic antibody (pI 7.2) had a half-life 2.4-fold longer than that of the
most basic antibody (pI 9.2). As each antibody had the same constant regions and did not cross-react
with mouse proteins, this result indicated that variable region sequences can cause differences in
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biophysical properties that affect serum persistence independent of FcRn. To further validate the
observed trend, the variable regions of an IL-6R IgG1 antibody with a pI of 9.3 were engineered to
generate more acidic variants (pI 6.9 and 5.5), with minor (two-fold) differences in antigen binding
affinity. When administered to cynomolgus monkeys, the acidic variants had slower clearance than
the wild-type antibody. Mechanistically, the decreasing positive charge may reduce attractive ionic
interactions with negatively charged membranes and reduce pinocytotic cell uptake and degradation.
Consistent with this explanation, engineering IgG variable regions to remove patches of positive charge
(without greatly altering protein pI) has also been used to reduce non-specific binding and improve
PK [455]. Likewise, the choice of framework mutations in the Fab can also influence the PK properties
through differences in charge [456].

Glycosylation, glycation, and charges in the Fab region are also important for the PK properties
of a mAb. FcγR expressed on the surface of blood and liver cells can facilitate the rapid removal
of circulating Abs from circulation. Likewise, glycosylation patterns can impact both PK and PD
significantly [259,260].

Biophysical liabilities, such as increased hydrophobicity and decreased Fc region thermal
stability Tm values, can lead to lower levels of intracellular recycling that leads to subsequent
intracellular degradation Antibodies binding to internalizing receptors and certain other antigens
may undergo significant target-mediated clearance (reviewed in [457]). This saturable phenomenon
causes nonlinear PK, where elimination is faster at lower antibody concentrations. As the antibody
concentration surpasses that of the antigen, clearance becomes slower due to the increased contribution
of FcRn-mediated catabolism. Thus, the distribution and elimination of antibodies can vary greatly in
cases where antigen binding leads to active transport or degradation [209,277,451,458–460].

Extending the half-life of antigen-binding fragments and other lower molecular weight species
can include strategies, such as fusion with polyethylene glycol (PEGylation), human serum albumin or
an albumin-binding group, Fc region fusion, and multimerization to be above 70 kDa [461].

3.5. Bispecific Antibodies

When single component targeting is insufficient, an improved therapeutic response can require
agents that can engage more than a single target linked to a single mechanism of action. There can be
limitations with the use of mono-specific antibody formats in that some patients will not respond to
such therapy after a period of time. Because there can be crosstalk between signaling pathways, there
can be the development of resistance during the progression of diseased tissue. Thus, to regulate more
than one disease-causing pathway, there are extensive efforts to use bispecific antibodies (BsAbs) to
improve the therapeutic profile. BsAbs are engineered antibodies that have two domains that bind to
two different antigens or to two epitopes on the same antigen.

There are strong therapeutic rationales for BsAbs: BsAb can target multiple causative agents for a
disease with advantages over combination therapy using antibody mixtures; immune cell redirection
via BsAb crosslinking of an effector biomolecule or effector cell to a specified target; and synergy
through the coupling of multiple targets [462,463]. Likewise, the ability to bind to different ligands can
exhibit an increased avidity and target residence time when both domains can bind simultaneously to
their target sites [321,464]. This is because the binding of one binder forces the second tethered binding
arm to stay close to its corresponding site. This ‘forced proximity’ favors its binding and rebinding
(once dissociated) to that site. However, rebinding will also take place when the diffusion of freshly
dissociated ligands is merely slowed down. Such targeting of multiple signaling pathways plays
unique roles in the control of potential resistance mechanisms that are typical of the pathogenesis of
various cancers. A single agent BsAb can have the advantage over a combination of mAbs by having
improved compliance and less complex regulatory hurdles.

There are three approved BsAbs: Catumaxomab that can bring T cells or T lymphocytes via
CD3 binding closer to cells expressing EpCAM (Trion Pharma); blinatumomab that also has a
CD3-binding arm to B lymphomas with CD19(Micromet/Amgen); and Helimbra or emicizumab-kxwh
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(Roche—Chugai) that mimics the cofactor VIII for patients with hemophilia A. Catumaxomab is
produced using quadroma technology where the HC and LC fragment of mouse mAbs against CD3
and rat mAbs against EpCAM were secreted by fusing the respective hybridomas to form a BsAb
with an intact Fc. Although quadroma molecules can be produced using a variation of the hybridoma
technology, Good Manufacturing Practice (GMP) scaleup to isolate the BsAb was difficult because of
the challenge of isolating the BsAb from the permutations of HC/LC fragments. This BsAb was also
designed to have the Fc region that can bind to FcγR-activating receptors to permit co-localization of
cells with Fc receptors, such as macrophages, dendritic cells, and natural killer (NK) cells [465,466].
While the catumaxomab Fc region can enhance activation of the patient immune system against tumor
cells via T cell-mediated lysis with ADCC and ADCP, there were strong adverse effects coming from
the induction of anti-drug antibodies that bound to the combination or individual mouse and rat mAb
sequences. Unfortunately, the formation of anti-drug Abs against the mouse and rat mAbs led to an
immune response against the BsAbs, resulting in worsening of the patient’s prognosis [467].

To bypass the challenges of having mouse and rat Fc sequences, Blinatumomab was developed
using the Diabody technology with a binding domain against CD19 on B cell lymphomas and CD3
binding to the surface of T cells for use in lymphoma and leukemia [468–470]. As with Catumaxomab,
blinatumomab fosters the redirection of T cells to tumor cells without the constraints of the T cell
receptor–major histocompatibility complex restrictions. The molecule is very potent and has to be
delivered at low concentrations. Since the CMC process employed a recombinant bacterial expression
of a single gene product, there was optimization of the downstream process to generate a stable drug
substance free from residual impurities, such as host cell protein and DNA. However, because of the
rapid clearance due to the short PK profile, this molecule is typically delivered via an infusion pump.

The third approved BsAb is Helimbra or Emicizumab-kxwh that have Fab regions that bind
enzyme factor IXa (FIXa) and the substrate factor X(FX) [471]. Coagulation factor VIII (FVIII) can be
added to reduce the bleeding complications of patients with hemophilia A. However, FVIII has poor PK
properties. Thus, emicizumab was made to bind simultaneously the enzyme and substrate to mimic the
partial function of factor VIII and restore some anticoagulant activity [472,473]. Humanized Abs that
bind to FIXa and FX were put into a stabilized human IgG4 BsAb subtype with two sets of mutations.
The BsAb has an S238P substitution to stabilize the hinge regions, preventing Fab-arm exchange. To
generate the BsAb, a mixture of four expression vectors encoding the respective heavy and light chains
of the FX and FIXa-specific Abs is used. The BsAb also had the “knobs-into-holes” mutation to promote
the heterodimerization efficiency of the two heavy chains. Nonetheless, significant downstream
purification efforts were required to isolate the BsAb. These difficulties in the manufacturing the
BsAb were overcome by re-engineering the BsAb to have a common light chain for the anti-FX and
anti-FIXa heavy chains and to modify the HC to facilitate ion exchange chromatography for BsAb
purification [474].

We review different applications of how BsAbs can overcome the challenges of single target mAbs
by modulating more than one pathway simultaneously, redirecting immune cells to specific targets;
facilitating transport across tissue barriers; and delivering payloads to more specific targets.

Enhanced avidity has been reported for an EGFR x cMet BsAb (the use of EGFR x cMet refers to
the BsAb, as compared to EGFR + cMet, which is the combination of the two parental EGFR and cMet
mAbs) that is superior to the combination of EGFR mAbs and cMet mAbs (EGFR + cMet) [475,476].
This BsAb targets multiple resistance factors simultaneously by inhibiting primary or secondary
mutations of the EGFR and cMet pathways [477]. Alternatively, a BsAb can target two non-overlapping
epitopes of a target antigen to enhance the specificity and affinity of the therapeutic Ab. The bispecific
binding can induce Her2 receptor crosslinking, which can further suppress Her2 activity [478].

There is great interest in utilizing Ab modulation of protein–protein interactions for diseases
in the brain. However, the aforementioned pharmacokinetic properties of an IgG can prevent the
high flux diffusion across tissue barriers. There are many researchers developing BsAbs to cross the
blood–brain barrier (BBB) to target pathogenesis mediators in neurological diseases [479,480]. Couch



Antibodies 2019, 8, 55 40 of 80

et al. designed a bsAb that binds to transferrin receptor (TfR) and β-site APP-cleaving enzyme 1
(BACE1) to facilitate diffusion across the BBB [481,482]. TfR is highly expressed on the surface of
the brain endothelium. After binding to TfR, the circulating bsAb is transported into the brain via
receptor-mediated transcytosis. In the brain, BACE1 is an aspartyl protease that contributes to the
pathogenesis of Alzheimer’s disease. Targeting BACE1 has been a strategy for treating Alzheimer’s
disease [483]. The affinity between the anti-TfR Fab and TfR was selected to be weak to allow bsAb
release from the endothelium and enter the brain to target the disease mediator BACE1 with the
other binding arm. The safety liabilities of TfR-bispecific antibodies that cross the blood–brain barrier
involves modulation of the epitopes that control the binding, internalization, and transport [481]. So
far, a preclinical study showed that the BsAb could alleviate brain disease syndromes [483].

There is also interest in having molecules with asymmetric Fc regions that have different levels
of engagement to FcγR and FcRn. Targeting IgG Fc region-binding selectivity of FcγRIIa versus
FcγRIIb resulted in having increased ADCC activity with less other immune effector functions [484].
Asymmetric Fc with mutations in the hinge and CH2 domain can reduce binding to FcγR and C1q to
decrease ADCC and CDC depletion of target cells [485]. In addition, such a strategy was used to select
for Fc-silencing mutations that retain IgG1 Fc region stability to maximize CMC success. Likewise,
asymmetric Fc engineering was used to have selective FcγRIIIa binding to obtain higher ADCC activity
with minimal changes to IgG1 Fc stability [356].

As demonstrated in the three aforementioned BsAbs, the design was based on meeting the
therapeutic hypothesis with the added challenge of meeting the CMC requirements. In the past 20
years, numerous designs can be gleaned from extensive reviews that cover many aspects of the bispecific
molecule engineering, activity, and patent survey [1,486–491]. A reductionist view of bispecific agents
has relied on the basic design principles of a human mAb, which include binding domains, hinge
sequences, and the Fc region as shown in Figure 9. Protein engineering has extended the binding
domains to include Fab, scFv, DARPins, Centyrins, Ankyrins, VHH, cytokines, enzymes, etc. The
hinge has been extended to include linkers of peptide sequences from mAb sequences, subtype hinge
sequences, variation of peptides having flexible linkers (Thr, Gly, Ser, Ala motifs), and rigid linkers (Pro,
Arg, Phe, Thr, Glu, Gln motifs), etc. [492]. The Fc region can include the fusion of albumin-binding
domains, polyethylene glycol polymers, etc. [86,397].

Antibodies 2019, 8, 55 40 of 78 

etc. The hinge has been extended to include linkers of peptide sequences from mAb sequences, 
subtype hinge sequences, variation of peptides having flexible linkers (Thr, Gly, Ser, Ala motifs), and 
rigid linkers (Pro, Arg, Phe, Thr, Glu, Gln motifs), etc. [492]. The Fc region can include the fusion of 
albumin-binding domains, polyethylene glycol polymers, etc. [86,397]. 

 
Figure 9. Schematic representation of bispecific and multispecific molecules. Domains 1–6 
(D1–D6) can represent binding domains that can include Fab, scFv, DART®, VHH, and 
other alternative binding motifs. Linker sequences (L1–L6) can represent distinct linker 
regions. The Fc region can represent the IgG Fc region or be replaced with another other 
motif for modulation of the FcγR, FcRn, and PK profile. A standard mAb has D1 = D2, L1 = 
L2, and Fc = IgG Fc region. 

In this view, there are five groups of BsAb formats as shown in Figure 9: Asymmetric IgG 
molecules with heterodimeric heavy chains (D1 ≠ D2, with L1 = L2); fusion of IgG-binding domains 
(combinations of D1 with or without D3, D2 with or without D4 with L1, L2, L3, and L4); fusion of 
binding domains to IgG molecules (combinations of D1, D2, D3, D4, D5, and/or D6 with L1, L2, L3, 
L4, L5, and/or L6); engineering binding domains of IgG molecules (multiple binding at D1, D2, or Fc 
regions); and chemically coupled IgG fragments. A normal IgG molecule has D1 = D2 and L1 = L2 
with a single Fc region (Figure 1). The continuing evolving BsAb results in changes in: Valency of 
binding arms to control avidity; architecture via the design of binding arms and linker types to control 
flexibility for access and functional activity; inclusion of different binding arms that can permit the 
engagement of different epitopes; and pharmacokinetic control by using Fc regions or other binding 
arms to serum proteins. There are many variations of tethering of binding domains and PK 
modulation domains that employ non-Ab motifs. However, to limit the focus on BsAb, in this review, 
we focus on the structure–function impacts of bispecific IgG fragments and bispecific intact IgG 
molecules that use Fab and Fc components. 

3.5.1. Bispecific Fragments 

The variable region of the antibody Fab region is the smallest unit of an antibody that possesses 
antigen-binding capabilities. A major advantage of using fragments relative to full-length IgG is the 
potential for increased penetration into malignant tissue due to the decrease in size [493]. Although 
the absence of the Fc region abrogates FcγR binding and broadly eliminates ADCC, ADCP, and CDC, 
the incorporation of effector cell specificity (e.g., anti-CD3) allows for tailored effector mechanisms 
like T cell redirection. Similarly, FcRn-binding capability is removed. In cases where transient drug 
exposure is favorable (such as diagnostics), this apparent defect can lead to a desired increase in 

Figure 9. Schematic representation of bispecific and multispecific molecules. Domains 1–6 (D1–D6) can
represent binding domains that can include Fab, scFv, DART®, VHH, and other alternative binding
motifs. Linker sequences (L1–L6) can represent distinct linker regions. The Fc region can represent the
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In this view, there are five groups of BsAb formats as shown in Figure 9: Asymmetric IgG
molecules with heterodimeric heavy chains (D1 , D2, with L1 = L2); fusion of IgG-binding domains
(combinations of D1 with or without D3, D2 with or without D4 with L1, L2, L3, and L4); fusion of
binding domains to IgG molecules (combinations of D1, D2, D3, D4, D5, and/or D6 with L1, L2, L3,
L4, L5, and/or L6); engineering binding domains of IgG molecules (multiple binding at D1, D2, or Fc
regions); and chemically coupled IgG fragments. A normal IgG molecule has D1 = D2 and L1 = L2
with a single Fc region (Figure 1). The continuing evolving BsAb results in changes in: Valency of
binding arms to control avidity; architecture via the design of binding arms and linker types to control
flexibility for access and functional activity; inclusion of different binding arms that can permit the
engagement of different epitopes; and pharmacokinetic control by using Fc regions or other binding
arms to serum proteins. There are many variations of tethering of binding domains and PK modulation
domains that employ non-Ab motifs. However, to limit the focus on BsAb, in this review, we focus on
the structure–function impacts of bispecific IgG fragments and bispecific intact IgG molecules that use
Fab and Fc components.

3.5.1. Bispecific Fragments

The variable region of the antibody Fab region is the smallest unit of an antibody that possesses
antigen-binding capabilities. A major advantage of using fragments relative to full-length IgG is the
potential for increased penetration into malignant tissue due to the decrease in size [493]. Although the
absence of the Fc region abrogates FcγR binding and broadly eliminates ADCC, ADCP, and CDC, the
incorporation of effector cell specificity (e.g., anti-CD3) allows for tailored effector mechanisms like T
cell redirection. Similarly, FcRn-binding capability is removed. In cases where transient drug exposure
is favorable (such as diagnostics), this apparent defect can lead to a desired increase in clearance. On
the other hand, the half-life can be prolonged by incorporating albumin-binding functionality into one
of the antigen-binding domains [494].

Fusion of Antigen-Binding Fragments

Perhaps the most obvious antigen-binding region of antibodies is the Fab region, which constitutes
the light chain (VL and CL) and heavy chain Fd (VH and CH1). Bispecific tandem Fabs are more
difficult to form than single-chain Fv and sdAb fusions, since the multiple chains may pair incorrectly
to create non-functional paratopes. To address this challenge, Wu et al. made use of mutations at the
LC–Fd interface that favor correct polypeptide pairing [495]. Their tandem Fabs were created using
one polypeptide of linked heavy chains (VHA-CH1A-(G4S)3-VHB-CH1B) and two separate light chains
(VLA-CLA and VLB-CLB). After expression in HEK cells and purification of the His-tagged protein, the
EGFR × CD3 Fab was found to have similar antigen binding to the corresponding tandem scFv protein
as well as better thermal stability and less aggregation. Interestingly, size had a significant impact on
the ability of different bsAb formats to mediate T cell killing of EGFR-expressing cells. The 50-kDa
tandem scFv had the highest potency, followed by the 100-kDa tandem Fab, and the 150-kDa bispecific
IgG had the highest half-maximal effective concentration (EC50). Clearly, the size and geometry of
bispecific molecules significantly impacts their ability to form a productive immunological synapse.

Fab regions can also be genetically fused to smaller binding moieties to generate bi- and trispecific
molecules. For example, a human placental alkaline phosphatase (hPLAP) × BCL1 bibody (~75 kDa)
was generated by fusing a BCL1 scFv to the LC C-terminus of an hPLAP Fab using a six-amino acid
linker [496]. Likewise, a hPLAP × CD3 bibody was formed by fusing a CD3 scFv to the C-terminus of
the hPLAP Fd using a (G4S)3 linker. More impressively, a 100-kDa tribody targeting all three antigens
was generated by combining the LC (hPLAP)-scFv (BCL1) and Fd(hPLAP)-scFv (CD3) chains. While
monomeric or dimeric LC contaminants were formed, the majority of antibody products had the
expected composition after HEK expression. Simultaneous binding was demonstrated for each pair of
tribody antigens (hPLAP × BCL1, hPLAP × CD3, BCL1 × CD3), as was T cell recognition of both tumor
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cell types. In addition to trispecific agents, the authors suggest that the Fab-(scFv)2 format could also
be used to create bispecific molecules that are bivalent for one antigen.

The VHH domain of camelid heavy chain antibodies represents another compact moiety that
can be tethered to Fab fragments. Li et al. prepared 65-kDa bispecific proteins called S-Fabs by
fusing a VHH domain targeting CEA to the C-terminus of the Fd chain of an anti-CD3 Fab [497].
The construct was produced in E. coli via transformation with the normal anti-CD3 LC and the Fd
(CD3)-VHH(CEA) fusion and purified using the His tag at the LC C-terminus. Interestingly, binding of
S-Fab to CEA-expressing cells was achieved despite direct fusion of the anti-CEA VHH N-terminus
to the anti-CD3 Fd without a spacing linker. It is not clear whether this design choice impacted the
affinity of the VHH for CEA due to steric or conformational constraints. Regardless, the S-Fab depleted
CEA-bearing tumor cells in a T cell-dependent manner, demonstrating the utility of these bispecific
Fab-VHH fusions.

Fusion of Single-Chain Variable Fragments

Because the Fv (VH + VL) represents the minimal structure of human antibodies containing
an intact antigen-binding interface, the scFv format has been widely used to prepare small bsAb
frameworks. One of the simplest ways to generate multifunctional agents is to genetically fuse two
scFv domains with differing specificity, creating tandem scFvs or scFv2s. Reports of such constructs
date back to the 1990s. In one early study, scFvs targeting L6 tumor-associated antigen and human
CD3 were genetically fused by a 27-amino acid helical linker peptide and expressed in COS cells [498].
The bispecific construct was found to co-localize T cells and L6-expressing target cells, and to elicit
cytotoxic activity against the target cells. Notably, this particular scFv construct was also fused to the Fc
region as a purification tag. Within a week, another report was published describing a bispecific scFv2

targeting fluorescein and single-stranded DNA [499]. This protein, in contrast to the previous example,
was expressed in E. coli and refolded from inclusion bodies. In this case, the linker between individual
Fvs was based on the CBH1 peptide from Trichoderma reesi cellobiohydrolase I. An assessment of
the binding affinity demonstrated that bacterially expressed bispecific tandem scFvs can bind their
antigens with a similar affinity to the parental scFv domains. These studies established that genetic
fusion of distinct Fvs is a valid approach to achieve specificity for multiple antigens.

Within the realm of cancer immunotherapy, a common approach to generate a robust anti-tumor
response is to co-localize effector cells to the site of malignancy and modulate their response. Bispecific
T cell-engaging (BiTE) antibodies were developed shortly after the first reports of bispecific scFV2 and
accomplished this feat by binding to both T cells (often via CD3ε) and target cell antigens with their scFv
domains. In one early example, Mack et al. expressed BiTEs targeting CD3 and EpCAM in CHO cells
and purified them via a C-terminal His tag [500]. Their 60-kDa protein used the VLA-VHA-VHB-VLB
domain order, with a flexible G4S or (G4S)3 linker joining the individual Fv fragments. In addition
to binding both antigens with similar properties as the parental scFvs (as demonstrated by FACS
and ELISA), nanomolar concentrations of the BiTE were sufficient to elicit T cell-mediated lysis of
EpCAM-expressing cells in a 51Cr release assay. A CD19 × CD3 BiTE with a similar construct design
and expression/purification strategy was later generated and shown to have potent activity against
CD19-positive lymphoma cells [469,470]. This molecule became blinatumomab, which was approved
in 2014 for the treatment of acute lymphoblastic leukemia, thus demonstrating the aptitude of the
tandem scFv/BiTE framework for treating cancer.

Similar to tandem scFvs is the diabody format, which contains two separate polypeptide chains
(e.g., VHA-VLB and VHB-VLA) that associate non-covalently into a functional bispecific molecule.
Use of a short linker between the VH and VL domains of a scFv prevents intrachain association
between domains and instead favors dimerization with another molecule of scFv. By co-expressing two
distinct VH-VL scFvs containing short linkers in E. coli, Hollinger et al. were able to form diabodies
targeting both phenyloxazolone-bovine serum albumin and hen egg lysozyme [501]. Simultaneous
binding of both antigens was shown by sandwich ELISA and surface plasmon resonance (SPR). In
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general, 15-residue linkers were found to promote the formation of scFv monomers, which can form
intrachain associations, while shorter five-residue linkers tended to cause more dimerization for the
formation of two antigen-binding sites. From here, strategic ordering of VH and VL domains to
place half of each functional Fv in a different polypeptide chain allows for the formation of diabodies
that can bind two distinct antigens. It is important to note that even when functional heterodimers
are energetically preferred, non-functional homodimers may also form and must be removed via
affinity chromatography.

Numerous diabody derivatives have been explored that attempt to mitigate the challenges
associated with the non-covalent association of two separate chains. One straightforward way to
stabilize proper chain pairing is to link the chains together, as was done for single-chain diabodies
(scDbs) [502]. In contrast to scFv2 antibodies, which place paired domains in close proximity (e.g.,
VHA-VLA-VHB-VLB) and have sufficiently long linkers within an Fv, the scDb design uses a staggered
domain order (e.g., VHA-VLB-VHB-VLA) and a short intra-Fv linker to prevent mismatched chain
pairing. Here, 58-kDa mammalian-expressed CEA × β-galactosidase scDbs successfully recruited the
enzyme to the target cells, which allowed for local activation of a prodrug to cytotoxic dauromycin.
Additionally, the single-chain format had superior stability in serum than the corresponding diabody
based on the retention of enzyme recruitment. Thus, consolidation of the diabody framework into a
single chain can simplify protein expression and prevent chain mispairing while permitting a geometry
that is distinct from that of structurally distinct scFv2s.

In addition to single-chain molecules, other strategies to stabilize the correctly formed diabody
(especially relative to inactive homodimers) have been explored. Similar to the knob-into-hole (KiH)
idea that allows for heterodimerization of half-antibodies to form intact bispecific IgG antibodies,
Zhu et al. used different sets of KiH mutations to stabilize diabodies targeting HER2 and CD3 [503].
Their variant v5 (VH V37F/L45W and VL Y87A/F98M) increased bsDb purity from 72% to 92% while
reducing expression yields in half. The mutations also impacted antigen binding, with HER2 affinity
decreased but T cell affinity increased. The same group reported a disulfide-stabilized mutant (VH
D101C and VL L46C) that increased heterodimer purity to 96%. However, this variant was difficult to
produce in E. coli, forming insoluble aggregates and purified products that were only 65% disulfide
stabilized. Shortly after, another study presented a distinct disulfide-linked diabody (VH A44C and VL
G100C) that showed similar disulfide oxidation issues when expressed in E. coli, whereas heterodimers
from Pichia pastoris were >90% covalently linked [504].

Dual-affinity re-targeting proteins (DARTs) are a prominent class of diabody derivatives that
incorporate a C-terminal disulfide bond to stabilize the correctly formed dimer species. The first
DART was described in 2010 and targeted CD16 and CD32B to recruit NK cells to act on leukemic
B cells [505]. Covalent stabilization of the correct heterodimer was achieved either by appending
residues LGGC at the end of each C-terminus or by adding FNRGEC to one chain and VEPKSC to
the other, which mimics the sequence N-terminal to a standard IgG1κHC-LC disulfide bond. When
produced in mammalian cells, the DARTs exhibited no aggregation and were stable in serum at 37 ◦C
for weeks and in phosphate-buffered saline (PBS) at 4 ◦C for months. In addition to demonstrating
potent ADCC against various CD32-expressing cells with EC50 values in the pg/mL range, the DARTs
were protective in a lymphoma xenograft mouse model. Rational stabilization of proper chain pairing,
especially using human-derived sequences, makes the DART framework an elegant advancement in
the field of bispecific fragments.

TandAbs (tandem antibodies) are a diabody-based framework that have the advantage of bivalent
binding to each of two antigens. It uses the same domain orientation as scDbs but favors dimerization
using a short central linker. Kipriyanov et al. first described the format in 1999, revealing that the
increased valency of a CD3 × CD19 TandAb allowed for higher avidity antigen interactions as a result
of slower dissociation [506]. When expressed in E. coli, their 57-kDa construct dimerized to form the
114-kDa tetravalent species. Similar to how diabody formation is favored using scFvs with short
linkers, TandAb formation was increased using a shorter central linker (12 residues versus 27) to favor
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dimerization. The larger size of TandAbs was also found to increase their serum half-life relative
to diabodies. In a follow-up study, TandAbs were shown to accumulate more in tumors, likely due
to higher-avidity CD19 interactions [507,508]. For cases where prolonged receptor engagement is
important, tetravalent TandAbs may therefore be preferred over molecules with two binding sites.

Fusion of Single-Domain Antibodies

While the scFv fragment (composed of linked VH and VL domains, ~25 kDa) is the minimal intact
antigen-binding moiety of human antibodies, camelids produce heavy chain antibodies in which the
antigen-binding moiety (VHH) is a single domain of just ~15 kDa. Thus, VHH domains of different
specificities can be linked to create extremely compact bispecific molecules. For example, Conrath
et al. created 37-kDa bispecific tandem VHH antibodies targeting lysozyme and β-lactamase [509].
These molecules used a 29-amino acid linker derived from the llama heavy chain antibody (IgG2a)
hinge and were expressed in E. coli. While binding was maintained for both antigens, they noted a
four-fold increase in the KD value for the C-terminal VHH that might be caused by interference from
the linker. This study demonstrated the potential of the tandem VHH format and paved the way
for similar bispecific and multispecific molecules. Likewise, VNARs and other binding domains are
amenable for similar multispecific construct design.

Another study explored whether it would be feasible to join human domain antibodies (based
on VH or Vκ) to create multi-functional agents. Human dAbs against C. albicans secretory aspartyl
proteinase 2 and mannoprotein 65 were linked by a 25-residue linker to create bispecific tandem
dAbs [510]. After production in E. coli, mono- and bispecific dAbs were purified by protein A or
protein L chromatography. Although binding parameters of the parental and bispecific dAbs were not
directly compared, the bispecific molecule appeared to be more effective at clearing fungal infections.
The potential advantage of using dAbs based on human VH or VL is the reduced risk of immunogenicity
that may be a concern for dAbs from other animals. However, the developability properties of VHH
and VNAR frameworks may be superior. Unlike the human VH/VL domains, which have hydrophobic
interfaces that allow for chain pairing, VHH and VNAR domains are naturally monomeric and tend to
have more hydrophilic surfaces [511].

3.5.2. Fc-Dependent Bispecific Antibodies

The Fc region of BsAb Ig formats allows for applications using Fc effector function control, such
as the modulation of ADCC, CDC, half-life modulation, and heterodimerization. Ideally, BsAb could
be selected via taking any one set of mAb binders and mixing them with another set of mAb binders.
However, the use of four expression vectors to create BsAb from two sets of HC and LC can result in a
mixture of different HC and LC combinations. To minimize the downstream efforts to isolate the BsAb,
there have been two general approaches—HC and LC dimerization control.

Heavy Chain Heterodimerization

When forming IgG-like bispecific antibodies, a major challenge is that co-transfection of heavy
and light chains with different specificities leads to three possible heavy chain dimers (the heterodimer
and both homodimers), where the desired heterodimer makes up only 50% of the products by random
chance. As a result, about half of the protein products will be contaminating homodimers that are
monospecific instead of bispecific. This has been referred to as the heavy chain problem. Several
engineering strategies have been applied to drive a preference for heavy chain heterodimer formation
and allow for cleaner bispecific antibody preparations.

A pioneering approach to address the heavy chain problem was to engineer ‘knob’ and ‘hole’
mutations into complementary heavy chains of distinct specificities. Ridgway et al. identified residues
in the IgG CH3 domain that form direct interchain contacts [512]. Amino acids at the center of this
interface were rationally mutated to introduce a protruding knob with a large surface area into one
heavy chain, and a sunken hole with small sidechains into the complementary heavy chain. Using this
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strategy, the knob mutation T366Y and hole mutation Y407T were developed. When one mutation
was incorporated into an anti-CD3 heavy chain, and the other was incorporated into a CD4-IgG
immunoadhesin, the co-expression of the anti-CD3 heavy chain, anti-CD3 light chain, and CD4-IgG
genes allowed for preferential (>90%) formation of the corresponding hybrid molecule with CD3- and
CD4-binding functionality.

Subsequently, Atwell et al. built upon this knob-into-hole approach to generate IgG variants with
an even higher preference for heterodimer formation [513]. The T366W mutation was incorporated
into one CH3 domain as the knob variant, and then a library of CH3 hole mutants was generated with
diversity at positions 366, 368, and 407, which are in close proximity to residue 366 on the opposite
CH3 domain. Variants that increased the stability of the CH3 heterodimer were selected by seven
rounds of phage display. One pair of mutants (T366W in one heavy chain and T366S/L368A/Y407V in
the other heavy chain) had near complete heterodimerization and produced complexes that were more
stable than those produced by singly mutated variants (T366W and Y407A) as measured by guanidine-
and heat-induced unfolding. Shortly after, these knob-into-hole mutations were combined with other
mutations to introduce a stabilizing interchain disulfide bond in heterodimerizing CH3 domains [514].
The resulting sets of heavy chain mutations (S354C/T366W and Y349C/T366S/L368A/Y407V) were used
to produce 95%-pure bispecific antibodies targeting HER3 and CD110. Light chain mispairing was
precluded using a common light chain that formed functional paratopes of differing specificity when
combined with either heavy chain. Finally, the conserved function of the mutant heterodimerized Fc
region was demonstrated using HER2 antibodies that had similar ADCC activity whether or not they
incorporated the CH3 mutations.

In addition to shape complementarity, electrostatic interactions in the Fc region have also been
engineered to favor heavy chain heterodimerization. Gunasekaran et al. identified charge-mediated
interactions at the CH3–CH3 interface and strategically mutated residues to cause repulsion of identical
heavy chains and attraction of opposite heavy chains [515]. While single mutations in each chain
(D399K and K409D) produced some preference for heterodimerization, a pair of double mutants
(E356K/D399K and K392D/K409D) allowed for superior heterodimer purity (98%). To avoid the issue
of light chain mispairing, a bispecific scFv-Fc format was devised using scFvs targeting CD3 and
tumor-associated receptor tyrosine kinase (TARTK). The electrostatic steering mutations allowed for
the production of CD3xTARTK scFv-Fc fusions that retained binding to both antigens and induced
T cell killing of TARTK-bearing cells. The use of a common light chain to avert the light chain
problem allowed for the development of the bispecific antibody emicizumab (factor IXa x factor X),
which was approved in 2017 for the treatment of hemophilia A [474]. There have been extensions
to the knob-into-hole and the electrostatic Fc heterodimerizations to introduce Fc mutations to have
distinct isoelectric points so as to enable facile purification of the heterodimeric BsAb with minimum
perturbations to Fc region Tm thermal stability [516]. These modifications have been applied to CD3
redirection and dual checkpoint blockade BsAbs.

Interestingly, the structural oddities of human IgG4, including a labile hinge enabled by S228
(proline in other subclasses) and weaker inter-CH3 interactions caused by R409 (lysine in other
subclasses), allow it to undergo a process called Fab-arm exchange in vivo to create bispecific IgG4
antibodies [78]. Labrijn et al. drew from this natural phenomenon to create a process called controlled
Fab-arm exchange (cFAE) for the formation of bispecific IgG1 antibodies [517,518]. In contrast to the
other methods described, cFAE is performed in vitro using separately purified parental antibodies,
rather than relying on the co-translational formation of heavy chain heterodimer during co-expression
of the respective chains. A heavy chain containing the K409R mutation was found to preferentially
heterodimerize with several heavy chain mutants having variation at positions 368, 370, 399, 405,
or 407 when the chains were co-incubated in the presence of a reducing agent and allowed to swap
half-antibodies. Mutation of F405 to leucine (which is present in rhesus monkey IgG4) largely favored
the heterodimer, and the combination of F405L and K409R in opposite chains was pursued as a
general bispecific platform. The pairing consistently allowed for >95% heterodimer formation when
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parental antibodies were combined with a reducing agent and exchanged. The rate constants have
been determined for the mechanism of IgG1 BsAb formation [519].

Subsequent buffer exchange to remove reductant allows the inter-heavy chain disulfide bonds
to re-oxidize, stabilizing the bispecific product. Importantly, the interaction between heavy and
light chains is not disrupted during half-antibody exchange so that light chain mismatch is avoided
without the need for a common light chain. The retention of Fc-mediated functions was verified
by demonstrating normal levels of CDC and ADCC from CD20 antibodies containing the mutant
Fc regions, as well as normal pharmacokinetics for a bispecific CD20 × EGFR bispecific antibody
generated by cFAE.

The cFAE method has been extended to include other IgG1 and IgG2 parental Abs with K409R and
L368E mutations to generate stable full-length BsAbs [520]. These methods can also use modulation of
protein A binding to accelerate the generation of BsAbs [521,522].

Some Fab regions were selected for dual antigen recognition [203,523,524]. However, these
constructs may not be capable of binding to two different epitopes simultaneously. To overcome this
challenge, single chain Fv domains have been fused onto the termini of HC/LCs to generate dual
action Fab molecules. The dual variable domain, DVD, combines the variable domains of two mAbs in
tandem to form dual-specific IgG molecules [525–528]. However, careful selection of the binding arms
and linker domains is required to bypass developability and immunogenicity concerns.

Light Chain Control

Often, in CMC development, it was found that heavy chain heterodimerization was insufficient to
control LC mispairing. A method to prevent this problem is to generate BsAb that have parental Abs
that have different light chains families. Kappa-lambda light chain (κλ–LC) BsAbs have the same HC
and two different LCs. The production of κλ-bodies involves the co-expression of one HC and two
LCs (one κ, and one λ) with different binding specificities in a single cell [529]. By using serial affinity
purifications, a fully human IgG format can be prepared with scalable and more facile purification. To
further control LC pairing, BsAb with common LC have been developed. The BsAb can have parental
Abs that have been selected to have the common LC [530]. However, custom screening is required to
find the best BsAb selection in either the common LC or κλ BsAbs.

In working towards getting any pair of mAb to prepare BsAb from four expression vectors, several
methods have been explored that couple LC engineering: CrossMab technology that enforces LC
domain crossover in the Fab region [531]; hydrophobic and electrostatic interactions and disulfide
bonds [532–537] to minimize LC swapping for proper HC/LC pairing.

3.5.3. Considerations for Selection

The choice of what platforms are driven by the desired therapeutic product profile, ability to
integrate engineering platform to discovery repertoire of pharmacophores, and access to licensed
technology and platforms. Regardless of the platform, one major theme of lead selection of BsAb is to
utilize multiple binding arms that span different epitopes. Concomitant to each epitope, it is critical
to utilize a broad library of paratopes with different affinities and potencies for target engagement.
Affinity selection on a target is not enough. Selection must be based on the pharmacology that may
require inhibition of native ligands, co-receptor activation, or target-mediated agonism. Thus, it is not
uncommon that high affinity is not linked to molecular efficacy [30,538].

After the selection of the binding arms, there is much to be done during lead selection by probing
architecture, valency, order, specificity, and potency tuning to identify the best BsAb. An example of
the therapeutic product profile driving molecular design involves the design of T cell or T lymphocyte
redirection to attack tumor cells that are marked with a particular cell surface antigen protein. The
inclusion of the valency of epitopes can mediate the avidity for low-density receptor cell targeting.
These concepts are highlighted in an excellent review of different bispecific molecules that mediate T
cell cytotoxicity to diseased tissues [539]. The review describes general strategies about how to optimize
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target antigen potency while preventing toxicity that can occur from engagement of normal tissue
antigens. Likewise, some binding arms have to be modulated to have lower affinity that manifests in
changes in the kinetic on and off rates to increase the potential therapeutic index of the molecule [138].
These classes of molecules can complement the utilization of engineered T cells with chimeric antigen
receptors [540].

The engineering concepts for T cell redirection molecules include screening for: Different epitopes
on target cell surface membrane proteins on the T cell and target cell; internalization of cell surface
targets when bound to BsAb, and potency of the molecule engagement with T cell and target cell
antigens. BsAb architecture can vary the orientation of the binders, linkers, valency, functional activity,
and developability [539]. The role of the anti-CD3-binding domains in BsAb with a broader range of T
cell agonism has been shown to have a potential wider therapeutic index [541]. In addition, the choice
of the BsAb subtype can affect T cell redirection activity [389]. As the field evolves, more exploration
into novel formats with different potency and kinetics of target engagement will expand possibilities
for T cell therapeutics [539]. There is ongoing clinical development to understand how best to employ
T cell redirection molecules versus chimeric antigen receptors [542].

Redirection of immune cells towards diseased cells are termed as effector cells that can
comprise other cells beyond T cells and include NK cells, macrophages, neutrophils, monocytes, and
granulocytes [396,543] to facilitate specific killing of tumor cells. Each of the effector cells express
different types of activating receptors, and a specific population can be recruited by carefully selecting
the targeted trigger receptor [544,545]. Redirected cytotoxic activity has been shown, with bispecific
antibodies recruiting all effector cells, including macrophages [546]. A CD47xCD19 BsAb using an
innate immune checkpoint control molecule, CD47, was used to block the macrophage suppressive
signals in cancer cells [547]. Although the recruitment of T cells is far more widely used because
of their proliferation ability and potent cytotoxicity, there are advantages in expanding the pool of
immune cell clearance of malignant cells.

The choice of the binding arm paratopes should consider the developability of the individual arm,
since the inclusion of problematic domains into the BsAb format can make that CMC process more
difficult. The CMC criteria regarding ease of production, liabilities in post-translational modification,
solubility, and clipping should be considered. However, regarding BsAbs with higher levels of dosing,
several hurdles need to be addressed: Identification of a clear architectural format that is amenable
to reasonable manufacturing costs. There has been some development of strategies to improve
downstream purification using differential protein A binding and anti-lambda/anti-kappa chain affinity
columns [548]. Presently, several clinical BsAb have involved cell line self-assembly using common HC
or LC technologies, HC/LC association using point mutations in the framework, or controlled Fab-arm
exchange [1,2].

Since BsAb engineering involves putting the different domains together, careful potency and
efficacy selection is required to identify the best hits. In consideration of the therapeutic hypothesis,
there are still other factors that can control the in vivo potency, which include the biodistribution, PK,
dosing levels, and method of administration. Hence, the choice of scaffold, linkers, production host, and
scale-up processes play critical roles in the preparations of the clinical development supply. Ideally, the
sequence would minimize the presence of neoepitope to minimize the development of ADA. Besides
formats that are completely derived from the antibody structure, fusion proteins can also achieve
multifunctionality by combining the antigen specificity of one antibody domain with another targeting
protein. The domains can be coupled together using leucine zippers to generate tetravalent-bispecific
Abs. Likewise, developing a system to make BsAb with minimal human neo-epitopes can be important
to generate molecules for both chronic and acute indications.
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4. Evolving Applications

4.1. Multispecific Molecules

A natural extension of BsAbs to is have an increased number of binding arms to create multispecific
Abs that can be effective in engaging more epitopes on a target. In Figure 9, the binding domains can
involve combinations of binding domains using Fab, scFv, and VHH domains, or other scaffolds. With
the opportunity of mixing in cytokines and enzymes, there is no shortage of possibilities for protein
engineering. Ultimately, empirical screening will be required to determine what the best architecture
of such multispecific agents should be.

There is a medical need to have broadly neutralizing antibodies against highly variable pathogens,
such as infectious viruses. For instance, there have been several efforts to target clades of influenza A
and B separately [549–552]. However, such efforts led to therapies that could only combat the respective
class of influenza strains. Thus, a strategy was developed to prepare tethered multispecific antibodies
with binding domains that could inhibit all known strains of influenza A and B [553]. A multispecific
molecule has been engineered to incorporate diverse camelid single domain antibodies that recognize
conserved epitopes on influenza virus hemagglutinin. For instance, the multidomain Ab has enhanced
virus cross-reactivity and potency to inhibit influenza activity [553]. These binding domains engage
previously mapped hemagglutinin epitopes that are close together. Because of the proximity of
these epitopes, there can be steric hindrances that prevent the use of a tetravalent Fab-binding arm
multispecific Ab format. Thus, the research effort focused on the discovery of binding arm-based VHH
domains that have smaller paratope sizes. Such a molecule was able to bind to the different epitopes,
target both influenza strains A and B, and had the ability to protect against all circulating strains of the
virus with enhanced cross-reactivity and potency. The molecule was designed to have an active Fc
region to utilize ADCC activity that could contribute to in vivo activity [554].

Antibody therapeutics targeting solid tumors are often limited by poor accumulation in and
dispersal throughout the tumor tissues [555]. Since antibody fragments are small, they can be fused
with various protein to create new molecules with novel functions. Antibody fragments, such as
scFvs, can be fused with enzymes to localize such activity on a target cell. For instance, human
RNase has been fused to an scFv targeting HER2 to endow cytotoxic activity on human carcinoma
cell lines [556]. Permutations of multispecific fusions permit modulation of the enzyme activity
desired [557]. Preclinical studies have shown how these molecules can reduce tumor volume.

Prodrug activation, by exogenously administered or endogenous enzymes, for cancer therapy is
an approach to achieve better selectivity and less systemic toxicity than conventional chemotherapy.
Typically, activating enzymes have short half-lives in the bloodstream. By engineering a cage or
protease-sensitive peptide linker to block the activity of the enzyme or drug of interest, the trojan
horse technology increases the drug or enzyme half-life and can prevent the drug or enzyme from
cytotoxicity on healthy cells. Thus, the strategy is to use an antibody to deliver a pro-enzyme or
pro-drug to destroy a target cell.

The EGFR-binding arm of cetuximab was engineered to be have its binding domain be unmasked
by enzymes found in the tumor microenvironment [558]. In the absence of EGFR-binding properties in
normal tissue, this molecule was inert in systemic circulation in animal models. However, when the
mask was removed by appropriate proteases, the molecule restored the antigen binding and cell-based
activities of cetuximab. Thus, this strategy to increase the therapeutic index with localized activation
of the molecule has been expanded to other bispecific antibody applications, including immune cell
redirection. Likewise, the Ab or BsAb can be used to deliver a pro-drug that can be released in the
presence of enzymes in the tumor microenvironment [559] or by the higher reducing capacity in
hypoxic tumor cells [560].

Alternatively, the binding arms of BsAb can be selected to have pH-sensitive binding that is
responsive only in the diseased tissue of interest. For instance, a dual-function pH-responsive BsAb
has been made that binds to the tumor-specific antigen on the cell surface but not on the proteolytically
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shed soluble domain of that tumor antigen [561]. In one example, antibody fragments can be fused
with enzymes to develop antibody-directed enzyme therapies (ADEPTs) [562]. The enzyme can convert
a non-toxic pro-drug into a cytotoxic drug when it is in close proximity to target cells so as to be a
therapy for oncology. There is a report of an enzymatic tyrosinase nanoreactor based on metal-organic
frameworks (MOFs) that activates the pro-drug paracetamol in cancer cells in a long-lasting manner. By
generating reactive oxygen species (ROS) and depleting glutathione (GSH), the product of the enzymatic
conversion of paracetamol is toxic to drug-resistant cancer cells. Tyrosinase-MOF nanoreactors cause
significant cell death in the presence of paracetamol for up to three days after being internalized by
cells, while free enzymes totally lose activity in a few hours. Thus, enzyme–MOF nanocomposites are
envisioned to be novel persistent platforms for various biomedical applications [563]. Although the key
limitation has been the immunogenicity of the enzyme, the inclusion of non-immunogenic enzymes in
combination with prodrugs can generate potent molecules. ADEPT has the potential to be non-toxic to
normal tissue and can therefore be combined with other modalities, including immunotherapy, for
greater clinical benefit [564,565].

Antibody fragments can be fused with cytokines to generate immunocytokines [566,567].
Cytokines have been used for cancer patients but have substantial side effects and unfavorable
pharmacokinetic profiles. The presence of the antibody domain allows for tissue-specific localization
into malignant cells. These conjugated molecules can activate the immune systems of patients when in
proximity to diseased tissues. This could prevent the systemic side effects associated with systemic
administration of immune system-activating cytokines.

4.2. Intracellular Targeting

The therapeutic efficacy of anti-cancer drugs as low molecular weight chemical agents can be poor
because of the inability to inhibit protein–protein interactions effectively. Because of the limitation
of a small molecule drug interaction surface area, there is a great need to develop therapeutics
that can control intracellular protein–protein interactions. Antibody molecules could be selected to
have the specificity and potency to modulate critical cytoplasmic target molecule biology. However,
antibodies cannot cross intact cellular or subcellular membranes via passive diffusion into living cells
due to their size and hydrophilicity [568]. Antibody internalization into the cell can be accomplished
by taking advantage of normal receptor biology: Ligand binding causes receptor activation via
homo- or heterodimerization, either directly for a bivalent ligand or by causing a conformational
change in the receptor for monovalent ligand and receptor-mediated endocytosis [569]. However,
there is still use of the targeted receptor-mediated endocytosis machinery [570]. Manipulation of
receptor-mediated endocytosis and intracellular trafficking dynamics is typically employed in the
development of antibody drug conjugates. Many attempts have been made to directly deliver
antibodies into intracellular compartments that include microinjection, electroporation, and protein
transfection [571–573]. These are very selective therapies that cannot be generally scaled up with
multifocal disease targeting [574]. Thus, there is a need for obtaining antibodies that can enter specific
cells and tissues without the complications of the antibody–drug conjugate engineering.

Internalizing antibodies can be obtained via direct selection of internalizing phage antibodies by
incubating phage libraries directly with the target cells [575–578]. However, the major challenge in
this process is to identify the antigen bound by the internalizing antibody, which can be determined
indirectly using the flow cytometry of target cells, and identifying the cognate antigen recognized by
tumor-specific antibodies using immunoprecipitation and mass spectrometry [579]. Nonetheless, there
are reports of tumor-specific internalizing antibodies from phage libraries that exert anti-tumor effects
after systemic administration [580].

Much of this effort requires target-specific selection to identify such characteristics. Therefore, it
is necessary to develop “promoter agents” that help improve tumor accumulation and penetration
to improve the therapeutic index of antibody-based drugs [581]. There have been efforts to increase
tumor access using tumor-penetrating ligands [582]. Conjugation with protein transduction domains,
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which are represented by cell-penetrating peptides (CPPs), such as the HIV-1 TAT peptide, has been
extensively attempted in order to facilitate the intracellular delivery of antibodies or Fc-containing
molecules formatted as single chain variable fragments (scFvs), antigen-binding fragments (Fabs), and
full-length IgGs [583]. Optimization of CPPs continue to be applied to Fc-containing molecules [584].

Most antibodies that enter epithelial cells via receptor-mediated endocytosis are usually retained
in endosomes and are then recycled out of the cells or are degraded in the lysosomes without being
released into the cytosol [585]. Likewise, most of the CPP-conjugated antibodies inherited the intrinsic
intracellular trafficking of the parent CPPs, which were either entrapped inside endocytic vesicles,
translocated into the nucleus, or eventually degraded in lysosomes without efficient endosomal release
into the cytosol. Molecular modifications were made to enhance release from the endosomes to allow
for tumor tissue penetration [586].

Structural determinants of endosomal escape have been engineered into Ab variant with an
~three-fold improved endosomal escape efficiency [587,588]. The authors have been homing into
a platform technology that enables an IgG to target cytosolic proteins via an endosomal escape
mechanism. The elements of the engineering include having a domain to bind to the extracellular
domain that permits endocytosis, a domain that improves endosomal escape efficiency, and a domain
that can bind to the intracellular target [589]. Single domain antibodies have also been similarly
modified for the knockdown of cytosolic and nuclear proteins [590]. The addition of endosomal escape
protein domains and cell-penetrating peptides for efficient transfection broaden the application of
inhibiting sdAbs.

A general strategy for generating intact, full-length IgG antibodies that penetrate into the cytosol
of living cells is still of great interest [591]. A humanized light chain variable domain (VL) that could
penetrate the cytosol of living cells was engineered for the association with various subtypes of human
heavy chain variable domains (VHs). When light chains with humanized VL were co-expressed with
three heavy chains (HCs), including two HCs of the clinically approved adalimumab (Humira) and
bevacizumab (Avastin), all three purified IgG antibodies were internalized into the cytoplasm of living
cells [589]. Although these methods are successful for delivering antibodies into the cytoplasm of
cultured living cells, many issues, including cytotoxicity, loss of antibody stability, and difficulty of
systemic administration, remain unresolved.

Intrabodies are Ab or Ab fragments that can be expressed intracellularly for binding to an
intracellular protein [592,593]. These molecules can be created by the in-frame incorporation of
intracellular, peptide-trafficking signals [594,595]. Additionally, they can be developed against a
variety of target antigens that may be present at different subcellular locations, such as the cytosol,
mitochondria, nucleus, and endoplasmic reticulum [596]. The interaction of these molecules with their
target antigen results in the blocking or modification of molecular interactions, thereby leading to
a change in the biological activity of the target proteins. Because the transport of Abs into a living
cell from an extracellular environment is difficult, intrabodies can be expressed within the target cell
via genetic engineering [568]. Because naturally occurring Abs are optimized to be secreted from
the cell, intrabodies require special alterations, including: The use of single-chain antibodies (scFvs);
modification of immunoglobulin VL domains for hyperstability [597]; selection of antibodies resistant to
the more reducing intracellular environment [598]; expression as a fusion protein stable as intracellular
proteins [599]; or the use of virus-like particles [600]. Several preclinical studies have demonstrated
favorable results, including tumor growth inhibition and downregulation of viral envelope proteins,
when such therapy candidates were used against inflammation [601], HIV [602], and hepatitis [603,604],
respectively. The major challenge associated with these molecules is the absence of effective in vivo
methods that can deliver the genetic material encoding the intrabody to live target cells [605].

5. Conclusions

We have provided a review of the antibody structure and function for therapeutic applications.
Different examples of the engineering antibody variable domains were discussed by using rational
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design that is based on the experimentally derived or modeled structural information. The Fc
region has been engineered to optimize effector function, clustering, and Fc receptor engagement. In
general, antibody engineering of both the Fab and Fc regions is an indispensable part of the drug
development process, and as such will continue to advance as more and more antibodies are generated
for therapeutic use. Despite great progress in the methods of antibody engineering over the last 20
years, new approaches are in high demand. One of the remaining goals is to improve the accuracy
of computational methods, which will allow for the prediction of point mutations that improve the
affinity and other properties of interest. New approaches are continually being developed to create
antibody-based molecules that are superior in their potency, specificity, localization, and safety. The
choice of the binding domain can be tailored to engage the relevant epitopes. Likewise, engineering to
change the architecture of the binding arms, Fc regions, modulatory bispecific, or multispecific domains
to achieve monovalent- or avidity-driven engagement will result in more specific and potent molecules.
Thus, continual process improvements to generate sufficient quantity and purity of hits will be required
to facilitate comprehensive lead selection. The great diversity in antibody structure–function studies
still has much room to engineer fit-for-purpose “magic bullets” with tailored PK profiles to meet
different therapeutic hypotheses.
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