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SNP eQTL status and eQTL density in the
adjacent region of the SNP are associated
with its statistical significance in GWA
studies
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Abstract

Background: Over the relatively short history of Genome Wide Association Studies (GWASs), hundreds of GWASs
have been published and thousands of disease risk-associated SNPs have been identified. Summary statistics from
the conducted GWASs are often available and can be used to identify SNP features associated with the level of
GWAS statistical significance. Those features could be used to select SNPs from gray zones (SNPs that are nominally
significant but do not reach the genome-wide level of significance) for targeted analyses.

Methods: We used summary statistics from recently published breast and lung cancer and scleroderma GWASs to
explore the association between the level of the GWAS statistical significance and the expression quantitative trait
loci (eQTL) status of the SNP. Data from the Genotype-Tissue Expression Project (GTEx) were used to identify
eQTL SNPs.

Results: We found that SNPs reported as eQTLs were more significant in GWAS (higher -log10p) regardless of
the tissue specificity of the eQTL. Pan-tissue eQTLs (those reported as eQTLs in multiple tissues) tended to be
more significant in the GWAS compared to those reported as eQTL in only one tissue type. eQTL density in
the ±5 kb adjacent region of a given SNP was also positively associated with the level of GWAS statistical significance
regardless of the eQTL status of the SNP. We found that SNPs located in the regions of high eQTL density were more
likely to be located in regulatory elements (transcription factor or miRNA binding sites).
When SNPs were stratified by the level of statistical significance, the proportion of eQTLs was positively associated with
the mean level of statistical significance in the group. The association curve reaches a plateau around -log10p ≈ 5. The
observed associations suggest that quasi-significant SNPs (10− 5 < p < 5 × 10− 8) and SNPs at the genome wide level of
statistical significance (p < 5 × 10− 8) may have a similar proportions of risk associated SNPs.

Conclusions: The results of this study indicate that the SNP’s eQTL status, as well as eQTL density in the adjacent
region are positively associated with the level of statistical significance of the SNP in GWAS.

Keywords: Genome wide association studies (GWASs), Expression quantitative trait loci (eQTL), Statistical significance,
Cancer, Gene expression
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Background
Genome wide association studies (GWASs) have identi-
fied thousands of single nucleotide polymorphisms
(SNPs) associated with human diseases [1]. Nevertheless,
many disease-associated SNPs remain to be identified,
which is obvious from the fact that larger GWASs tar-
geting the same phenotype as the original and smaller
GWAS regularly identify additional SNPs [2–4]. Those
additional SNPs are usually SNPs from the gray zone of
the original GWAS: gray zone SNPs are SNPs that are
nominally significant (p < 0.05) but do not reach the
genome-wide level of statistical significance (p < 5 × 10−
8) [5, 6]. It is, therefore, important to have a tool for pri-
oritizing gray zone SNPs based on intrinsic SNP charac-
teristics. A number of SNP characteristics including
variation in allele frequencies among populations [7],
type of the linked gene(s) [8], or combination of differ-
ent SNP characteristics [9] were proposed for SNP
prioritization. No GWAS of diseases have reached a
sample size at which an exhaustive evaluation of all the
possible genes or SNPs associated with disease can be
anticipated to uncover all of the variability influence dis-
ease development and only studies of selected pheno-
types like height and smoking behavior have amassed
sample sizes that can provide comprehensive analyses of
genetic architecture.
Conducting large enough GWAS studies to identify all

the disease-associated SNPs, especially those with small
effect sizes may not be feasible. Combining small effect
SNPs in polygenic score is a useful approach for risk
prediction [10, 11]. Interestingly, polygenic risk model-
ing performs better when the threshold for inclusion of
a SNP is lower than genome-wide significance [12]. The
accuracy of polygenic risk modeling will be reduced
when a proportion of the variants being included are not
associated with disease [13].
It is known that SNPs located in regulatory regions, e.g.

transcription factor (TF) binding sites, are often eQTLs, as
they modulate gene expression [14, 15]. A number of
studies report an association between eQTLs and GWAS
detected SNPs [16–19]. A systematic review of SNP eQTL
status in the context of GWAS statistical significance has
not been conducted so far. The goal of this study was to
use summary statistics from recently published large
breast and lung cancer GWASs to analyze the associations
between the level of statistical significance of the SNP and
its eQTL status. We also studied the association between
the level of statistical significance of the SNP and eQTL
density in adjacent region of the SNP.

Methods
Retrieving data on the SNP’ eQTL status
We used eQTLs reported by the Genotype-Tissue Expres-
sion (GTEx) project [20]. eQTL data were downloaded

from the GTEx website (accessed October 12, 2018). Only
cis eQTLs were used in the current analyses. To ensure
robustness of the analysis, only eQTLs whose association
with gene expression level remained significant after ad-
justment for multiple testing were used in the analysis. A
total of 297,470 unique eQTLs detected in at least one out
of 48 tissues analyzed by GTEx were used in the analysis.
Additional file 1: Table S1 shows distribution of GTEx
tested SNPs by tissue. More than 80% of eQTLs are tissue
specific. Adjustment for multiple testing was done for
each tissue separately based on the number of statistical
tests. We used Bonferroni correction with significance
level after adjustment 0.05.
All 48 tissue types available through GTEx were used

in the analysis. Even though some tissues are certainly
related, for example there are 13 tissues from different
brain areas and 3 artery-derived tissues: artery aorta, ar-
tery coronary, and artery tibial all were analyzed separ-
ately as it was done by GTEx.

GWAS SNPs
We have used summary statistics from breast and lung
cancer OncoArray GWASs [21, 22]. Those two studies
were selected because for both of them complete sum-
mary statistics were readily available. The breast GWAS
summary statistics were downloaded from the Genome-
Wide Repository of Associations Between SNPs and
Phenotypes (GRASP) database [23]. Summary statistics
for lung cancer GWAS is available for downloading from
dbGaP: accession number phs001273.v1.p1. The sample
size for the breast cancer GWAS was 122,977 cases and
105,974 controls. Lung OncoArray study included 29,
266 cases and 56,450 controls. The studies analyzed over
500 K SNPs directly genotyped by the OncoArray [24].
Directly genotyped SNPs include candidate SNPs for
breast, colorectal, lung, ovarian and prostate cancers.
The platform also includes ~ 276 K backbone tag SNPs
selected by OncoArray consortium to ensure reliable im-
putation of additional SNP [24]. Backbone SNPs are
used as tag SNPs for imputation. Backbone SNPs are
uniformly distributed across genome and generally show
less linkage compared to all (directly genotyped plus im-
puted) OncoArray SNPs. We also used summary statis-
tics from the scleroderma GWAS [25]. Scleroderma, or
systemic sclerosis, is an autoimmune disease character-
ized by fibrosis of the skin and internal organs.
There was a substantial overlap between GTEx tested

SNPs (Illumina OMNI 2.5 M SNP Array) and SNPs ge-
notyped or imputed by breast and lung GWASs: 91%
eQTLs were tested in breast and 92% in lung cancer
GWAS. Only SNPs genotyped/imputed by both GTEx
and the GWASs were used in the analysis. As a measure
of statistical significance we have used –log10p where p
is p-value.
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Table 1 Mean -log10p for non-eQTL and eQTL breast cancer OncoArray SNPs. The eQTLs are stratified by tissue types. Only gray
zone SNPs (0.05 > p > 5 × 10− 8) were used in this analysis

eQTL tissue type non-eQTL SNP eQTL SNP aMW(Z) P

-log10pb N -log10pb N

Esophagus Mucosa 2.01/1.83 1,044,642 2.27/2.04 1556 11.99 2.56E-32

Thyroid 2.01/1.83 1,044,339 2.24/2.01 1859 11.55 4.40E-30

Nerve Tibial 2.01/1.83 1,044,334 2.22/2 1864 10.64 1.02E-25

Pancreas 2.01/1.83 1,045,104 2.28/2.05 1094 10.42 1.03E-24

Artery Aorta 2.01/1.83 1,044,905 2.25/2.02 1293 10.34 2.45E-24

Skin Not Sun Exposed Suprapubic 2.01/1.83 1,044,670 2.23/2.01 1528 10.16 1.56E-23

Lung 2.01/1.83 1,044,615 2.22/2 1583 10.1 2.80E-23

Stomach 2.01/1.83 1,045,249 2.28/2.05 949 9.75 8.90E-22

Adipose Subcutaneous 2.01/1.83 1,044,510 2.21/1.99 1688 9.75 9.52E-22

Muscle Skeletal 2.01/1.83 1,044,683 2.22/2 1515 9.74 9.64E-22

Esophagus Muscularis 2.01/1.83 1,044,642 2.22/2 1556 9.6 4.00E-21

Testis 2.01/1.83 1,044,391 2.2/1.98 1807 9.39 2.77E-20

Esophagus Gastroesophageal Junction 2.01/1.83 1,045,177 2.26/2.03 1021 9.36 3.63E-20

Colon Sigmoid 2.01/1.83 1,045,157 2.25/2.02 1041 9.35 4.16E-20

Skin Sun Exposed Lower leg 2.01/1.83 1,044,398 2.19/1.97 1800 9.15 2.53E-19

Adipose Visceral Omentum 2.01/1.83 1,044,921 2.23/2.01 1277 9.14 2.89E-19

Heart Left Ventricle 2.01/1.83 1,045,132 2.24/2.01 1066 8.94 1.70E-18

Cells Transformed fibroblasts 2.01/1.83 1,044,639 2.2/1.98 1559 8.88 2.98E-18

Artery Coronary 2.01/1.83 1,045,557 2.3/2.06 641 8.78 7.49E-18

Artery Tibial 2.01/1.83 1,044,545 2.19/1.97 1653 8.58 3.99E-17

Brain Cerebellum 2.01/1.83 1,045,002 2.21/1.99 1196 8.38 2.29E-16

Breast Mammary Tissue 2.01/1.83 1,045,173 2.23/2.01 1025 8.35 2.81E-16

Pituitary 2.01/1.83 1,045,266 2.23/2.01 932 8.13 1.82E-15

Adrenal Gland 2.01/1.83 1,045,270 2.23/2.01 928 7.99 5.29E-15

Heart Atrial Appendage 2.01/1.83 1,045,051 2.2/1.98 1147 7.75 3.56E-14

Colon Transverse 2.01/1.83 1,045,071 2.21/1.99 1127 7.75 3.71E-14

Cells EBV-transformed lymphocytes 2.01/1.83 1,045,617 2.28/2.05 581 7.74 3.81E-14

Whole Blood 2.01/1.83 1,045,014 2.2/1.98 1184 7.71 5.10E-14

Spleen 2.01/1.83 1,045,243 2.21/1.99 955 7.29 1.17E-12

Liver 2.01/1.83 1,045,581 2.25/2.02 617 7 9.12E-12

Brain Hypothalamus 2.01/1.83 1,045,693 2.27/2.04 505 6.9 1.79E-11

Prostate 2.01/1.83 1,045,571 2.23/2.01 627 6.65 1.01E-10

Brain Cerebellar Hemisphere 2.01/1.83 1,045,174 2.19/1.97 1024 6.64 1.08E-10

Brain Putamen basal ganglia 2.01/1.83 1,045,561 2.23/2.01 637 6.6 1.36E-10

Brain Caudate basal ganglia 2.01/1.83 1,045,364 2.19/1.97 834 6.24 1.44E-09

Brain Amygdala 2.01/1.83 1,045,805 2.27/2.04 393 6.21 1.72E-09

Vagina 2.01/1.83 1,045,803 2.25/2.02 395 5.7 3.61E-08

Brain Substantia nigra 2.01/1.83 1,045,894 2.28/2.05 304 5.54 8.85E-08

Ovary 2.01/1.83 1,045,627 2.2/1.98 571 5.42 1.66E-07

Brain Frontal Cortex BA9 2.01/1.83 1,045,459 2.18/1.97 739 5.37 2.13E-07

Minor Salivary Gland 2.01/1.83 1,045,836 2.25/2.02 362 5.36 2.25E-07

Brain Anterior cingulate cortex BA24 2.01/1.83 1,045,520 2.18/1.97 678 5.21 5.21E-07
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Statistical analysis
Non-parametric Mann-Whitney U test was used to com-
pare -log10p(s) between eQTL and non-eQTL GWAS
SNPs. To illustrate the relationship between eQTLs and the
level of statistical significance (−log10p) in stratified analyses
(Figs. 2 and 4) we used means and standard error of mean
(SE). For correlation analyses we have used Spearman rank
order correlation tests. All statistical tests were imple-
mented in Statistica (TIBCO Software Inc., 2017).

Results
SNP’s eQTL status and the level of statistical significance
in GWAS
Nominally significant breast cancer GWAS SNPs were
used in this analysis. Tables 1 and 2 as well as Additional
file 1: Tables S1-S3 show mean -log10p for the SNPs that
are reported as eQTL versus SNPs that are not eQTLs
in a given tissue. eQTL SNPs had higher -log10p regard-
less of the tissue specificity of the eQTL. We expected
that breast tissue eQTLs will show the strongest -log10p
inflation, based on the larger sample size of the original
study to identify GWAS SNPs. We found, however, that
breast eQTLs showed an average level of statistical sig-
nificance compared to eQTLs for other tissue types.
Similar to breast cancer, in lung cancer GWAS we also

found that the SNPs reported as eQTLs tended to be
more significant regardless of the tissue specificity of the
eQTL (Table 2). Lung tissue specific eQTLs were associ-
ated with an average (typical) inflation of -log10p com-
pared to eQTLs specific for other tissue types.

SNPs showing eQTL activity in multiple tissues (pan-tissue
eQTLs) exhibit a higher -log10p inflation
eQTLs can be roughly divided into tissue specific (those
reported as an eQTL in a single tissue type) and pan-
tissue eQTLs – those showing eQTL activity across mul-
tiple tissues. Additional file 1: Table S1 shows the distribu-
tion of eQTL SNPs by the number of tissues where they
are reported. Over 80% of eQTLs are tissue-specific while
only a few SNPs show eQTL activity across all 48 tissues.

GWAS SNPs were subdivided into 5 categories based
on the number of tissues where a SNP is reported as
eQTL: “0”, “1”, “2”, “3” and “> 3” and mean -log10ps were
computed in each category (Fig. 1). Figure 1a shows the
result of the analyses of breast cancer GWAS SNPs and
Fig. 1b - lung cancer GWAS SNPs. In both studies pan-
tissue eQTLs show a higher inflation of -log10p com-
pared to tissue specific eQTLs.

Statistical significance of a SNP in GWA studies is
positively associated with the number of eQTLs in its
adjacent region
We tested if the density of eQTLs in the adjacent ±5 kb
region is associated with the level of statistical significance
of the SNP in GWASs. The size of the adjacent region
was selected because it is a typical size of haplotype blocks
in the human genome [26]. SNPs were categorized by the
number of eQTLs in the adjacent region and mean -log10p
were estimated for each category (Fig. 2). We found that
-log10p(s) for breast cancer (upper panel) SNPs were posi-
tively associated with the number of eQTLs in adjacent re-
gions. There was a linear association in 0–6 eQTLs
interval and after that the curve plateaued. For SNPs that
themselves are not eQTLs (a) and eQTLs (b) the associa-
tions were similar. The results for lung cancer GWAS (c,
d) were similar to the breast cancer GWAS results.

SNPs with a higher density of eQTLs in adjacent region
are more likely to be located in regulatory regions
High eQTL density may be indicative of high density of
regulatory elements in the region. Based on the density
of eQTLs in the adjacent region we subdivided GWAS
SNPs into three categories: low density (no eQTLs de-
tected in ±5 kb region), intermediate density (1–7 eQTLs);
and high density – eight or more eQTLs in the adjacent
region of the anchor SNP. The cut points for these cat-
egories were chosen to ensure similar sizes of the groups.
Encyclopedia of DNA Elements (ENCODE) data [27] were
used to identify transcription factor (TF) and miRNA
binding sites [28]. Figure 3 shows the proportions of SNPs

Table 1 Mean -log10p for non-eQTL and eQTL breast cancer OncoArray SNPs. The eQTLs are stratified by tissue types. Only gray
zone SNPs (0.05 > p > 5 × 10− 8) were used in this analysis (Continued)

eQTL tissue type non-eQTL SNP eQTL SNP aMW(Z) P

-log10pb N -log10pb N

Brain Nucleus accumbens basal ganglia 2.01/1.83 1,045,408 2.17/1.96 790 5.2 5.41E-07

Brain Spinal cord cervical c-1 2.01/1.83 1,045,737 2.2/1.98 461 4.77 4.66E-06

Small Intestine Terminal Ileum 2.01/1.83 1,045,503 2.16/1.95 695 4.66 7.51E-06

Brain Cortex 2.01/1.83 1,045,253 2.13/1.93 945 4.31 3.74E-05

Uterus 2.01/1.83 1,045,780 2.18/1.97 418 4.09 9.19E-05

Brain Hippocampus 2.01/1.83 1,045,658 2.16/1.95 540 4.04 1.12E-04
aMW(Z) is a Z statistics from Mann-Whitney test for comparing two samples
bmean/median
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Table 2 Mean -log10p for not eQTL and eQTL lung cancer OncoArray SNPs. The eQTLs are stratified by tissue types

eQTL tissue type non-eQTL SNP eQTL SNP aMW(Z) P

-log10pb N -log10pb N

Uterus 1.88/1.69 798,995 2.26/2.01 269 8.62 2.90E-17

Adipose Subcutaneous 1.88/1.69 798,297 2.04/1.83 967 7.98 5.90E-15

Vagina 1.88/1.69 798,997 2.23/1.99 267 7.95 7.60E-15

Spleen 1.88/1.69 798,688 2.13/1.9 576 7.92 9.90E-15

Prostate 1.88/1.69 798,847 2.16/1.93 417 7.78 2.80E-14

Ovary 1.88/1.69 798,916 2.18/1.95 348 7.72 4.40E-14

Cells EBV-transformed lymphocytes 1.88/1.69 798,893 2.18/1.95 371 7.69 5.90E-14

Pituitary 1.88/1.69 798,733 2.12/1.89 531 7.54 1.70E-13

Artery Coronary 1.88/1.69 798,862 2.12/1.89 402 7.54 1.80E-13

Small Intestine Terminal Ileum 1.88/1.69 798,827 2.13/1.9 437 7.41 4.60E-13

Adipose Visceral Omentum 1.88/1.69 798,503 2.07/1.85 761 7.34 8.00E-13

Brain Substantia nigra 1.88/1.69 799,078 2.26/2.01 186 7.28 1.20E-12

Whole Blood 1.88/1.69 798,578 2.09/1.87 686 7.15 3.20E-12

Brain Spinal cord cervical c-1 1.88/1.69 798,979 2.2/1.96 285 7.09 4.90E-12

Stomach 1.88/1.69 798,724 2.11/1.89 540 7.06 5.80E-12

Breast Mammary Tissue 1.88/1.69 798,703 2.1/1.88 561 7.03 7.60E-12

Brain Putamen basal ganglia 1.88/1.69 798,889 2.14/1.91 375 6.99 9.50E-12

Brain Cerebellum 1.88/1.69 798,524 2.05/1.83 740 6.99 9.80E-12

Brain Nucleus accumbens basal ganglia 1.88/1.69 798,766 2.12/1.89 498 6.96 1.20E-11

Brain Cortex 1.88/1.69 798,735 2.11/1.89 529 6.9 1.80E-11

Esophagus Gastroesophageal Junction 1.88/1.69 798,628 2.09/1.87 636 6.83 3.00E-11

Artery Tibial 1.88/1.69 798,325 2.02/1.81 939 6.78 4.20E-11

Colon Transverse 1.88/1.69 798,567 2.08/1.86 697 6.71 6.70E-11

Pancreas 1.88/1.69 798,628 2.09/1.87 636 6.7 7.30E-11

Skin Not Sun Exposed Suprapubic 1.88/1.69 798,372 2.05/1.83 892 6.66 9.30E-11

Heart Atrial Appendage 1.88/1.69 798,574 2.08/1.86 690 6.6 1.30E-10

Adrenal Gland 1.88/1.69 798,712 2.06/1.84 552 6.59 1.50E-10

Brain Cerebellar Hemisphere 1.88/1.69 798,607 2.04/1.83 657 6.51 2.50E-10

Liver 1.88/1.69 798,893 2.11/1.89 371 6.47 3.20E-10

Brain Frontal Cortex BA9 1.88/1.69 798,788 2.1/1.88 476 6.31 9.00E-10

Skin Sun Exposed Lower leg 1.88/1.69 798,261 2.04/1.83 1003 6.27 1.20E-09

Brain Hippocampus 1.88/1.69 798,936 2.14/1.91 328 6.12 3.00E-09

Heart Left Ventricle 1.88/1.69 798,640 2.07/1.85 624 6.08 3.70E-09

Thyroid 1.88/1.69 798,130 2.02/1.81 1134 5.92 9.60E-09

Lung 1.88/1.69 798,354 2.02/1.81 910 5.88 1.20E-08

Nerve Tibial 1.88/1.69 798,217 2.02/1.81 1047 5.85 1.50E-08

Esophagus Mucosa 1.88/1.69 798,316 2.03/1.82 948 5.85 1.50E-08

Minor Salivary Gland 1.88/1.69 799,032 2.14/1.91 232 5.84 1.60E-08

Artery Aorta 1.88/1.69 798,498 2.01/1.8 766 5.69 3.70E-08

Brain Caudate basal ganglia 1.88/1.69 798,771 2.04/1.83 493 5.53 9.10E-08

Colon Sigmoid 1.88/1.69 798,658 2.05/1.83 606 5.45 1.40E-07

Testis 1.88/1.69 798,195 2.01/1.8 1069 5.44 1.50E-07

Brain Hypothalamus 1.88/1.69 798,938 2.12/1.89 326 5.4 1.80E-07
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co-localizing with TF (3a) and miRNA binding sites (3b)
among GWAS SNPs with low, intermediate and high
density of eQTLs in adjacent regions. We found that SNPs
with high density of eQTLs in adjacent regions are more
likely to be located in regulatory regions.
The comparison of all eQTL SNPs (blue lines on Fig. 3)

versus all non eQTL SNPs (black lines on Fig. 3) shows
that eQTL SNPs are more likely to co-localize with TF
binding sites (Fig. 3a) as well as miRNA binding sites
(Fig. 3b).

Genome chopping
The detected positive association between eQTL density
in adjacent regions of the SNPs and its level of statistical
significance in GWAS can potentially be biased because
of a non-uniform distribution of SNPs along chromo-
somes. If the SNP density is higher in a region of GWAS
peaks, the 5 kb regions of the many SNPs located in the
peak will overlap and, as a result, be overrepresented in
the analysis. To assess the association between eQTL
density and the level of statistical significance in non-

overlapping regions we divided the human genome into
consecutive (non-overlapping) 5 kb fragments starting
from the first nucleotide of each chromosome. The total
number of fragments was 558,455. About 70% of frag-
ments (total 391,824) do not contain eQTLs. The high-
est number of eQTLs was detected in a fragment on
chromosome 5, position 570,305,043–70,310,042 – 117
eQTLs. Additional file 1: Figure S1a shows the distribu-
tion of the fragments by the number of eQTLs in them.
Additional file 1: Figure S1b shows the distribution of
fragments by the number of genotyped lung cancer
GWAS SNPs in them. The mean and median numbers
of SNPs per fragment are correspondingly 35.1 and 33.
Similar results were obtained for breast cancer GWAS
SNPs (Additional file 1: Figure S1c).
We observed a significant positive association between

the number of eQTLs in non-overlapping fragments and
the mean -log10p for the breast cancer GWAS SNPs
from the corresponding fragments (Spearman Rank
Order correlation R = 0.05, df = 558,455, p = 7.5 × 10− 28).
The correlation remained significant after the exclusion

Table 2 Mean -log10p for not eQTL and eQTL lung cancer OncoArray SNPs. The eQTLs are stratified by tissue types (Continued)

eQTL tissue type non-eQTL SNP eQTL SNP aMW(Z) P

-log10pb N -log10pb N

Muscle Skeletal 1.88/1.69 798,409 2.02/1.81 855 5.22 4.90E-07

Cells Transformed fibroblasts 1.88/1.69 798,375 2.02/1.81 889 5.06 1.10E-06

Brain Anterior cingulate cortex BA24 1.88/1.69 798,880 2.02/1.81 384 3.91 1.90E-04

Brain Amygdala 1.88/1.69 799,022 1.98/1.78 242 2.44 2.00E-02
aMW(Z) is a Z statistics from Mann-Whitney test for comparing two samples
bmean/median

Fig. 1 Mean -log10p in SNPs stratified by the number of tissues where it is reported as an eQTL. a Breast cancer GWAS; b Lung cancer GWAS
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of all fragments with at least one genome wide signifi-
cant SNP (Spearman Rank Order correlation R = 0.05,
df = 554,672, p = 3.4 × 10− 26). A similar association was
observed for lung GWAS SNPs: R = 0.03, df = 558,455,
p = 3.6 × 10− 18. The correlation remained significant
after the exclusion of all fragments with at least one gen-
ome wide significant SNP (Spearman Rank Order correl-
ation R = 0.03, df = 557,675, p = 3.9 × 10− 16).

Proportions of eQTLs in groups of SNPs categorized by
the level of statistical significance in GWAS
The results of several studies suggest that eQTLs are more
likely to be causal, risk-associated SNPs compared to non-
eQTL SNPs [29–32]. If it is true, the proportion of eQTLs
among more significant SNPs is expected to be higher.
We subdivided GWAS SNPs into 4 categories based on
the level of their statistical significance and estimated pro-
portions of eQTLs in them: white noise – SNPs that do
not reach the level of nominal significance p > 0.05; light
gray SNPs – SNPs in the lower part of the gray zone those
that are nominally significant but do not reach genome
wide level of statistical significance 0.05 > p > 5 × 10− 5;
dark gray SNPs – SNPs in the upper part of the gray zone:
5 × 10− 5 > p > 5 × 10− 8, and genome wide (GW) significant

SNPs – those with p < 5 × 10− 8. We estimated the propor-
tions of eQTLs in each category.
The proportions of eQTLs were higher among more

significant SNPs (Fig. 4a and c). We noted that eQTLs
not only became more frequent as GWAS significance
level went up, but they as well became more significant
themselves: -log10q (where q is the p value for association
between the number of variant alleles and gene expression
adjusted for multiple testing) significantly increases from
white noise to GW significant SNPs (Fig. 4b and d).
For a more granular analysis we categorized GWAS

SNPs based on the level of statistical significance using
0.5 increments for -log10p (16 categories in total). Figure 5,
left panel, shows results for breast cancer, and right – for
lung cancer GWAS. For nonsignificant SNPs (blue-shaded
areas - those with -log10p between 0 and 1.3), the propor-
tion of eQTLs was low and flat across all categories, with
the average proportion of eQTLs 1.40 ± 0.01% in lung can-
cer and ~ 2.11 ± 0.01 in breast cancer. For breast cancer
GWAS gray zone SNPs (those with -log10p between 1.3
and 7.3), the average percentage of eQTLs was 2.14 ±
0.01%. For gray zone SNPs we observed a significant posi-
tive association between the proportion of eQTLs and
-log10p (Spearman rank order correlation R = 0.95, N = 12,

Fig. 2 The relationship between the number of eQTLs in ±5 kb adjacent region of the anchor SNP and the level of statistical significance. a Breast
cancer gray zone SNPs that are not eQTLs. b Gray zone SNPs from breast cancer GWAS that are eQTLs. c Gray zone SNPs from lung cancer GWAS
that are not eQTLs. d. Gray zone SNPs from lung cancer GWAS that are eQTLs. Vertical bars show standard error (SE) of the mean
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p = 2.1 × 10− 6). Since the number of SNPs with genome
wide level of statistical significance is relatively small, we
combined them together. For lung cancer GWAS, the
association between the level of GWAS significance and
the proportion of eQTLs was similar to that in the breast
cancer GWAS.

Analysis of backbone SNPs
The results generated by analyses of backbone SNPs
were similar to those generated by the analyses of all
OncoArray SNPs. Regardless of their tissue specificity
backbone eQTL SNPs tended to be more significant
than non-eQTL SNPs in both breast and lung GWASs
(Additional file 1: Tables S2 and S3). Densities of eQTLs
in the 5 kb adjacent region were positively associated
with -log10p in both breast and lung backbone SNPs
(Additional file 1: Figure S2).

Scleroderma GWAS
We analyzed summary statistics from scleroderma
GWAS to check if findings from cancer GWASs hold
for noncancerous disease. The results of the analysis of
association between a SNP’s eQTL status and the level
of statistical significance in scleroderma GWAS were
similar to the results for breast and lung cancer GWASs.
SNPs reported as eQTLs tended to be more significant
in scleroderma GWAS than non-eQTL SNPs regardless
of the tissue specificity (Additional file 1: Table S4).

Similar to the analyses of breast and lung GWASs we
found that eQTL density in the adjacent ±5 kb region
was positively associated with the level of statistical sig-
nificance (Additional file 1: Figure S3).

Discussion
We found that GWAS eQTL SNPs tended to be more
significant compared to non-eQTL SNPs. Tissue-specific
eQTLs (breast and lung eQTLs in this analysis) did not
show a higher level of inflation in significance level com-
pared to other tissues. The likely reason for the lack of
tissue specificity may be that eQTLs often show mul-
tiple-tissue effects. Almost 20% of eQTLs have more than
one target tissue. An overlap across different tissue types
is stronger when less stringent criteria to define eQTLs
are used [33]. When a SNP acts as a eQTL in multiple tis-
sue types, the direction of the effect is the same in more
than 97% cases [33]. Based on this observation one can
suggest that eQTLs with a significant effect on gene ex-
pression in one tissue type often have a similar effect in
other tissue types. eQTLs with pan-tissue effects are not
currently very common because they may not have been
all identified due to the small sample size of GTEx [20].
We found that the level of statistical significance of a

SNP in GWAS is positively associated with the eQTL
density in its adjacent region regardless of its eQTL
status. We think that the reason for these associations
can be that some SNPs that are not reported as eQTLs
are, in fact, eQTLs (false negatives). This suggestion is

Fig. 3 The proportion of transcription factor (a) and miRNA (b) binding sites in SNPs categorized by low, intermediate and high density of eQTLs
in ±5 kb adjacent region. Vertical bars represent standard errors of mean. Horizontal black lines represent the proportion of non- eQTL SNPs co-
localizing with TF binding sites (a) and miRNA binding sites (b). Horizontal blue lines represent the proportion of eQTL SNPs co-localizing with TF
and miRNA binding sites. Orange areas represent SE of means for the analysis. Black vertical bars show standard error (SE) of the mean
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further supported by the observation that non-eQTL
SNPs located in eQTL-rich regions often co-localize
with regulatory regions.
We also noted that the proportion of eQTLs in-

creases with the increasing level of statistical signifi-
cance in GWAS and reaches plateau at the level of ~
10− 5–10− 6. The simplest explanation to this can be
that eQTLs have a higher probability to be causal,
risk-associated SNPs and as a result categories with a
high level of statistical significance have a higher pro-
portion of eQTL SNPs. Proportions of eQTLs in the
group may reflect the proportion of true positives.
This analysis found that the proportion of eQTLs
plateaued at the level of statistical significance about
10− 5, suggesting that the proportions of causal SNPs
may be similar among dark gray SNPs and SNPs at the
genome-wide level of statistical significance.

It is likely that the associations found between eQTL
status/density and the level of statistical significance in
cancer GWASs also hold for other phenotypes. This is
supported by analysis of summary statistics for sclero-
derma GWAS. F.
The effect size of the association between eQTLs and

the level of statistical significance was relatively small.
This suggests that although the eQTL status of the SNP
as well as eQTL density in the surrounding region can
be useful in SNP prioritizing it would be better to use
them in combination with other SNP characteristics as-
sociated with functionality, e.g. the level of evolutionary
conservation of the site [34]. The limitation of our
analysis is that -log10p is study specific (GWASs with a
larger sample size are likely to have a larger for -log10ps)
which makes it difficult to generalize exact shapes of
SNP/eQTL relationships.

Fig. 4 The proportions (a and c) and significance (b and d) of eQTLs among SNPs from breast (upper panel) and lung (lower panel) cancer
GWASs categorized by the level of statistical significance. Vertical bars show standard error (SE) of the mean
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The major findings of this study are:

1. eQTL SNPs are more significant in GWASs
regardless of their tissue specificity;

2. Pan-tissue eQTLs are associated with a higher
inflation of -log10p compared to tissue specific
eQTLs;

3. SNPs located in regions of high eQTL density are
more significant in GWAS regardless of their own
eQTL status;

4. The probability of a SNP to be an eQTL is positively
associated with the level of statistical significance in a
GWAS. The association curve plateaued after
-log10p~ 5 suggesting that SNPs from the dark gray
zone (10− 5 > p > 5 × 10− 8) and SNPs at the genome
wide level of statistical significance have a similar
proportion of causal SNPs.

Conclusions
Our results suggest that a substantial subset of SNPs
in the dark grey zone are eQTLs and therefore likely
to be causally associated with disease development.
Causal risk-associated SNPs from dark gray zone may
not be detected by GWAS because of their smaller ef-
fect size and the limited sample sizes available from
most GWAS studies. Nevertheless, SNPs that are as-
sociated with an increased risk for disease develop-
ment should be included as a part of the polygenic
risk score modeling process. Results that we have ob-
tained suggest prioritizing SNPs for polygenic risk
score modeling that are strongly or moderately associ-
ated with disease risk and act as eQTLs, particularly
in multiple tissues.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12863-019-0786-0.

Additional file 1: Table S1. Distribution of eQTL SNPs by the number
of tissues where they are reported as eQTLs. eQTL SNPs with “Number of
tissues” equal to one are tissue specific; others are pan-tissue. Table S2.
Mean -log10p for non-eQTL and eQTL backbone breast cancer OncoArray
SNPs. The eQTLs are stratified by tissue types. Table S3. Mean -log10p for
non-eQTL and eQTL backbone lung cancer OncoArray SNPs. The eQTLs
are stratified by tissue types. Table S4. Mean -log10p for non-eQTL and
eQTL scleroderma GWAS SNPs. The eQTLs are stratified by tissue types.
Figure S1. a) The distribution of non-overlapping 5 kb fragments by the
number of eQTLs. b) The distribution of 5 kb non-overlapping chromosomal
fragments by the number of lung GWAS SNPs. c) Distribution of 5 kb non-
overlapping chromosomal fragments by the number of breast cancer GWAS
SNPs. Figure S2. The relationship between the number of eQTLs in the ±5
kb adjacent region and the level of statistical significance of the backbone
SNP. a. Breast cancer GWAS SNPs. b. Lung cancer GWAS SNPs. Shaded circle
indicate SNPs with > 18 eQTLs in ±5 kb adjacent region. Vertical bars show
standard error (SE) of the mean. Figure S3. The relationship between the
number of eQTLs in ±5 kb adjacent region and the level of statistical
significance of scleroderma SNP. Shaded circle indicate SNPs with > 18
eQTLs in ±5 kb adjacent region. Vertical bars show standard error (SE)
of the mean.
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