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Abstract

We solve the local and global structural identifiability problems for viscoelastic mechanical models represented by networks
of springs and dashpots. We propose a very simple characterization of both local and global structural identifiability based
on identifiability tables, with the purpose of providing a guideline for constructing arbitrarily complex, identifiable spring-
dashpot networks. We illustrate how to use our results in a number of examples and point to some applications in
cardiovascular modeling.
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Introduction

Mathematical modeling is a prominent tool used to better

understand complex mechanical or biological systems [1]. A

common problem that arises when developing a model of a

biological or mechanical system is that some of its parameters are

unknown. This is especially important when those parameters

have special meaning but cannot be directly measured. Thus a

natural question arises: Can all, or at least some, of the model’s

parameters be estimated indirectly and uniquely from observations

of the system’s input and output? This is the question of structural

identifiability. Sometimes the uniqueness holds only within a certain

range. In this case, we say that a system is only locally structurally

identifiable. There are numerous reasons why one would be

interested in establishing identifiability. Structural identifiability is

a necessary condition for the practical or numerical identifiability

problem, which involves parameter estimation with real, and often

noisy, data. The unobservable biologically meaningful parameters

of a model can only be determined (or approximated) if the model

is structurally identifiable. Moreover, optimization schemes cannot

be employed reliably since they will find difficulties when trying to

estimate unidentifiable parameters [2]. The concept of structural

identifiability was introduced for the first time in the work of

Bellman and Åström [3]. Since then, numerous techniques have

been developed to analyze the identifiability of linear and

nonlinear systems with and without controls [2,4–7]; see also [8]

for a review of different approaches.

Viscoelastic mechanical models that utilize springs and dashpots

in various configurations have been widely used in numerous areas

of research including material sciences [9], computer graphics

[10], and biomedical engineering to describe mechanical proper-

ties of biological systems [11–18]. To achieve a desirable response,

networks with different numbers of springs and dashpots in various

configurations have been constructed. For example, it is well-

known that the simplest models of viscoelastic materials such as

Voigt (spring and dashpot in parallel) or Maxwell (spring and

dashpot in series) do not offer satisfactory representation of the

nature of real materials [19]. Thus more complicated configura-

tions are usually constructed and analyzed [17].

In this paper we investigate the identifiability problem of

viscoelastic models represented by an arbitrarily complex spring-

dashpot network. Although there exist numerous methods that can

determine the type of identifiability of a system of ordinary

differential equations, generally they are difficult to apply. Our

results will show in a remarkably simple way how to verify whether

the studied model is (locally or globally) structurally identifiable. In

case it is unidentifiable, our method provides an explanation why

this is the case and how to reformulate the problem. Moreover, the

existing methods usually allow to establish the identifiability only a

posteriori, i.e. after concrete systems have been established. Thus,

we also introduce ‘‘identifiability tables’’, which allow not only to

check but also to construct an arbitrarily complex identifiable

spring-dashpot network.

Application to cardiovascular modeling
A particular motivation for this work comes from cardiovascular

modeling [21,22], although the results of this paper can be applied

to any viscoelastic modeling approach.

Arterial wall. Changing blood pressure causes periodic

expansion and contraction of the arterial wall (see Fig. 1). It is

well-known that the stress-strain curves of the artery walls exhibit

hysteresis, which is understood to be a consequence of the fact that

the wall is viscoelastic. Another manifestation of the viscoelasticity

of the arterial tissue is the stress relaxation experiments under

constant stretch (strain). Spring-dashpot (S-D) networks are often
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used in order to describe the biomechanical properties of the

arterial tissue [22–24]. Identifiable networks can be determined

using the results of this paper (see Theorem 2).

Neural activity. It is common to use the spring-dashpot

network to describe the neural firing of various sensors (e.g. muscle

spindle, baroreceptors), see [20,25–27]. Typically one assumes

that the firing activity is proportional to the strain sensed by a

spring connected in series with a spring-dashpot network, which

represents a local integration of the nerve endings to the arterial

wall (see Fig. 1). Then the arterial wall and neural activity models

are combined. Although separately each model is structurally

identifiable, there is no guarantee that the resulting viscoelastic

structure is identifiable. Thus, using our results given in Theorem

5, we can establish whether the combined viscoelastic model is

identifiable, and if not, what needs to be modified.

Results and Discussion

After reviewing basic concepts of viscoelasticity of systems, we

present and discuss our main results related to local and global

structural identifiability of such systems. Finally, we illustrate our

results with a number of examples from the literature.

Spring-dashpot networks
The ideal linear elastic material follows Hooke’s law s~EE,

where E is a Young’s modulus (or a spring constant), which

describes the relationship between the stress s and the strain E.
Analogously, the relation s~g_EE describes the viscous material,

where _EE~dE=dt and g is a viscous constant [28]. In the basic linear

viscoelasticity theory, the elastic and viscous elements are

combined. In this work, we shall be concerned with the problem

of identifiability of networks of springs and dashpots that are

essentially one-dimensional. The elements can be combined either

in series or in parallel. In order to obtain the relationship between

the total stress (force) s and the total strain (extension) E for a given

spring-dashpot network, we use two fundamental rules. For two

viscoelastic elements connected in series, the stress is the same in

both elements, but the total strain is the sum of individual strains

on each element. On the other hand, for elements connected in

parallel, the strain is the same for both elements, but the total stress

is the sum of individual stresses on each element. Now we consider

concrete viscoelastic networks, starting with the simplest config-

urations.

Example 1 (Maxwell element). The series combination of a

spring, denoted by its constant E, and a dashpot, denoted by its

constant g, is known as a Maxwell element (see Fig. 2(A)). Since

the elements are connected in series, the stress s is the same on

both elements and the total strain E is the sum of strains EE and Eg

corresponding to the spring and dashpot, respectively. Now, the

relationship between the total strain and stress for this system is

_EE~ _ss=Ezs=g: ð1Þ

Example 2 (Voigt element). Another simple example is the

Voigt element (also known as Kelvin or Kelvin-Voigt) given in

Fig. 2(B). Following the steps outlined in the previous example, we

obtain the E{s relationship

EEzg_EE~s: ð2Þ

Example 3 (Burgers model). In our third example we

consider a particularly popular four-element model, represented

by a Maxwell element combined in series with a Voigt element,

and known as the Burgers model (Fig. 2(C)). Denote by subscript m
and v the spring and viscous constants of the Maxwell and Voigt

elements, respectively. Note that the stress s is the same on all

three elements connected in series (Voigt, spring and dashpot).

Eliminating the corresponding local strains, we obtain the

following relationship

Em€EEz
EmEv

gv

_EE~€ssz½Em

gm

z
Em

gv

z
Ev

gv

� _ssz
EmEv

gmgv

s: ð3Þ

Identifiability characterization
First note (cf. Examples 1, 2, and 3) that for any configuration of

springs �EE~(E1,:::,EN ) and dashpots �gg~(g1,:::,gM ), the total

Figure 1. Changing blood pressure (P) causes periodic
expansion and contraction of the arterial wall. Spring-dashpot
(S-D) networks are often used in order to describe the biomechanical
properties of the arterial tissue as well as the strain sensed by various
receptors (e.g. baroreceptors) embedded in the arterial wall. Typically a
spring (representing a receptor’s nerve ending) is combined in series
with a S-D network (representing viscoelastic coupling of the nerves to
the wall). Recently, several cardiovascular approaches have used the
framework described above, in particular, choosing one of the following
S-D networks: (A) Burgers-type model [27]; (B) three element Kelvin-
Voigt body [20]; (C) generalized Kelvin-Voigt model [21].
doi:10.1371/journal.pone.0086411.g001

Figure 2. Simple linear viscoelastic models. (A) Maxwell element,
(B) Voigt element, (C) Burgers model.
doi:10.1371/journal.pone.0086411.g002

Identifiability of Viscoelastic Mechanical Systems

PLOS ONE | www.plosone.org 2 February 2014 | Volume 9 | Issue 2 | e86411



strain–stress relationship can always be written as the following

(nz1)-st order linear ordinary differential equation

anz1E(nz1)zanE(n)z � � �za0E~bns(n)z � � �zb0s, ð4Þ

where the coefficients aj~aj(�EE,�gg) and bk~bk(�EE,�gg) are functions

of the spring and dashpot constants. The precise value of n and the

forms of aj(�EE,�gg) and bk(�EE,�gg) will depend on the particular

structure of the spring-dashpot model. Equation 4 is known as the

constitutive equation. In the context of spring-dashpot networks,

identifiability concerns whether or not it is possible to recover the

unknown parameters (�EE and �gg) of the system from the governing

equation of the model, given only the total stress s and total strain

E. In other words, we assume that we know the stress and the strain

at the bounding nodes only and ask if it is possible to determine the

unknown parameters (�EE and �gg). In order to uniquely fix the

coefficients of the constitutive equation (4), we require that (4) be

normalized so that the leading term (in s or E, depending on the

situation) is monic. Thus, letting the d non-monic coefficients of (4)

be represented by the vector c~(a(�EE,�gg),b(�EE,�gg)), we have the

following formal definition of identifiability.

Definition 1. Let c be a function c : H?Rd , where

H(RNzM is the parameter space. The model is globally

identifiable from c if and only if the map c is one-to-one. The

model is locally identifiable from c if and only if the map c is finite-

to-one. The model is unidentifiable from c if and only if the map c
is infinite-to-one.

Note that local identifiability is equivalent to saying that around

each point in parameter space there exists a neighborhood on

which the function c is one-to-one. For example, for the Burgers

model considered in Example 3, the coefficient function

c : R4?R4 is defined as

c : (Em,Ev,gm,gv)?(Em,
EmEv

gv

,
Em

gm

z
Em

gv

z
Ev

gv

,
EmEv

gmgv

):

Technically speaking, in this paper we will consider the slightly

weaker notion of generic global identifiability (or generic local

identifiability, or generic unidentifiability), where generic means

that the property holds almost everywhere. We will omit the use of

the term generic when speaking of identifiability.

Definition 1 implies that if there are more parameters than non-

monic coefficients, then the system must be unidentifiable. Thus, a

necessary condition for structural identifiability is that the number

of parameters �EE,�gg (elements of the network) is less than or equal to

the number of non-monic coefficients in the constitutive equation

(4). We will soon show that the number of non-monic coefficients

is bounded by the number of parameters in spring-dashpot

networks. Thus, in this case, a necessary condition for structural

identifiability is that the number of parameters and non-monic

coefficients are equal. We will prove that, remarkably, in the case

of viscoelastic models represented by a spring-dashpot network,

the converse to this statement holds as well.

Theorem 2 (Local identifiability). A viscoelastic model repre-

sented by a spring-dashpot network is locally identifiable if and only if the

number of non-monic coefficients of the corresponding constitutive equation (4)

equals the total number of its moduli Ej and viscosity parameters gk.

Note that although the constitutive equation (4) is a linear

differential equation, its coefficients considered as functions of

spring and viscous constants are not linear functions of the

parameters (see (3)). Thus, Theorem 2 allows to reduce the difficult

problem of checking one-to-one or finite-to-one behavior of

nonlinear functions to simply counting the number of parameters

(springs and dashpots) and non-monic coefficients of the consti-

tutive equation and asking whether the two numbers are equal.

The positive answer implies local identifiability, whereas a

negative answer implies unidentifiability. Consider, for example,

the Maxwell and Voigt elements, and the Burgers model. We note

that the constitutive equations (1), (2), and (3) for all three models

are already in the normalized form. Now, simply by counting the

number of parameters and the non-monic coefficients of the

constitutive equations, we see that the two are equal for each

model. Thus, by the above theorem, all three models are locally

structurally identifiable.

Constructing identifiable models
Now we examine when combining two identifiable models

results also in an identifiable model. This will allow us to construct

arbitrarily complex and identifiable spring-dashpot networks.

We start with an observation, which we prove in the following

section, related to the possible form of any differential equation

that describes a spring-dashpot network.

Proposition 3. Every spring-dashpot network, given by equation (4),

has one of the four possible types

Type A : b0bn=0, anz1~0, a0an=0

Type B : b0bn=0, a0~0, a1anz1=0

Type C : b0bn=0, a0anz1=0

Type D : b0bn=0, anz1~a0~0, a1an=0:

ð5Þ

Recall that n is the highest derivative of the stress component

s(n), which appears in the total strain-stress equation (4). Now we

illustrate the different types of networks defined in the above

proposition by considering the simplest elements.

Example 4. For a spring, given by EE~s, we have n~0 (only

s appears in the constitutive equation, but none of its derivatives),

a1~anz1~0, and a0~an~E=0. Therefore a spring is of type A.

Note that for a dashpot, which is given by g_EE~s, we also have

n~0 but a0~0 and a1~anz1~g=0. Thus, according to

notation given in Proposition 3, a dashpot is of type B. For the

Voigt element, given by (2), we have n~0 as well as a0~E and

a1~anz1~g (that is a0anz1=0). We conclude that it is of type C.

Finally, a Maxwell element is given by (1). Note that here n~1
(since _ss appears in (1)), a0~0, a2~anz1~0, and a1~an~1=0.

Thus a Maxwell element is of type D.

Once the constitutive equation has been determined for a given

spring-dashpot network, it is very easy to establish the type that it

belongs to. Unfortunately, n does not always have a physical

significance. The value of n is determined by the specific network

and cannot be easily related to the number of springs and dashpots

as we will illustrate later on.

Theorem 5 (Local identifiability). Consider two locally

identifiable spring-dashpot systems N1 and N2 of one of the four types A,

B, C, D. Then the new model resulting in joining N1 and N2 either in

parallel or in series is of the type indicated by the Identifiability Tables 1 and

2. The letter u indicates that the network is unidentifiable, otherwise it is

identifiable of the given type.

There are several ways one could use the above theorem. One

way is to establish the local identifiability of a given spring-dashpot

network. Contrary to our similar result given in Theorem 2, this

can be done without actually calculating the constitutive equation.

We will show how to apply Theorem 5 to establish structural

identifiability after first introducing some notation. Given any two

spring-dashpot models M and N , we use the following notation

(M _N) and (M ^N) to denote respectively the parallel and

Identifiability of Viscoelastic Mechanical Systems
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series combination of M and N. Let F denote the function that

takes a spring and dashpot model M and outputs its type

(A,B,C,D) if it is locally identifiable, and u if it is unidentifiable. To

apply F to a complicated model built up from springs and

dashpots using series and parallel connections, we replace any

springs and dashpots with their respective types A and B as well as

the operations _ and ^ with + and 8, respectively. Then we

apply the operations in the Identifiability Tables 1 and 2.

Example 4 (Local identifiability of the Maxwell

element). Note that the Maxwell model shown in Fig. 2(A)

can be symbolically written as

M~E ^ g:

In this formula, we simply replace the spring and the dashpot with

A and B, respectively, as well as the operations _ and ^ with +

and 8, respectively, to obtain

F (M)~(A8B)~D:

Thus we conclude that the Maxwell model is locally identifiable

and is of type D.

Example 5 (Local identifiability of the Burgers

model). Similarly, the Burgers model shown in Fig. 2(C) can

be symbolically written as

M~(Ev _ gv) ^ (Em ^ gm):

To check the local identifiability, we find F (M) and use Tables 1

and 2 to obtain

F (M)~ (A+B)
zfflfflfflffl}|fflfflfflffl{C

8 (A8B)
zfflfflfflffl}|fflfflfflffl{D

~C8D~D:

We conclude that the Burgers model is locally identifiable and of

type D.

In the next example we show how we can easily establish local

structural identifiability of a more complicated network.

Example 6 (Dietrich et al. [19]). Consider a viscoelastic

material studied in [19] and represented by a spring-dashpot

network shown in Fig. 3(A). It can be symbolically represented by

M~½(((((E1 _ g1) ^ E2) ^ g2) _ g3) ^ E3) _ g4� ^ E4: ð6Þ

Again, we can verify the local identifiability of the above model

using Tables 1 and 2 and obtain

F (M) ~½(((( (A+B)
zfflfflfflffl}|fflfflfflffl{C

8A)8B)+B)8A)+B�8A

~½((( (C8A)
zfflfflfflffl}|fflfflfflffl{A

8B)+B)8A)+B�8A

~½(( (A8B)
zfflfflfflffl}|fflfflfflffl{D

+B)8A)+B�8A~ . . . ~D

This simple computation confirms that the model is locally

structurally identifiable.

Table 1. Identifiability Tables: Parallel connection.

+ A B C D u

A u C u A u

B C u u B u

C u u u C u

D A B C D u

u u u u u u

When connecting two identifiable spring-dashpot networks of one of the types
A, B, C, D, or an unidentifiable u in series the above tables establish the type of
the resulting identifiable system. If the resulting structure is unidentifiable it is
indicated by u.
doi:10.1371/journal.pone.0086411.t001

Table 2. Identifiability Tables: Series connection.

8 A B C D u

A u D A u u

B D u B u u

C A B C D u

D u u D u u

u u u u u u

When connecting two identifiable spring-dashpot networks of one of the types
A, B, C, D, or an unidentifiable u in parallel, the above tables establish the type
of the resulting identifiable system. If the resulting structure is unidentifiable it
is indicated by u.
doi:10.1371/journal.pone.0086411.t002

Figure 3. (A) Multi-parameter linear viscoelastic model considered by
Dietrich et al. [19]. (B) Ten element viscoelastic model studied in [13], (C)
A viscoelastic model of used to describe the baroreceptor nerve ending
coupling to the arterial wall (see [20] and [21,29]).
doi:10.1371/journal.pone.0086411.g003
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Our method can also verify if a network is unidentifiable,

providing the reason for the lack of its identifiability. Consider the

following example.

Example 7 (Unidentifiable model). Consider a viscoelastic

model used in [13] and shown in Fig. 3(B). Using the notation

previously introduced, it can symbolically be written as

M~½(((E1 ^ g1) _ (E2 ^ g2)) ^ E3 ^ g3) _ (E4 ^ g4)� ^ E5 ^ g5:

Now applying Tables 1 and 2, we obtain

F (M) ~½(( (A8B)
zfflfflfflffl}|fflfflfflffl{D

+ (A8B)
zfflfflfflffl}|fflfflfflffl{D

)8 (A8B)
zfflfflfflffl}|fflfflfflffl{D

)+ (A8B)
zfflfflfflffl}|fflfflfflffl{D

8A8B
zfflffl}|fflffl{D

~½( (D+D)
zfflfflfflffl}|fflfflfflffl{D

8D)+D�8D

~½(D8D)
zfflfflfflffl}|fflfflfflffl{u

+D�8D~u:

Whenever Tables 1 and 2 indicate u (i.e. the corresponding

substructure is unidentifiable), this inevitably leads to the whole

model being unidentifiable. Moreover, our method can also

explain what is the reason for the lack of identifiability. In this

example the situation is simple: joining in series a Maxwell element

(type D) with a generalized Maxwell model leads to an

unidentifiable network.

So far we have considered only local identifiability of mechanical

systems. Now we complete the presentation and discussion of our

results by introducing a criterium, which establishes when a given

network is globally structurally identifiable.

Theorem 6 (Global identifiability). A viscoelastic model

represented by a spring-dashpot network is globally identifiable if and only if

it is locally identifiable and the network is constructed by adding either in

parallel or in series at the bounding nodes exactly one basic element (spring or

dashpot) at a time.

Note that the network given in Fig. 3(A) and considered in

Example 6 was deemed locally structurally identifiable. We note

that it can be constructed by adding just one element at a time and

therefore it is globally structurally identifiable. Similarly, all the

simple models shown in Fig. 2 can also by constructed adding only

one element at a time, and since they are locally identifiable, we

conclude that they are also globally structurally identifiable. Now

consider a model which is locally, but not globally, structurally

identifiable.

Example 8 (Local but not global identifiability). Consider

a generalized Kelvin-Voigt model shown Fig. 3(C) and used in

[20,29]) in the context of cardiovascular modeling. It can be

symbolically represented by

M~E0 ^ (E1 _ g1) ^ (E2 _ g2) ^ (E3 _ g3):

Thus the local identifiability can be checked by computing

F (M)~A8(A+B)8(A+B)8(A+B)~A8C8C8C~A:

We immediately conclude that the network is locally identifiable.

In order to verify whether it is also globally identifiable, note that

this network cannot be constructed by adding only one element at a

time. Thus the system is only locally, but not globally, identifiable.

However, in this case the non-global identifiability arises from

merely permuting the parameters among the three Voigt elements.

Analysis

In this section, we prove the main results from the previous

section. To do this requires a careful analysis of the structure of the

constitutive equation after combining a pair of systems in series or

in parallel.

Let N1 and N2 be spring-dashpot models whose respective

constitutive equations are L1E~L2s and L3E~L4s, where Li

represent linear differential operators. We can write the differential

operators (in general form) as:

L1 ~an1
dn1=dtn1z:::zam1

dm1=dtm1

L2 ~bn2
dn2=dtn2z:::zbm2

dm2=dtm2

L3 ~cn3
dn3=dtn3z:::zcm3

dm3=dtm3

L4 ~en4
dn4=dtn4z:::zem4

dm4=dtm4

ð7Þ

Remark. Table 3 shows that there are restrictions on the

values of the ni and mi, e.g. the differential order of the lowest

order term in s is always zero and the differential order of the

lowest order term in E is zero or one, but we leave the operators in

general form for simplicity.

We now show the form of the resulting constitutive equation

after combining these systems in series or in parallel, in terms of

these differential operators. In what follows, we will treat the

differential operators Li as polynomial functions in the variable

d=dt. For example, L1 can be thought of as a polynomial

an1
xn1z:::zam1

xm1 .

Series connection
Suppose that M~N1 ^N2 is a series connection of models N1

and N2, whose constitutive equations are L1E1~L2s1 and

L3E2~L4s2, respectively. Then the stresses (s) are the same for

the two systems while the strains (E) are added. If L1 and L3 are

relatively prime, then the constitutive equation of M is:

L1L3E~(L1L4zL2L3)s, E~E1zE2, s~s1~s2: ð8Þ

We assume that an1
~cn3

~1, so that the constitutive equation is

monic. If L1 and L3 have a common factor, then the constitutive

equation of M is obtained by dividing (8) by the greatest common

divisor of L1 and L3.

Parallel connection
Suppose that M~N1 _N2 is a parallel connection of models

N1 and N2, whose constitutive equations are L1E1~L2s1 and

L3E2~L4s2, respectively. Then the strains (E) are the same for the

two systems while the stresses (s) are added. If L2 and L4 are

Table 3. Possible types of constitutive equations.

Type Shape in E Shape in s

A [n,0] [n,0]

B [nz1,1] [n,0]

C [nz1,0] [n,0]

D [n,1] [n,0]

The four possible types of constitutive equations, defined by the shapes of the
linear operators acting on E and s, written in brackets.
doi:10.1371/journal.pone.0086411.t003

Identifiability of Viscoelastic Mechanical Systems
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relatively prime, then the constitutive equation is:

(L1L4zL2L3)E~L2L4s, E~E1~E2, s~s1zs2: ð9Þ

We assume that bm2
~em4

~1, so that the constitutive equation is

monic. If L2 and L4 have a common factor, then the constitutive

equation is obtained by dividing (9) by the greatest common

divisor of L2 and L4.

Types of networks
Now we prove Proposition 3, that is, we show that every spring-

dashpot network, given by equation (4), has one of the four

possible types displayed in Table 3, which are defined by the shapes

of the linear operators Li acting on E and s. We make this notion

precise:

Definition 7. The shape of a linear operator L i is a pair of

numbers, written ½ni,mi�, where ni is the highest differential order

and mi is the lowest different order.

We note that a spring is of type A and a dashpot is of type B. A

Voigt element is formed by a parallel extension of types A and B,

which forms type C, and a Maxwell element is formed by a series

extension of types A and B, which forms type D. The properties of

these four types are displayed in Table 3. We can now form the 10
possible combinations of pairing two of these types in series and

the 10 possible combinations of pairing two of these types in

parallel. In Tables 4 and 5, we show the 20 total possibilities and

demonstrate that each pairing results in a type A, B, C, or D. Since

every spring-dashpot network can be written as a combination, in

series or in parallel, of springs and dashpots, then we have shown

by induction that joining any two spring-dashpot networks in

series or in parallel results in one of these four types.

Remark. We note that if a type B or D is combined in series with

a type B or D, then L1 and L3 have a common factor (since both

lacked a constant term), so the equation L1L3E~(L1L4zL2L3)s
is divided by gcd(L1,L3)~d=dt to arrive at the shapes listed in the

table.

In addition to the type of equation that results after combining

two equations of types A,B,C,Df g, we have in Tables 4 and 5 the

resulting identifiability properties of each equation, which we will

obtain in the next section. Note that Definition 1 implies that if

there are more parameters than non-monic coefficients, then the

system must be unidentifiable. The tables show that the number of

non-monic coefficients is bounded by the number of parameters,

thus a necessary condition for identifiability is that the number of

parameters equals the number of non-monic coefficients in the

constitutive equation (4). In the next section, we show that this is

also a sufficient condition.

Local identifiability
Consider a spring-dashpot system M whose final step connec-

tion is a series connection of two systems N1 and N2, i.e.

M~N1 ^N2. Since the number of non-monic coefficients in any

spring-dashpot model is always less than or equal to the number of

parameters in that model, we know that a necessary condition for

this system to be locally identifiable is that N1 and N2 are both

locally identifiable. Let L1E1~L2s1 be the constitutive equation

for N1 and L3E2~L4s2 be the constitutive equation for N2. Each

of the operators L1, L2, L3, and L4 will have a fixed shape

determined by the structure of N1 and N2. Assuming that N1 and

N2 are locally identifiable, we can choose parameters in each of

the models N1 and N2 so that the coefficients of these constitutive

equations are arbitrary numbers. Thus, deciding identifiability of

this system amounts to determining whether the map that takes

the pair of equations (L1E1~L2s1,L3E2~L4s2) to the constitutive

equation f E~gs, where f ~L1L3, g~L1L4zL2L3, E~E1zE2,

and s~s1~s2 (cf. (8)), for the system M is finite-to-one or not.

The same reasoning works mutatis mutandis for parallel connec-

tions, where we now concern ourselves with the map from the pair

of equations (L1E1~L2s1,L3E2~L4s2) with generic coefficients to

the constitutive equation for M~N1 _N2 given in (9).

To make the above, intuitive, statements precise we introduce

the following definition.

Definition 8. The shape factorization problem for a quadru-

ple of shapes

Q~(½n1,m1�,½n2,m2�,½n3,m3�,½n4,m4�)

is the following problem: for a generic pair of polynomials (f ,g)
with f monic such that the shape(f )~½n1zn3,m1zm3� and

shape(g)~½max(n1zn4,n2zn3),min(m1zm4,m2zm3)�, do

there exist finitely many quadruples of polynomials

(L1,L2,L3,L4) with shape(Li)~½ni,mi�, L1 and L3 are monic,

and such that f ~L1L3 and g~L1L4zL2L3? A quadruple of

shapes Q is said to be good if the shape factorization problem for

that quadruple has a positive solution.

Table 4. Series connection.

Type Shape in E Shape in s Non-monic coefficients Parameters Identifiable? Type

(A,A) [n1zn2,0] [n1zn2,0] 2n1z2n2z1 2n1z2n2z2 Not Id A

(A,B) [n1zn2z1,1] [n1zn2z1,0] 2n1z2n2z2 2n1z2n2z2 Id D

(A,C) [n1zn2z1,0] [n1zn2z1,0] 2n1z2n2z3 2n1z2n2z3 Id A

(A,D) [n1zn2,1] [n1zn2,0] 2n1z2n2 2n1z2n2z1 Not Id D

(B,B) [n1zn2z1,1] [n1zn2,0] 2n1z2n2z1 2n1z2n2z2 Not Id B

(B,C) [n1zn2z2,1] [n1zn2z1,0] 2n1z2n2z3 2n1z2n2z3 Id B

(B,D) [n1zn2,1] [n1zn2,0] 2n1z2n2 2n1z2n2z1 Not Id D

(C,C) [n1zn2z2,0] [n1zn2z1,0] 2n1z2n2z4 2n1z2n2z4 Id C

(C,D) [n1zn2z1,1] [n1zn2z1,0] 2n1z2n2z2 2n1z2n2z2 Id D

(D,D) [n1zn2{1,1] [n1zn2{1,0] 2n1z2n2{2 2n1z2n2 Not Id D

Two systems of types A, B, C, or D are combined in series, where in the first system n~n1 and in the second system n~n2 .
doi:10.1371/journal.pone.0086411.t004
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Since the above definition introduces one of the key concepts of

the paper, in the following example we shall further illustrate the

meaning of the shape factorization problem.

Example 9. Suppose that our quadruple

(½n1,m1�,½n2,m2�,½n3,m3�,½n4,m4�)~(½2,0�,½2,0�,½3,0�,½2,0�)

which is a special case of joining models of types A and C in series.

The shape factorization problem in this case asks the following

question:

Let (f ,g) be a generic pair of polynomials where f and g are

degree 5 polynomials with nonzero constant term and f is monic:

f ~x5zf4x4zf3x3zf2x2zf1xzf0

g~g5x5zg4x4zg3x3zg2x2zg1xzg0:

Do there exist finitely many polynomials

L1~x2za1xza0, L2~b2x2zb1xzb0

L3~x3zc2x2zc1xzc0, L4~d2x2zd1xzd0

such that f ~L1L3 and g~L1L4zL2L3? Or to say it another

way, for generic values of f4, . . . ,f0 and g5, . . . ,g0, does the system

of 11 equations in 11 unknowns:

f4~a1zc2

f3~a0za1c2zc1

f2~a0c2za1c1zc0

f1~a0c1za1c0

f0~a0c0

g5~b2

g4~b1zb2c2zd2

g3~b0zb1c2zb2c1za1d2zd1

g2~b0c2zb1c1zb2c0za0d2za1d1zd0

g1~b0c1zb1c0za0d1za1d0

g0~b0c0za0d0

have only finitely many solutions?

The language of shape factorization problems and the remarks

in the preceding paragraphs allow us to reduce the local

identifiability problem for a spring-dashpot system to determining

whether a certain quadruple is a good quadruple.

Proposition 10. Let M~N1 ^N2 be a spring-dashpot model

joined in series from N1 and N2, where N1 has constitutive equation

L1E1~L2s1 of shapes ½n1,m1� and ½n2,m2�, respectively, and N2 has

constitutive equation L3E2~L4s2 of shapes ½n3,m3� and ½n4,m4�,
respectively. Then the model M is locally identifiable if and only if

1. N1 and N2 are locally identifiable, and

2. (½n1,m1�,½n2,m2�,½n3,m3�,½n4,m4�) is a good quadruple.

Similarly, if M~N1 _N2 is a spring-dashpot model joined in parallel

from N1 and N2, then M is locally identifiable if and only if

1. N1 and N2 are locally identifiable, and

2. (½n2,m2�,½n1,m1�,½n4,m4�,½n3,m3�) is a good quadruple.

So what remains to show is that, for the shapes that arise in

spring-dashpot models, whether a quadruple of shapes is a good

quadruple only depends on the types (A,B,C, or D) of the systems

being combined. The proof of this statement will occupy the rest of

this section.

Table 5. Parallel connection.

Type Shape in E Shape in s Non-monic coefficients Parameters Identifiable? Type

(A,A) [n1zn2,0] [n1zn2,0] 2n1z2n2z1 2n1z2n2z2 Not Id A

(A,B) [n1zn2z1,0] [n1zn2,0] 2n1z2n2z2 2n1z2n2z2 Id C

(A,C) [n1zn2z1,0] [n1zn2,0] 2n1z2n2z2 2n1z2n2z3 Not Id C

(A,D) [n1zn2,0] [n1zn2,0] 2n1z2n2z1 2n1z2n2z1 Id A

(B,B) [n1zn2z1,1] [n1zn2,0] 2n1z2n2z1 2n1z2n2z2 Not Id B

(B,C) [n1zn2z1,0] [n1zn2,0] 2n1z2n2z2 2n1z2n2z3 Not Id C

(B,D) [n1zn2z1,1] [n1zn2,0] 2n1z2n2z1 2n1z2n2z1 Id B

(C,C) [n1zn2z1,0] [n1zn2,0] 2n1z2n2z2 2n1z2n2z4 Not Id C

(C,D) [n1zn2z1,0] [n1zn2,0] 2n1z2n2z2 2n1z2n2z2 Id C

(D,D) [n1zn2,1] [n1zn2,0] 2n1z2n2 2n1z2n2 Id D

Two systems of types A, B, C, or D are combined in parallel, where in the first system n~n1 and in the second system n~n2 .
doi:10.1371/journal.pone.0086411.t005
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Let f and g be two polynomials. Note that for given fixed

shapes, ½n1,m1� and ½n3,m3�, there are at most finitely many

factorizations f ~L1L3, where L1 has shape ½n1,m1� and L3 has

shape ½n3,m3� and both are monic. This is because there are at

most finitely many ways to factorize a monic polynomial into

monic factors. Once we fix one of these finitely many choices for

L1 and L3, the equation g~L1L4zL2L3 is a linear system in the

(unknown) coefficients of L2 and L4.

For a polynomial f ~fnxnz � � �zfmxm of shape ½n,m�, we can

write the coefficients of f as a vector, which we denote

½f � : ~

fn

..

.

fm

0
BB@

1
CCA:

Let Li have shape ½ni,mi�, as defined in Equation (7). The vector of

coefficients of L1L4 can be written as the result of a matrix vector

product as:

½L1L4�~

an1
0 � � � 0

..

.
an1

� � � 0

am1
..
.
� � � ..

.

0 am1
� � � 0

..

.
0 � � � an1

..

. ..
.
� � � ..

.

0 0 � � � am1

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

en4

..

.

em4

0
BB@

1
CCA:

We will refer to this product as H ’½L4�, where H ’ is a

n1zn4{m1{m4z1 by n4{m4z1 matrix. Likewise, the coeffi-

cients of L2L3 can be written as the result of a matrix vector

product as:

½L2L3�~

cn3
0 � � � 0

..

.
cn3

� � � 0

cm3
..
.
� � � ..

.

0 cm3
� � � 0

..

.
0 � � � cn3

..

. ..
.
� � � ..

.

0 0 � � � cm3

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

bn2

..

.

bm2

0
BB@

1
CCA:

We will refer to this product as G’½L2�, where G’ is a

n2zn3{m2{m3z1 by n2{m2z1 matrix. Then we call the

matrix factored form of ½L1L4zL2L3� the expression:

G½L2�zH½L4�, ð10Þ

where the matrices G and H are the matrices G’ and H ’ padded

with rows of zeros so that coefficients corresponding to monomials

of the same degree appear in the same row. This makes (G H) a

max n1zn4,n2zn3f g{min m1zm4,m2zm3f gz1 by n2{m2z

n4{m4z2 matrix.

We can now state a criteria for determining if the shape

factorization problem has finitely many solutions:

Proposition 11. The quadruple (½n1,m1�,½n2,m2�,½n3,m3�,
½n4,m4�) is a good quadruple if and only if the matrix (G H) is generically

invertible.

Proof. We can write the shape factorization problem of type

(½n1,m1�,½n2,m2�,½n3,m3�,½n4,m4�) in matrix factored form as

G½L2�zH½L4�~½g� (see (10)), so that

G Hð Þ
L2

L4

� �
~½g�:

This system has a unique solution if and only if (G H) is

generically invertible, i.e. invertible for a generic choice of

parameter values.

Example 12. Suppose that our quadruple (½n1,m1�,½n2,m2�,
½n3,m3�,½n4,m4�) is (½2,0�,½2,0�,½3,0�,½2,0�), which is a special case of

joining models of types A and C in series. The resulting matrix

(G H) is the matrix

0 0 0 c3 0 0

a2 0 0 c2 c3 0

a1 a2 0 c1 c2 c3

a0 a1 a2 c0 c1 c2

0 a0 a1 0 c0 c1

0 0 a0 0 0 c0

0
BBBBBBBB@

1
CCCCCCCCA
:

We now determine when this matrix (G H) is generically

invertible, i.e. square and full rank. The Sylvester matrix associated to

two polynomials p(z)~p0zp1zzp2z2z:::zpmzm and

q(z)~q0zq1zzq2z2z:::zqnzn is the nzm by nzm matrix

that has the coefficients of p(z) repeated n times as columns and

the coefficients of q(z) repeated m times as columns in the

following way:

pm 0 � � � 0 qn 0 � � � 0

..

.
pm � � � 0 ..

.
qn � � � 0

p0
..
.
� � � ..

.
q0

..

.
� � � ..

.

0 p0 � � � 0 0 q0 � � � 0

..

.
0 � � � pm

..

.
0 � � � qn

..

. ..
.
� � � ..

. ..
. ..

.
� � � ..

.

0 0 � � � p0 0 0 � � � q0

0
BBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCA

:

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
n

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
m

The determinant of the Sylvester matrix of the two polynomials p
and q is the resultant, which is zero if and only if the two

polynomials have a common root. In particular, for generic

polynomials p and q, the Sylvester matrix is invertible [30,

Chapter 3].

We will use the Sylvester matrix in the following way. We will

show that there are submatrices of (G H) that correspond to the

Sylvester matrix associated to L1 and L3.

Proposition 13. If the matrix (G H) is square, then it is generically

invertible.

Proof. We claim that the columns of (G H) can be ordered so

that the resulting matrix has the shape
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S’ 0 0

X S Y

0 0 S’’

0
B@

1
CA ð11Þ

where S is the Sylvester matrix associated to the nonzero

coefficients of L1 and L3. Note that this means that we might

shift the coefficients down if necessary so there are no extraneous

zero terms of low degree (i.e. if the shape is ½ni,mi� with mi=0).

The matrix S’ is a square lower triangular matrix with nonzero

entries on the diagonal, and S’’ is a square upper triangular matrix

with nonzero entries on the diagonal. This will prove that (G H)
is invertible, since its determinant will be the product of the

determinants of S, S’ and S’’, all of which are nonzero. To prove

that claim requires a careful case analysis.

The number of columns of (G H) is n4{m4zn2{m2z2 and

the number of rows is max(n1zn4,n2zn3){min(m1zm4,m2z
m3)z1. Without loss of generality, we can assume that the

maximum is attained by n1zn4. We need to distinguish between

the two cases where the minimum is attained by m1zm4 and by

m2zm3.

Case 1: min½m1zm4,m2zm3�~m1zm4. Since (G H) is a

square matrix, this implies that n1{m1~n2{m2z1. In this case

we group the columns of (G H) in the following order.

1. The first n1zn4{n2{n3 columns of G

2. Then the next n3{m3 columns of G

3. Then all n2{m2z1(~n1{m1) columns of H

4. Then the remaining m2zm3{m1{m4 columns of G.

This choice has the property that the middle two blocks of

columns together have the desired form, since we have chosen to

start including columns from G and H precisely when they both

have nonzero entries in the same rows, and stopping the formation

of these when they stop having nonzero entries in the same rows,

which has the correct form. Note we have used all columns of G
since

n1zn4{n2{n3zn3{m3zm2zm3{m1{m4~

(n1{m1)z(n4{m4){(n2{m2)~n4{m4z1:

Case 2: min½m1zm4,m2zm3�~m2zm3. Note that since

(G H) is square, this implies that n1{m3~n2{m4z1. In this

case, we do not need to reorder the columns to obtain the desired

form.

We mention how to block the columns to obtain the desired

form.

1. The first n1zn4{n2{n3 columns of G

2. Then the next n3{m3 columns of G

3. Then the first n1{m1 columns of H

4. Then the remaining m1zm4{m2{m3 columns of H.

Note that we have the desired number of columns from the

second and third blocks, and we have chosen them so that that

those columns have nonzero entries at exactly the same rows.

Furthermore, we have used all columns of G since

n1zn4{n2{n3zn3{m3~n1zn4{n2{m3~n4{m4z1

and all columns of H since

n1{m1zm1zm4{m2{m3~n1zm4{m2{m3~n2{m2z1:

Example 14. We can rewrite the matrix in Example 12 as

c3 0 0 0 0 0

c2 a2 0 0 c3 0

c1 a1 a2 0 c2 c3

c0 a0 a1 a2 c1 c2

0 0 a0 a1 c0 c1

0 0 0 a0 0 c0

0
BBBBBBBB@

1
CCCCCCCCA
:

Here the the 5|5 matrix in the lower righthand corner is the

Sylvester matrix, the matrix S’ is the 1|1 matrix in the upper

lefthand corner, and the matrix S’’ is the empty matrix.

Proof of Theorem 2. We will show that if the number of parameters

equals the number of non-monic coefficients, then the matrix

(G H) is square. By Propositions 11 and 13, this will imply that

the model is locally identifiable.

Let M~N1 ^N2 be a spring-dashpot model joined in series

from N1 and N2, where N1 has constitutive equation L1E1~L2s1

of shapes ½n1,m1� and ½n2,m2�, respectively, and N2 has constitutive

equation L3E2~L4s2 of shapes ½n3,m3� and ½n4,m4�, respectively.

By induction, we can assume that the number of parameters

equals the number of non-monic coefficients for the systems N1

and N2, i.e. there are n1{m1zn2{m2z1 parameters in the first

and n3{m3zn4{m4z1 in the second. Assume the number of

parameters equals the number of non-monic coefficients in this full

system, i.e.

n1{m1zn2{m2zn3{m3zn4{m4z2~

max n1zn4,n2zn3f g{min m1zm4,m2zm3f gz
1zn1{m1zn3{m3:

Subtracting n1{m1zn3{m3 from both sides, we get that

n2{m2zn4{m4z2~max n1zn4,n2zn3f g{

min m1zm4,m2zm3f gz1:

From the definition of (G H), this means the number of rows

equals the number of columns, so that (G H) is square.

The argument for the parallel extension is identical and is

omitted.

Proof of Theorem 5. Theorem 2 shows that the model is locally

identifiable if and only if the number of parameters equals the

number of non-monic coefficients. Thus the identifiability

properties of the 20 cases in Tables 4 and 5 are determined by

checking if the numbers in the columns corresponding to the

number of parameters and the number of non-monic coefficients

are equal.

Global identifiability
We now determine necessary and sufficient conditions for global

identifiability.

Proposition 15. Let M~N1 ^N2 be a spring-dashpot model

joined in series from N1 and N2, where N1 has constitutive equation

L1E1~L2s1 of shapes ½n1,m1� and ½n2,m2�, respectively, and N2 has
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constitutive equation L3E2~L4s2 of shapes ½n3,m3� and ½n4,m4�,
respectively. Then the model M is globally identifiable if and only if

1. N1 and N2 are globally identifiable,

2. T he s h a p e f a c t o r i z a t i o n p r o b l e m f o r t h e q u ad r u p l e

(½n1,m1�,½n2,m2�,½n3,m3�,½n4,m4�) generically has a unique solution.

Similarly, if M~N1 _N2 is a spring-dashpot model joined in parallel

from N1 and N2, then M is globally identifiable if and only if

1. N1 and N2 are globally identifiable, and

2. T he s h a p e f a c t o r i z a t i o n p r o b l e m f o r t h e q u ad r u p l e

(½n2,m2�,½n1,m1�,½n4,m4�,½n3,m3�) generically has a unique solution.

Proof. We handle the case of series extensions, parallel extensions

being identical. Let M~N1 ^N2. Clearly, N1 and N2 must be

globally identifiable otherwise we could give two sets of parameters

yielding the same constitutive equation for N1, which could then

be combined with parameters for N2 to get two sets of parameters

for M yielding the same constitutive equation.

Now if the shape factorization problem has a unique solution,

there is a unique way to take the constitutive equation for M and

solve for the constitutive equations for N1 and N2, since N1 and

N2 are globally identifiable, there is a unique way to solve for

parameters of those models giving a unique solution for

parameters for M. Conversely, if there were multiple solutions

to the shape factorization problem, then by global identifiability of

N1 and N2, we could solve all the way back to get multiple

parameter choices for the same parameter choice for M.

Note that in our analysis of the shape factorization problem in

the previous section, we saw that once L1 and L3 are chosen

among all their finitely many values, when the model is locally

identifiable there is a unique way to then construct L2 and L4.

Hence, the shape factorization problem has a unique solution

when there is a unique way to factor f ~L1L3. This happens if

and only if either n1~m1 or n3~m3, otherwise, generically, we

can exchange roots of L1 and L3 giving multiple solutions.

Corollary 16. Suppose that M~N1 ^N2 is globally identifiable.

Then either N1 or N2 must have been one of a spring, a dashpot, or a

Maxwell model. Suppose that M~N1 _N2 is globally identifiable. Then

either N1 or N2 must have been one of a spring, a dashpot, or a Voigt model.

Proof. The four models given by the spring, dashpot, Voigt, and

Maxwell elements are the only four locally identifiable models that

have the property that at least one of the differential operators in

its constitutive equation has exactly one term. This can be seen by

analyzing the four types (A,B,C,D) and looking at all possibilities

that arise on combining two equations. Once both operators do

not have a single term, no model combined from such a model can

have an operator with a single term.

The three choices for the series connection (spring, a dashpot, or

a Maxwell model) are the three of four models that put a

differential operator with a single term in the correct place so there

could be a unique solution to the shape factorization probelm.

Similarly for the parallel connection.

Proof of Theorem 6. Clearly a globally identifiable model is locally

identifiable. By Corollary 16, we must be able to construct such a

globally identifiable model by adding at each step either a spring,

dashpot, Maxwell or Voigt element at each step, but when adding

a Maxwell element it must be used in series and when using a

Voigt element it must have been added in parallel. However,

adding a Maxwell element in series can be achieved by adding a

spring and then a dashpot both in series. Similarly, adding a Voigt

element in parallel can be achieved by adding a spring and then a

dashpot both in parallel. Hence, we can work only adding springs

or dashpots at each step.
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