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Technology-based therapy-response and prognostic
biomarkers in a prospective study of a de novo Parkinson’s
disease cohort
Giulia Di Lazzaro1,2, Mariachiara Ricci3, Giovanni Saggio 3✉, Giovanni Costantini3, Tommaso Schirinzi1, Mohammad Alwardat 1,
Luca Pietrosanti3, Martina Patera1, Simona Scalise1, Franco Giannini3 and Antonio Pisani 4,5

Early noninvasive reliable biomarkers are among the major unmet needs in Parkinson’s disease (PD) to monitor therapy response
and disease progression. Objective measures of motor performances could allow phenotyping of subtle, undetectable, early stage
motor impairments of PD patients. This work aims at identifying prognostic biomarkers in newly diagnosed PD patients and
quantifying therapy-response. Forty de novo PD patients underwent clinical and technology-based kinematic assessments
performing motor tasks (MDS-UPDRS part III) to assess tremor, bradykinesia, gait, and postural stability (T0). A visit after 6 months
(T1) and a clinical and kinematic assessment after 12 months (T2) where scheduled. A clinical follow-up was provided between 30
and 36 months after the diagnosis (T3). We performed an ANOVA for repeated measures to compare patients’ kinematic features at
baseline and at T2 to assess therapy response. Pearson correlation test was run between baseline kinematic features and UPDRS III
score variation between T0 and T3, to select candidate kinematic prognostic biomarkers. A multiple linear regression model was
created to predict the long-term motor outcome using T0 kinematic measures. All motor tasks significantly improved after the
dopamine replacement therapy. A significant correlation was found between UPDRS scores variation and some baseline
bradykinesia (toe tapping amplitude decrement, p= 0.009) and gait features (velocity of arms and legs, sit-to-stand time, p= 0.007;
p= 0.009; p= 0.01, respectively). A linear regression model including four baseline kinematic features could significantly predict the
motor outcome (p= 0.000214). Technology-based objective measures represent possible early and reproducible therapy-response
and prognostic biomarkers.
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INTRODUCTION
The increasing life expectancy has led in the past decades to a
higher prevalence of age-related neurodegenerative diseases,
including Parkinson’s disease (PD)1. In particular, PD results with
median age-standardized annual incidence rates in high-income
countries of 14 per 100,000 people in the total population, and
160 per 100,000 people aged 65 years or older2. Therefore, it has
become crucial to have reliable and affordable diagnostic,
prognostic, progression and therapy-response biomarkers, in
order to support an early diagnosis and identification of more
patients at higher risk of rapid motor progression, and to
objectively evaluate patients’ response to therapy for customized
therapeutic intervention since the early stages.
In this context, fluid biomarkers, either blood, or CSF samples,

have been extensively investigated by studying molecules related
to the pathophysiological mechanisms occurring in the disease,
such as α-synuclein species, lysosomal enzyme activities, common
Alzheimer’s disease biomarkers3. However, very few studies
focused on the very early stages of the disease and on
longitudinal data. Some works considered structural and func-
tional neuroimaging-based progression biomarkers, but no
definite data are available4. Indeed, the quantitative data from
123‐I Ioflupane dopamine transporter SPECT seem not to correlate
to disease severity and progression, while preliminary data from

magnetic resonance imaging morphometry suggest a correlation
between atrophy and poor overall prognosis5,6.
To date, the assessment of the disease burden, of the

progression and of the response to therapy still rely on patient-
reported outcomes and clinical evaluation by means of validated
rating scales. This approach can suffer from inter-rater and intra-
rater variability and can be biased by the experience of the
examiner. These are the reasons why an increasing interest
emerged in technology-based assessment of motor function in PD
patients. Several cross-sectional studies have focused on mild-
moderate PD patients vs. healthy controls, to measure bradykine-
sia, gait abnormalities and postural instability using different
technologies (RGB cameras, electromyography, inertial sensors,
balance boards, and smartphones)7–16. Indeed, technology-based
objective measures (TOMs) provide quantitative and reproducible
data on motor performances, useful both for daily clinical practice
and for scientific research17. In addition, TOMs can support the
early identification of subclinical motor impairment or monitor
response to therapy and patients’ activities over long periods18–21.
In previous works, we demonstrated objective detection of

parkinsonian motor features in an initial phase of the disease by
means of wearable inertial sensors on a cohort of de novo PD
patients20,22. Here, we present results from TOMs performed in the
same cohort of de novo PD patients prospectively followed up to
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nearly 30 months, in order to determine technology-based
therapy response and to evidence prognostic biomarkers.

RESULTS
Therapy response
Table 1 shows clinical and demographical data of 36 patients who
completed the study at T0, T2, and T3. As expected, the MDS-
UPDRS II and III scores decreased significantly after the initiation of
the dopaminergic therapy. On the other hand, no significant
differences were recorded in NMSS.
As reported in Table 2, several measured features from RAHM,

LA, TT, PT, and TUG tasks significantly changed from T0 to T2. In
particular, during all bradykinesia tasks (RAHM, LA, and TT) the
movement amplitude increased (Power, Fig. 1). Differently, no
improvements were evidenced in tremor related features. Several

Table 1. Average and standard deviation of the clinical scores for
patients at T0, T2, and T3.

T0 (n= 36) T2 (n= 36) T3 (n= 36) p value

Age (years) 62.7 ± 8.7

Gender (M/F) 27/9

Symptoms duration (years) 2 ± 2.04

H&Y 1.7 ± 0.55 1.56 ± 0.5 1.54 ± 0.51 p= 0.32

MDS-UPDRS III 22.3 ± 9.14 17.3 ± 6.67 15.36 ± 6.75 p= 0.002

MDS-UPDRS II 6.9 ± 2.9 5.8 ± 2.9 5.3 ± 3.1 p= 0.007

NMSS 42.75 ± 35.49 40.25 ± 32.75 44.72 ± 30.31 p= 0.65

LEDD 0 273.86 ± 110.85 368.47 ± 132.2 p < 0.001

M male, F female, H&Y Hohen and Yahr stage, MDS-UPDRS Movement
disorders society Unified Parkinson’s Disease Rating Scale, NMSS Non-Motor
Symptoms Scale, LEDD Levodopa Equivalent Daily Dose.

Table 2. Mean values and standard deviations of significantly improved RAHM, LA, TT, PT, and TUG features in PD patients from T0 to T2.

Feature (task) [T0] Mean ± SD [T2] Mean ± SD p value SRM

CV (RAHM) 11.39 ± 7.2 7.9 ± 3.18 0.002 −0.45

Amp_CV (RAHM) 21.25 ± 7.86 15.74 ± 5.39 <0.001 −0.59

Power (RAHM) 406.66 ± 158.45 528.14 ± 150.77 <0.001 0.77

Asym_Power (RAHM) 20.15 ± 10.37 13.29 ± 9.43 0.001 −0.61

Amp (LA) 29.07 ± 14.19 38.63 ± 24.12 0.012 0.39

Power (LA) 32.9 ± 17.35 44.61 ± 24.54 0.005 0.5

Amp (TT) 66.28 ± 22.96 78.14 ± 25.05 0.001 0.47

Power (TT) 50.14 ± 21.9 67.06 ± 26.9 <0.001 0.55

ROM ML (PT) 9.058 ± 5.133 13.72 ± 6.04 0.002 0.77

Number of Steps (PT) 2.156 ± 0.913 1.47 ± 0.8 0.017 −0.57

Turning Time (TUG) 2.073 ± 0.341 1.78 ± 0.24 <0.001 −0.72

Cv Stance (TUG) 0.08 ± 0.071 0.09 ± 0.06 0.026 0.18

Cv Swing (TUG) 0.107 ± 0.119 0.1 ± 0.05 0.033 0.03

Flex Arm (TUG) 24.901 ± 12.853 36.43 ± 18.15 0.033 0.5

Average_Vel_Arm (TUG) 16.774 ± 6.637 24.51 ± 8.27 0.007 0.54

Turning_Vel (TUG) 89.245 ± 15.466 102.77 ± 14.54 <0.001 0.7

Steps_Turning (TUG) 3.517 ± 0.871 2.93 ± 0.72 0.005 −0.54

Rms_ML_Sitwalk (TUG) 0.586 ± 0.18 0.76 ± 0.3 0.017 0.41

Flex_Trunk_Sitwalk (TUG) 37.98 ± 13.434 29.84 ± 18.03 0.048 −0.48

Fig. 1 Evolution of RAHM amplitude after dopaminergic therapy initiation. The graphs show the power spectral density of the angular
velocity measured by the sensor placed on right and left hand of a PD patient at T0 (a) and T2 (b). At the baseline (a), it is evident a reduced
maximum value of the power spectral density and an asymmetry between right and left limb (measured by the feature Power and
Asym_Power, respectively), which both improved with the therapy (b).
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TUG features also improved, especially the ones related to the
turning phase (Turning Vel, Steps Turning) and upper limb
movement (Arm Swing and Average Vel Arm).

Identification of technology-based prognostic biomarkers
To identify candidate technology-based prognostic biomarkers, we
looked for correlations between baseline kinematic features and
motor progression at T3, measured as the % variation of UPDRS III
score between T0 and T3. Table 3 reports correlations between
baseline motor features values and MDS-UPDRS score variation
between T0 and T3. In particular, the average velocity of legs
(Average_Vel_Leg) and arms (Average_Vel_Arm) during TUG test
positively correlated with the percentage reduction of MDS-UPDRS
III at T3 (respectively r= 0.451 p= 0.007 and r= 0.436, p= 0.009),
while the sit-to-stand time showed an inverse correlation (r=−0.432,
p= 0.01). From TT task, only the decrement in the amplitude
(Amp_decr) was significantly inversely correlated with the improve in
the clinical scale while the variability in the amplitude of the
movement was only close to significance (respectively r=−0.433,
p= 0.009; r= 0.296, p= 0.08). Features from RAHM and LA tasks did
not reach statistical significance.
Then, linear regression was used to investigate variables

predicting the motor progression at T3. Independent noncollinear
variables showing an association at univariate analysis (p < 0.10) or
significant correlation were then included in multivariate models,
as appropriate. As shown in Table 4, the best multiple linear
regression model to predict the clinical motor outcome included 4
features, since RAHM asymmetry (Asym_Power), LA coefficient of
variability (CV), TT decrement (Amp_Decr), and TUG average
velocity of legs (Average_Vel_Leg) reach excellent statistical
significance (p= 0.000214; R square= 0.558875; adjusted R
square= 0.480103). LEDD proved to be irrelevant (Standardized
Beta= 0.006, p= 0.964).

We also tested the power of the clinical assessment alone to
predict the motor outcome. So, we built a multiple linear
regression model including as independent variables the UPDRS
III score at T0 and LEDD at T3 and as dependent variable the
percentage of variation in UPDRS III between T3 and T0. This
model was able to explain only the 13.5% of the variance (R
square 0.187, adjusted R square 0.135, p 0.04).

DISCUSSION
The lack of reliable, reproducible, noninvasive, and affordable
biomarkers for supporting the diagnostic process and monitoring
the disease progression and the therapy response is one of the
major unmet needs in PD23,24. However, the identification of early,
reliable, measurable, objective, and noninvasive prognostic and
therapy-response biomarkers is crucial for early stratification of
patients and objective evaluation of the efficacy of a therapeutic
intervention in PD. Indeed, validated rating scales, such as the
MDS-UPDRS, or patient-reported questionnaires, such as the
Hauser diary, are the most commonly utilized outcome measures
for pharmacological and non-pharmacological intervention in
PD25–27.
Here, we demonstrated that a dopaminergic replacement

therapy ameliorates motor performances in a technology-based
measurable and objective way, by means of wearable sensors.
Indeed, all tasks but tremor had at least one feature which

significantly improved after therapy. The lack of efficacy on tremor
is not surprising, and in agreement with the literature28. On the
other hand, the task used for evaluating bradykinesia in upper
limbs (RAHM) was the one with the most significant measurable
improvement, consistent with clinical experience and previous
findings29–31.
The identification of the most responsive features is extremely

useful in evaluating the therapy efficacy, representing a valid and
objective therapy-response biomarker, which could be helpful in
evaluating outcomes in clinical trials24,32. In this regard, our
findings suggest that the feature Power, a parameter related to the
amplitude of the movement, emerges as a good candidate as
therapy-response biomarker for all bradykinesia tasks. In fact,
Power significantly improved after the dopaminergic therapy in all
RAHM, LA, and TT tasks. Moreover, some TUG features related to
the turning phase demonstrated a significant L-dopa responsive-
ness, in particular the turning time and velocity (SRM > 0.7). This is
particularly interesting because gait disturbances are clinically
detectable in later stages as compared to a kinematic gait analysis.
A technology-based gait-related therapy-response biomarker
could therefore have much higher sensitivity, mostly in earlier
stages of the disease, allowing clinicians to customize the
treatment even for subtle motor signs.
Another aim of this study was to identify early technology-

based prognostic biomarkers. In particular, we followed up our
cohort for at least 30 months and then we retrospectively
analyzed patients’ baseline motor features in relation to their

Table 3. Correlation coefficients for selected RAHM, LA, TT, and TUG
features at T0 with MDS-UPDRS III score variation between baseline
and last follow-up (T0 and T3).

Feature (task) Correlation coefficients p value

Amp_CV (RAHM) −0.322 0.059

Asym_Power (RAHM) −0.290 0.091

Amp_Decr (RAHM) −0.291 0.090

CV (LA) −0.327 0.055

Amp_CV (TT) −0.296 0.084

Amp_Decr (TT) −0.433 0.009

Average_Vel_Leg (TUG) 0.451 0.007

Average_Vel_Arm (TUG) 0.436 0.009

Sit-To-Stand Time (TUG) −0.432 0.010

Table 4. Multiple linear regression model to predict the motor outcome at T3, measured as the % variation in UPDRS III score between baseline and
T3 (dependent variable).

Feature B Std. Error S Beta p CI lower b CI higher b

LEDD 0000017 0.000369 0.006386 0.964 −0.000738 0.000772

RAHM Asym_Power −0.009001 0.004353 −0.281472 0.048015 −0.017918 −0.000084

LA CV −0.023121 0.008178 −0.379282 0.008575 −0.039873 −0.006369

TT Amp_Decr −0.024502 0.006125 −0.540302 0.000420 −0.037049 −0.011955

TUG Average_Vel_Leg 0.004229 0.001697 0.331834 0.018876 0.000753 0.007704

For each dependent variable beta (B), standardized beta (S Beta), standard error (std. Error), p values, and confidence interval (CI) are reported.

G.Di Lazzaro et al.

3

Published in partnership with the Parkinson’s Foundation npj Parkinson’s Disease (2021)    82 



motor outcome defined as the MDS-UPDRS III variation at last
follow-up. Interestingly, features from bradykinesia tasks (RAHM
asymmetry, the variability of LA and the decrement at TT) and gait
(velocity of legs) exhibited statistical significance in predicting the
motor outcome at 30 months, whereas the LEDD did not have any
influence, as demonstrated by the regression model. Accordingly,
three features from TUG test, namely the speed of the upper and
lower limbs while walking and the time needed to stand up from
the sit position, and the TT decrement also significantly correlated
to the clinical scores change at last follow-up. Of note, early overt
gait abnormalities or signs in the lower limbs are typically
considered red flags for alterative diagnosis other than idiopathic
PD, mainly atypical parkinsonism33. This suggests that subclinical
gait and lower limb motor abnormalities detectable with wearable
sensors in the early phases could identify patients with less
favorable prognosis and be therefore considered early prognostic
biomarkers.
A note of caution should be added in our study, because of

both the limited sample size and follow-up duration, which does
not allow drawing conclusions to exactly determine a patient
prognosis. Nonetheless, some features seem to be reliable
prognostic biomarkers, showing a greater ability to predict the
motor outcome than the baseline MDS-UPDRS III score alone.
Once replicated in larger cohorts, these findings might allow early
patients stratification, discriminating those with poorer or better
prognosis. This would, in turn, help clinicians to refer more fragile
patients to higher intensity cares involving pharmacological and
non-pharmacological interventions, even in earlier disease stages.
Our findings come from an experimental laboratory setting,

with the use of multiple sensors and evaluation of multiple tasks.
Thus, on one hand, it might appear time-consuming for the
clinical practice; nonetheless, on the other, the fact that most of
the candidate features as prognostic biomarkers belonged to TUG
test is extremely encouraging for clinical purposes. Indeed, lately,
gait has been recognized as the outcome of complex integration

of cortical and subcortical pathways, and subtle alterations of this
feature are increasingly recognized as risk factors for several
neurological diseases34,35. Moreover, a recent retrospective study
on a large cohort of subjects not affected by neurological diseases
demonstrated an association between longer TUG time and a later
diagnosis of PD36. Therefore, a comprehensive and objective
technology-based characterization of TUG test performance
seems very promising to identify patients with worse motor
outcome, even in earlier phases of the disease when motor
impairment is very mild. In the hypothesis of integrating the
technology-based analysis in clinical practice, the identification of
few significant tasks will allow to optimize the technology-based
evaluation.
In brief, a multimodality characterization of PD patients in the

very early stages, including neuroimaging data, CSF and/or blood
biomarkers, clinical assessment, demographics, and an objective
technology-based characterization of motor performance is a
promising approach to stratify patients with different progression
rates, as also previously discussed37. However, in order to render
this approach feasible in the clinical practice, further work is
required to make these measures as affordable and quick as
possible. Nonetheless, we are moving forward precision medicine
and targeted therapies, as already done in other fields, such as in
oncology. Therefore, all efforts to better understand such a
complex disease as PD should be considered as starting points
toward new targeted approaches. Then, the aim would be to
smooth and simplify them, to make them accessible.
Therefore, in this prospective study we measured motor

performances of a cohort of PD patients from the earliest stage
of the disease, before the beginning of a dopamine replacement
therapy, up to 30 months after the diagnosis. Our results highlight
the possibility of technology-based deep motor phenotyping and
its significant role in defining innovative but reliable prognostic
and therapy-response biomarkers.

Fig. 2 Position of wearable sensors. For RT, PosT, and RAHM tasks S3 and S9 were analyzed. For LA S4 and S10, for TT S6 and S12. For PT we
used S5, S11 ans S13. For TUG S1, S2, S4, S5, S7, S8, S10, S11, S13, and S14.

G.Di Lazzaro et al.

4

npj Parkinson’s Disease (2021)    82 Published in partnership with the Parkinson’s Foundation



METHODS
Patients
Forty patients diagnosed with PD according to the MDS clinical diagnostic
criteria33 were consecutively enrolled at their first visit at “Tor Vergata”
movement disorders outpatient clinic. They were asked to come with a
maximum latency of 3 weeks from enrollment for the first clinical and
kinematic evaluation (T0 time).
The study was conducted in agreement with ethical principles of

Helsinki declaration. Informed consent was obtained from all participants
after receiving full explanation of the procedures approved by the ethical
Committee of the hospital (RS 34/17).

Ratings
The clinical evaluations consisted of a general neurological assessment,
record of dopaminergic therapy with calculation of the Levodopa
Equivalent Daily Dose (LEDD) and quantification of motor and non-
motor symptoms by means of the MDS-Unified Parkinson’s Disease Rating
Scale part III (MDS-UPDRS III), and the Non-Motor Symptoms Scale (NMSS).
In addition, we performed rest, tremor and motor impairment evaluations
from measurements gathered by means of wearable electronic sensors
(wearables, hereafter).

Wearables
Wearables consisted of validated Movit G1 devices (by Captiks, Rome,
Italy)13,14,22,38 with three-axis accelerometer and three-axis gyroscope
sensors on-board. The Movit G1 were placed on body segments, by means
of Velcro™ strips, in particular on the body back, on each forearm and arm,
on each upper and lower leg, on the dorsum of each hand and of each
foot, for a total of fourteen sensors (Fig. 2)20,22. Each Movit G1 gathered
and synchronously sent data to a receiver connected to a personal
computer running the Motion Studio application (by Captiks, Rome, Italy)
for data tracking and recording.

Motor tasks and features
According to UPDRS part III, patients performed seven motor tasks, in
particular:

● Rapid Alternating Hand Movements (RAHM, MDS-UPDRS item 3.6).
● Leg Agility (LA, MDS-UPDRS item 3.8).
● Toe Tapping (TT, MDS-UPDRS item 3.7).
● Timed-Up-and-Go (TUG, grossly MDS-UPDRS items 3.9 plus 3.10), i.e.,

rising from a chair, walking for 6 meters, turning 180 degrees, walking
back and sitting.

● Pull Test (PT, MDS-UPDRS item 3.12).

Table 5. Kinematic features’ description.

Feature (task) Description

Power (PosT and RT) Power at the frequency range 3–12 Hz of hand tremor.

Amplitude (PosT and RT) Amplitude at the fundamental frequency (f0) of hand tremor.

Amp (RAHM, LA and TT) Normalized average peaks’ amplitude of the angular velocity.

CV (RAHM, LA and TT) Coefficient of variation (CV) between consecutive peaks of the angular velocity. It measures the rhythm.

Amp_CV (RAHM, LA and TT) Coefficient of variation of the peaks’ amplitude. It measures the regularity of the movement.

Asym (RAHM, LA and TT) Difference in peaks’ amplitude between the faster and slower limb divided by the larger value. It measures the
asymmetry.

Amp_Decr (RAHM, LA and TT) Ratio of the average angular rate in the first third of oscillation to the last third. It measures the amplitude
reduction over time.

Power (RAHM, LA and TT) Maximum amplitude of the power spectral density of the angular velocity.

Asym_Power (RAHM, LA and TT) Difference of power spectral density’s peaks between the faster and slower limb divided by the larger value.

ROM (PT) Range of motion of the trunk movements in the three directions after the push (three features in total).

Number of Steps (PT) Number of strides after the subject has been pushed.

Jerk (PT) Derivative of the acceleration in transverse and sagittal direction.

Area (PT) Ellipse area that comprises 95% of the values of the accelerations in transverse and sagittal directions around their
mean values.

Range (PT) Range of acceleration and angular velocity data in 3D (6 features in total).

Duration metrics (TUG) Comprise TUG Time (duration of TUG test), Sit-To-Walk Time (from the beginning of standing to the beginning of
walking), Walk Time (duration of the walking), Turning Time (duration of 180° turn), and Turn-To-Sit Time (time
required to turn and sit on the chair).

Number of Steps (TUG) Number of strides.

Gait metrics (TUG) Comprise the duration of Stance, Swing and Double Support, and their CVs.

Cadence (TUG) Number of steps per minute.

ROM Trunk (TUG) Range of motion of the trunk movements while walking (three features in total).

Flex Arm, Flex Leg (TUG) Flexion of arms and legs in the sagittal plane. This parameter is computed using the more affected side.

Asym Arm, Asym Leg (TUG) Difference in the angular flexion values between the faster and slower arm/leg divided by the larger value.

Average Vel (TUG) Mean angular velocity of arms, forearms, and thighs during walking.

Rms Turning (TUG) Root mean square acceleration values of the trunk during the turning phase (three features in total).

Turning Vel (TUG) 180 °divided by the duration of turning (°/s)

Peak Turning Vel (TUG) Maximum angular velocity of trunk during the turning phase.

Steps Turning (TUG) Number of strides during the turning phase.

Rms Sitwalk (TUG) Root mean square acceleration values of the trunk while standing up (three features in total).

Range Trunk Sitwalk (TUG) Range of acceleration along the sagittal axis of the trunk while standing up.

Peak Vel Sitwalk (TUG) Maximum angular velocity of trunk in in the sagittal plane while standing up.

Average Vel Sitwalk (TUG) Mean angular velocity of trunk in in the sagittal plane while standing up.

Flex Trunk Sitwalk (TUG) Flexion of the trunk in the sagittal plane.
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● Postural Tremor and Rest Tremor of the upper limbs (PosT and RT,
grossly MDS-UPDRS item 3.15 and 3.17).

The kinematic features extracted from each motor task, previously
defined20,22, are described in Table 5.

Work timeline
Figure 3 shows the work timeline.
At time T0, we clinically assessed 40 de novo drug-free PD patients by

means of MDS-UPDRS III, NMSS rating scales, and measured their rest and
motor impairments by means of wearables. For each patient we prescribed
a therapy according to the clinical status.
At T1, 6 months later, a standard clinical follow-up visit was provided.

We clinically reevaluated patients in order to adjust the dopaminergic
therapy as needed. Two patients leaved the study on their own initiative.
At T2, 12 months later, we readopted MDS-UPDRS III, NMSS, wearables,

and readjusted the dopaminergic therapy as necessary. We excluded two
patients from the study because one diagnosed with multiple system
atrophy and the other with Lewy body dementia.
At T3, within 30–36 months later, we performed further clinical

evaluations by means of MDS-UPDRS III and NMSS.

Statistical analysis
The analysis of variance (ANOVA) was carried out on the kinematic and
clinical variables to evaluate the efficacy of Levodopa therapy and to
identify technology-based therapy-response biomarkers. In particular,
ANOVA model for repeated measures was performed with time (baseline,
6 months, and 12 months’ follow-up) as within-subjects factor. A p value
<0.05 was considered significant.
The standardized response mean (SRM) was used to assess the

responsiveness of each variable to the therapy. The SRM is calculated as
TT/SDC, where TT is the mean change between T2 and T0 and SDC is the
standard deviation of the change. Empirically, an SRM value of 0.20
represents a small, 0.50 a moderate, and 0.80 a large responsiveness,
respectively.
In order to identify possible early prognostic technology-based

biomarkers, a Pearson correlation test was performed between the UPDRS
III score variations from T0 to T3 and baseline kinematic features of all
patients. Then, a multiple linear regression model was made to predict the
long-term motor outcome using T0 kinematic measures. In order to take
into account the different amount of motor impairment at T0 among
patients, and different MDS-UPDRS III scores, we used of the percentage of
variation rather than the raw score variation to evaluate patients’ motor
progression. We therefore considered the percentage of variation (%) in
UPDRS between T3 and T0 as the dependent variable. The independent
variables were selected among the features that showed a better
correlation with the UPDRS III change and showed an association at
univariate analysis (p < 0.10), as appropriate. LEDD values at T3 were
included in the model as independent variable to test for any influence in
the outcome related to the different dopaminergic drugs dosage among
patients. The model was tested for multicollinearity, examination of
residual distribution, and heteroscedasticity.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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