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Abstract

Motivation: Systematically predicting gene (or protein) function based on molecular interaction

networks has become an important tool in refining and enhancing the existing annotation catalogs,

such as the Gene Ontology (GO) database. However, functional labels with only a few (<10) anno-

tated genes, which constitute about half of the GO terms in yeast, mouse and human, pose a

unique challenge in that any prediction algorithm that independently considers each label faces a

paucity of information and thus is prone to capture non-generalizable patterns in the data, resulting

in poor predictive performance. There exist a variety of algorithms for function prediction, but

none properly address this ‘overfitting’ issue of sparsely annotated functions, or do so in a manner

scalable to tens of thousands of functions in the human catalog.

Results: We propose a novel function prediction algorithm, clusDCA, which transfers information

between similar functional labels to alleviate the overfitting problem for sparsely annotated func-

tions. Our method is scalable to datasets with a large number of annotations. In a cross-validation

experiment in yeast, mouse and human, our method greatly outperformed previous state-of-the-

art function prediction algorithms in predicting sparsely annotated functions, without sacrificing

the performance on labels with sufficient information. Furthermore, we show that our method can

accurately predict genes that will be assigned a functional label that has no known annotations,

based only on the ontology graph structure and genes associated with other labels, which further

suggests that our method effectively utilizes the similarity between gene functions.

Availability and implementation: https://github.com/wangshenguiuc/clusDCA.

Contact: jianpeng@illinois.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Automated annotation of gene (or protein) function has become a

critical task in the post-genomic era (Radivojac et al., 2013).

Fortunately, an increasing compendium of genomic, proteomic and

interactomic data allows us to extract patterns from functionally

well-characterized genes (or proteins) to accurately infer functional

properties of lesser-known ones. In particular, recently developed

high-throughput experimental techniques, such as yeast two-hybrid

screens and genetic interaction assays, have helped to build molecu-

lar interaction networks in bulk. Topological structures of these net-

works can be exploited for function prediction using the ‘guilt-by-

association’ principle, which states that genes (or proteins) that

share similar neighbors or other topological properties in interaction

networks are more likely to be functionally related.

To this end, a variety of graph-theoretic and machine learning algo-

rithms (Karaoz et al., 2004; Letovsky and Kasif, 2003; Murali et al.,

2006; Sefer and Kingsford, 2011) have been developed to provide a

way of refining and enhancing existing functional annotations [e.g.

Gene Ontology (GO) database (Ashburner et al., 2000)] based on net-

work data. A popular class of graph-theoretic algorithms uses a diffu-

sion process to examine the local topology of nodes, exploiting both

direct and indirect linkages (Cao et al., 2014, 2013; Cho et al., 2015;

Kohler et al., 2008; Nabieva et al., 2005). Alternatively, the number of

occurrences of different elementary subgraphs (known as graphlets) in
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the neighborhood can be used to characterize each node and to estab-

lish pairwise affinity scores (Gligorijevic et al., 2014; Milenkovic et al.,

2010; Milenkovic and Przulj, 2008). More sophisticated machine learn-

ing algorithms, such as GeneMANIA (Mostafavi and Morris, 2010;

Mostafavi et al., 2008), have also been proposed. GeneMANIA uses

label propagation on an integrated network specifically constructed for

each functional label, and is currently available as the state-of-the-art

web interface for gene function prediction in multiple organisms.

Despite the success of existing algorithms, a major difficulty that

has not been sufficiently addressed is that of predicting rare labels.

Because many molecular functions (MFs) are inherently specific in

their scope, a large number of functional labels have only a few

annotated genes (or positive annotations); for instance, in the

human GO annotation database (Ashburner et al., 2000), there are

currently 8626 GO labels with at least 3 annotations, 4178 of which

have <10 annotated genes and 7905 labels have <100 genes. The

distributions of GO labels with different numbers of annotations in

yeast and human are shown in Figure 1. Nearly half of the GO labels

have <10 annotations in both species.

Predicting new associations for these sparsely annotated labels is

substantially more challenging than those for labels with a lot of an-

notations, because patterns extracted from the few known genes are

more likely to be statistical artifacts that cannot be generalized,

which is commonly known as the ‘overfitting’ problem in machine

learning and statistics.

One way to mitigate overfitting is to take similarities between

labels into account. For instance, if we have a priori knowledge that

two labels reflect similar MFs (e.g. they are both children of the

same parent in the ontology graph), we would also expect the two

corresponding sets of genes (or proteins) to be similar. If one of the

gene sets contains only a few genes, then the other may provide valu-

able information about missing associations. Thus, by propagating

information along the edges in the ontology graph, one can pool

available data together for increased robustness to overfitting.

Notably, previous efforts to incorporate label similarity into

function prediction algorithms have largely been unsuccessful. They

formulated the problem as a single structured-output hierarchical

classification (HC) instead of binary classification, but its predictive

performance for sparsely annotated functional labels is far from sat-

isfactory (Clark and Radivojac, 2013; Eisner et al., 2005; Guan

et al., 2008; Jiang et al., 2014; Kim et al., 2008; Obozinski et al.,

2008; Sokolov and Ben-Hur, 2010). Another related work (Wang

et al., 2013) exploited the similarity between 17 Munich

Information Center for Protein Sequences (MIPS) functional catego-

ries via a regularization scheme. However, this approach does not

scale to tens of thousands of sparse GO annotations in human, as it

employs a computationally expensive optimization.

Our approach to this problem is based on diffusion component

analysis (DCA) (Cho et al., 2015), a recently developed algorithm

that combines network diffusion, such as random walk with restart

(RWR) (Kohler et al., 2008), with dimensionality reduction to ob-

tain low-dimensional vector representations of nodes in a graph that

capture topological properties. Topological features extracted from

interaction networks in this manner can be used in conjunction with

k-nearest neighbors (kNNs) or support vector machines (SVMs) to

outperform the corresponding state-of-the-art for predicting hun-

dreds of MIPS labels in yeast (Cho et al., 2015). However, DCA also

suffers from overfitting for sparsely annotated labels when predict-

ing GO labels for a larger human interactome, if we want to train

label-wise classifiers for all labels.

In this work, we introduce clusDCA, an improved function pre-

diction algorithm based on DCA (we attached a two-page abstract

of DCA in the Supplementary Data), which (i) incorporates the simi-

larity between functional labels and (ii) scales to a large number of

annotations. The key idea of clusDCA is to perform DCA also on

the ontology graph to obtain compact vector representations of

labels. The gene vectors from the original method are then projected

onto the space of label vectors so that the projections of positively

annotated genes are geometrically close to their assigned labels.

Because labels that are similar to each other in the ontology graph

are co-localized in the label vector space, classifiers for sparsely

annotated labels will now favor genes associated with other similar

labels in the neighborhood. This is how information is transferred

between labels to avoid overfitting in our approach.

When compared with state-of-the-art methods that do not in-

corporate label similarity, our experiments on yeast, mouse and

human datasets demonstrate that our method substantially improves

the predictive accuracy of sparsely annotated labels while achieving

comparable performance for GO labels with sufficiently many

genes. We also demonstrate the performance improvement of

clusDCA over an alternative approach to utilizing the ontology

graphs based on HC. Furthermore, our method can be used to pre-

dict new genes for a given GO label, even in the extreme case where

there are no existing gene annotations and the only information

available is the label’s position in the ontology graph and the genes

associated with other labels. In addition to improving function pre-

diction on its own, this demonstrates the potential for our method

to be used in conjunction with recent methods that extract new

ontology terms from data (Dutkowski et al., 2013; Kramer et al.,

2014) to provide an improved way of refining and extending our

knowledge of gene or protein function.

2 Methods

As an overview, clusDCA first computes the ‘diffusion state’ of each

node by performing a RWR on each input network, and subse-

quently finds a low-dimensional vector representation for each gene

via an efficient matrix factorization of the diffusion states. A key

contribution is that clusDCA then follows an analogous procedure

to obtain a low-dimensional vector representation of each functional

label based on the ontology graph. Intuitively, the gene vectors en-

code the topology of the interactome, which in turn reflects gene

function, while the label vectors encode the topology of the ontology

graph, which reflects the semantic and relational properties of the

labels. Given both the gene and the label vectors, clusDCA novelly

finds the best projection of the gene vectors onto the label vector

space, thus keeping the projected gene vectors geometrically close to

their known labels. In the final step, clusDCA computes its predic-

tions for an uncharacterized gene by sorting the candidate functions

by their proximity to the projected gene vector, based on the optimal

projection. An illustration of this pipeline is given in Figure 2. We

give a more detailed description of this pipeline below.

Fig. 1. A breakdown of GO labels by the number of annotated genes in (a)

human and (b) yeast
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2.1 Low-dimensional vector representations of genes
2.1.1 Review of DCA

The first step of clusDCA is to use DCA to compute low-dimen-

sional vector representations of genes in molecular networks. To

achieve this goal, DCA first runs RWR on each node in each mo-

lecular network (e.g. protein–protein interaction or co-expression

network) to compute the ‘diffusion state’ of each node, which sum-

marizes local topology. RWR is different from conventional random

walks in that it introduces a pre-defined probability of restarting at

the initial node after every iteration.

Formally, let A denote the weighted adjacency matrix of a mo-

lecular interaction network with n genes (or proteins). Each entry

Bi;j in the transition matrix B represents the probability of a transi-

tion from node i to node j and is defined as:

Bi;j ¼
Ai;jX
j0
Ai;j0

: (1)

Next, letting st
i be an n-dimensional distribution vector in which each

entry stores the probability of a node being visited from node i after t

steps, RWR from node iwith restart probability pr is defined as:

stþ1
i ¼ 1� prð Þst

iBþ prqi; (2)

where qi is an n-dimensional distribution vector with qi ið Þ ¼ 1 and

qi jð Þ ¼ 0, 8j 6¼ i. Note that the restart probability controls the rela-

tive influence of global and local topological information in the dif-

fusion, where a larger value places greater emphasis on the local

structure. We can obtain the stationary distribution s1i of RWR at

the fixed point of this iteration, and we refer to this as the ‘diffusion

state’ si of node i (i.e. si ¼ s1i Þ, using the same definition as previous

work (Cao et al., 2014). Intuitively, the jth entry Sij stores the

probability that RWR starts at node i and ends up at node j in equi-

librium. The fact that two nodes having similar diffusion states

implies they are in similar positions with respect to other nodes in

the graph, which may reflect functional similarity. However, the

diffusion states are not entirely accurate, partially due to the

noisy and incomplete nature of interactomes. Moreover, high

dimensionality imposes additional computational constraints on dir-

ectly using the diffusion states as features for classification or regres-

sion tasks.

To address this issue, DCA employs the following dimensionality

reduction scheme. The probability assigned to node j in the diffusion

state of node i is modeled as

ŝ ij :¼ expfxT
i wjgX

j0
expfxT

i wj0 g
(3)

where 8i; xi;wi 2 Rd for d� n. DCA refers to wi as the context

feature and xi as the node feature of node i, both capturing the topo-

logical properties of the network. If xi and wj are close in direction

and have large inner product, then it is likely that node j is fre-

quently visited in the random walk starting from node i. DCA takes

a set of observed diffusion states s ¼ s1; . . . ; snf g as input and opti-

mizes over w and x for all nodes, using KL-divergence as the object-

ive function:

min
w;x

C s; ŝð Þ ¼ 1

n

Xn

i¼1

DKL si k ŝ ið Þ: (4)

The original framework uses a standard quasi-Newton method

L-BFGS (Zhu et al., 1997) to solve this optimization problem.

Although the learnt low-dimensional vector representation can ef-

fectively capture the network structure, we found that optimizing in

this way is time consuming.

2.1.2 New contributions

To make DCA more scalable to large molecular networks, we de-

veloped a fast, matrix factorization-based approach to decompose

the diffusion states. Based on the definition of ŝ ij, we have:

log ŝ ij ¼ xT
i wj � log

X
j0
exp fxT

i wj0 g: (5)

The first term in the above equation corresponds to the low-

dimensional approximation of ŝ ij, while the second term is the

normalization factor that enforces si 2 4n, where 4n is the

n-dimensional probability simplex. In our new formulation, we

relax the constraint that the entries in ŝ i sum to one by dropping the

second term; while the resulting low-dimensional approximations of

diffusion states are no longer strictly valid probability distributions,

we find that the approximations are close enough to the true distri-

bution that the relaxation has a negligible impact. As a result, ŝ ij can

be simplified as:

log ŝ ij ¼ xT
i wj: (6)

In addition, instead of optimizing the relative entropy between

the true and the approximated diffusion states, we use the sum of

squared errors as the new objective function:

min
w;x

C s; ŝð Þ ¼
Xn

i¼1

Xn

j¼1

xT
i wj � log sij

� �2
: (7)

Now, the resulting optimization problem can be easily solved by

the classic singular value decomposition (SVD) (Golub and Reinsch,

1970). To avoid taking a logarithm of zeros, we added a small posi-

tive constant to sij and computed the logarithm diffusion state ma-

trix L as:

L ¼ ln SþQð Þ � ln Q; (8)

Fig. 2. Overview of clusDCA
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where Q 2 Rn�nwith Qij ¼ 1
n ; 8i; j, and S 2 Rn�n is the concaten-

ation of s1; . . . ; sn. With SVD, we decompose L into three matrices

U, R and V:

L ¼ URVT; (9)

where U 2 Rn�n; V 2 Rn�n, and R 2 Rn�n is the diagonal singular

value matrix. To obtain the low-dimensional vectors wj and xi with

d dimensions, we simply choose the first d singular vectors Ud, Vd

and the first d singular values Rd. More precisely, let

X ¼ x1; . . . ; xnf g denote the low-dimensional vector representation

matrix, and W ¼ w1; . . . ;wnf g denote the context feature matrix.

X and W can be computed as:

X ¼ Ud R 0:5
d ; (10)

W ¼ Vd R 0:5
d : (11)

2.1.3 Runtime improvements

The key benefit of this new optimization procedure is significantly

reduced computational time. For example, decomposing the

STRING yeast network into 500-dimensional vectors takes <5 min

on a standard server (with six 3.07 GHz Intel Xeon CPUs and 32GB

RAM) for SVD, while the original approach with L-BFGS takes

>2 h. We noticed that the prediction accuracies for both methods

are almost identical in predicting yeast gene function.

To integrate heterogeneous network data, we extend the

above single-network DCA to multiple networks. Let

L ¼ L1;L2; . . . ;Lk
� �

denote the set of logarithm diffusion state

matrices based on the diffusion states S ¼ S1; S2; . . . ; Sk
� �

from the

k input networks. Here, we optimize the following objective

function:

min
w;x

C S; Ŝ
� �

¼
Xn

i¼1

Xn

j¼1

Xk

r¼1

xT
i wr

j � Lr
ij

� �2
; (12)

where for each node i in network r, we assign a network-specific

context feature wr
i , which encodes the intrinsic topological proper-

ties of node i in network r. The node features x are shared across all

k networks to be able to capture more global patterns. This object-

ive function can be also optimized by SVD. It is worth noting that it

is possible to weight each network differently when concatenating

the networks, but we give equal importance to each network in this

work for simplicity.

In the following sections, we use X ¼ x1; . . . ;xnf g as the low-di-

mensional vector representations of genes. Note that one can also

use W, but we observed that the performances of these two repre-

sentations are quite similar.

2.2 Low-dimensional vector representations of

functional labels
The GO graph is a directed acyclic graph (DAG) over functional

labels where the edges represent various semantic relationships. In

this work, we only consider the ‘is a’ and ‘part of’ edges, which re-

sults in a hierarchy of labels with edges going from the more specific

to the more generic terms. As a consequence of this hierarchical

structure, which is generally not present in molecular networks, a

naive application of RWR on the ontology graph where the edges

are treated as undirected unfairly favors high-level nodes, which

tend to have higher centrality. On the other hand, allowing a ran-

dom walk to only move from high- to low-level nodes would greatly

restrict the portion of the graph a random walk can explore.

To address these issues, we allow both edge directions but with

different weights, whose ratio is controlled by the ‘back propaga-

tion’ parameter a . With B denoting the transition matrix of the ori-

ginal graph with unidirectional edges, our modified RWR for the

ontology graph is defined as

stþ1
j ¼ 1� prð Þst

j 1� að ÞBþ a BT
� �

þ prqi: (13)

We chose a value for a that generally shrinks the diffusion scores

of high-level nodes, and confirmed that the final prediction perform-

ance is stable for different values of a between 0.5 and 0.8.

Based on the diffusion states from this modified random walk,

we learned a low-dimensional vector representation of the ontology

graph using the same procedure as the one for molecular networks.

Importantly, our representation captures not only single-hop par-

ent–child relationships, but also more global patterns such as long-

range sibling relationships in the network.

In the following sections, we use Y ¼ y1; . . . ; ymf g to denote the

low-dimensional vector representation matrix of functional labels.

yj is the vector for function j.

2.3 Projecting gene vectors into ontology label
space

After obtaining the low-dimensional vector representations of both

genes and functional labels, we use these vectors to predict gene

function. Because the vectors reflect the topological structure of

nodes in the network, genes that are close in their vector directions

are more likely to be similar in their functions. Analogously, func-

tional labels that are close in their vector directions may be more se-

mantically similar. Based on this intuition, we use a transformation

matrix W to project genes from the gene vector space to the function

vector space, which allows us to match genes to functions based on

geometric proximity. Let y
0
i be the projection of the gene vector xi:

y
0

i ¼ xiW: (14)

Then we define the pairwise affinity score zij between gene i and

function j to be used for function prediction as:

zij ¼ xiWyT
j : (15)

A larger zij indicates that gene i is more likely to be annotated

with function j

We want to optimize W so that positively annotated genes are

geometrically similar to their assigned GO labels. In this work, we

use the inner product Zij ¼ hyi
0
; yji as the similarity function. We

also explored the L2 distance, but it performed generally worse than

the inner product, possibly due to the fact that the inner product ex-

plicitly models both positive and negative annotations. Next, we de-

fine f pos
j (f neg

j Þ as the set of genes that are positively (negatively)

annotated with function j. Note that whenever a gene is positively

annotated with a particular function we also positively annotated all

of its ancestors with the gene. Our constrained optimization prob-

lem for finding the best projection that incorporates both positive

and negative annotations is given by

min
w

X
j

1

jf neg
j j

X
zij

i2f neg
j

� 1

jf pos
j j

X
zgj

g2f
pos
j

0
@

1
A; (16)

s:t: jjWjj22 ¼ 1;

where the weights 1=jf neg
j j and 1=jf pos

j j correct for the imbalance

in the training data. Instead of simply maximizing the affinity scores
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of positive annotations, this formulation aims at maximizing the

margin between the affinity scores of positive and negative annota-

tions. This problem can be solved analytically by a closed-form

solution:

W� ¼ 1

jjXTFYjj2
XTFY; (17)

where F is a weight matrix with Fij ¼ jf neg
j j; 8i 2 f pos

j and Fij ¼ �jf pos
j j;

8i 2 f neg
j .

Because modeling the complex relationship between genes and

functional labels with a single transformation matrix may be overly

restrictive, we group functions into different clusters and learn a sep-

arate projection model for each cluster. For the main results, we div-

ide the GO labels into the following four groups based on the

number of annotated genes in the training data: [3–10], [11–30],

[31–100] and [101–300]. We also tested using the partition given by

the clustering of our learned label vectors and obtained comparable

prediction performance (see Supplementary Data).

3 Results

3.1 Networks and annotations
We obtained a collection of six molecular networks each for human,

yeast and mouse from the STRING database v9.1 (Franceschini

et al., 2013). These networks are built from heterogeneous data

sources, including high-throughput interaction assays, curated pro-

tein-protein interaction databases, and conserved co-expression. We

excluded text mining-based networks to avoid confounding by links

based on functional similarity. There were 16 662 nodes in human,

6311 in yeast and 18 248 in mouse. The number of edges in these

networks varied from 1183 to 673 410 in human, from 1059 to 293

921 in yeast and from 3917 to 1 638 107 in mouse. Note that each

edge is associated with a weight between 0 and 1 representing the

confidence of interaction. Next, we obtained gene-function associ-

ations and the ontology of functional labels from the GO

Consortium (Ashburner et al., 2000). We built a DAG of GO labels

from all three categories [biological process (BP), MF, cellular com-

ponent] based only on the ‘is a’ and ‘part of’ relationships for each

species. Labels without any associated genes were removed, result-

ing in three species-specific ontology graphs for yeast, human and

mouse. The human ontology graph had 13 708 functions and 19

206 edges, the yeast ontology graph had 4240 functions and 4804

edges and the mouse ontology graph had 13 807 functions and 19

704 edges.

3.2 Experimental setting
Following previous work (Mostafavi et al., 2008), we used 3-fold

cross-validation to evaluate our method, where a randomly chosen

subset of one-third of the genes are held out as the test set. After

computing the optimal projection of gene vectors into the functional

label space based only on the training data, we calculated the affin-

ity scores (see Equation 15) to get a ranked list of test genes for each

function. Then we measured the extent to which true annotations

are concentrated near the top of the list by calculating the area under

the receiver operating characteristic curve (AUROC) and the area

under the precision recall curve (AUPRC), which are standard per-

formance metrics in this field (Mostafavi et al., 2008). To summar-

ize results across different labels, we used both micro- and macro-

averages. The micro-average directly combines the entries in the

confusion matrix constructed from different labels prior to calculat-

ing the predictive performance, and the macro-average calculates

the areas under the curves for each label independently and then

takes the average.

We compared clusDCA to two state-of-the-art network-based

function prediction algorithms, GeneMANIA (Mostafavi et al.,

2008) and DCA (Cho et al., 2015), and another algorithm based on

HC (Sokolov and Ben-Hur, 2010), which exploits the hierarchical

structure of functional labels. For consistency, we used the same

dataset (i.e. annotations, genes, networks) and the same evaluation

scheme for every method we tested.

We obtained the original MATLAB implementation of

GeneMANIA from http://morrislab.med.utoronto.ca/Data/GB08/.

For DCA, we tested only the kNN version, because the SVM version

seriously suffers from overfitting for sparsely annotated labels and

also does not scale to the human dataset. Importantly, neither

GeneMANIA nor DCA leverages topological information from the

GO graph. Noting that the original formulation of HC does not

scale to large datasets, we instead implemented an efficient version

that utilizes the clusDCA framework. In particular, we associate

each gene with a ‘macro-label’ y ¼ y1; y2; . . . ; ykð Þ 2 f0; 1gk, where

yi is a ‘micro-label’ which is set to 1 when the gene is positively

annotated with label i and 0 otherwise. Following HC, we impose a

constraint that if yi ¼ 1 then yj ¼ 1 for every ancestor j of i. We then

find the optimal projection from DCA gene vectors to the space of

macro-labels using the same optimization problem we introduced in

Equation 16. After solving the optimization problem, we use the

optimized transformation matrix W� to compute the pairwise affin-

ity score zij between gene i and function j.

For clusDCA, we set the back propagation parameter a to 0.8

and the restart probability to 0.8 for the GO graph. We observed

that our performance is stable for different values of a between 0.5

and 0.8. For the molecular networks, we used a restart probability

of 0.5, adopted from our previous work (Cho et al., 2015). We set a

larger restart probability for the GO graphs because they are gener-

ally much sparser. We used d¼2500 as the dimensionality of the

learned vectors for the main results. The effect of varying this par-

ameter is analyzed in Section 3.7.

We followed the same procedure as the one in GeneMANIA to

group the GO labels into two major gene ontologies: ‘BP’ and ‘MF’.

For both ontologies, we further binned GO labels into four sparsity

levels, each consisting of GO labels with [3–10], [11–30], [31–100]

and [101–300] annotated genes (see Table 1). Although we used all

of the GO terms in human and yeast, for mouse, we used only the

GO terms with evidence codes that are also used in the evaluation of

GeneMANIA (Mostafavi et al., 2008): TAS, RCA, ND, NAS, ISS,

IPI, IMP, IGI, IEP, IEA, IDA and IC (Pen�a-Castillo et al., 2008).

3.3 GO label vectors capture semantic similarity
Unlike some of the previous work (Mostafavi et al., 2008; Wang

et al., 2014) that did not explicitly incorporate the GO graph, our

approach exploits the ontology structure to learn a low-dimensional

vector representation of each GO label. If these vectors can be

Table 1. Number of GO terms in different sparsity levels

3–10 11–30 31–100 101–300

Human MF 886 390 222 99

Human BP 2940 1677 1122 553

Yeast MF 351 156 92 29

Yeast BP 815 408 235 87

Mouse MF 188 215 165 84

Mouse BP 337 568 678 329
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clustered into semantically meaningful clusters, it would validate

our attempt to enforce gene assignments to be similar between labels

that are geometrically close in the label vector space as being well

founded. To test this hypothesis, we used K-means to cluster the GO

labels based on the cosine similarity of our low-dimensional vector

representations of labels. We determined the number of clusters by

restricting the largest cluster to have at most 80% of the total num-

ber of labels. In Supplementary Figure S1 (Supplementary Data),

two of the 41 clusters we identified are visualized with Cytoscape

(Smoot et al., 2011). The complete list of clusters can be found in

Supplementary Data. In the visualization, the node size reflects the

number of genes that the corresponding function is annotated with,

and the edge width reflects the cosine similarity between the vector

representations of the two nodes. The first cluster represents func-

tions related to molecular binding, such as cation binding, metal ion

binding, nucleotide binding and NAD binding, whereas the second

cluster represents functions related to different transmembrane

transporter activity. The fact that the set of GO labels in each of

these clusters is highly consistent in function provides evidence that

the learned vectors faithfully reflect the semantic relationships

among the labels.

3.4 clusDCA substantially improves prediction of

sparsely annotated GO labels
To evaluate clusDCA, we performed large-scale function prediction

for human, yeast and mouse. The results are summarized in Figure 3

and Supplementary Figure S2 (Supplementary Data). It is clear that

our approach significantly outperforms other methods on sparsely

annotated labels in all three datasets. For example, in human, our

Fig. 3. Comparison of our approach with other methods in terms of micro-AUROC. Asterisk indicates that our approach is statistically significant in comparison

with GeneMANIA. Performance is evaluated for different subsets of GO labels with varying sparsity levels as shown on the x-axis
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method achieved 0.8491 micro-AUROC and 0.8648 macro-

AUROC on BP labels with 3–10 annotations, which is much higher

than 0.5815 (micro), 0.5857 (macro) for DCA and 0.7288 (micro),

0.8002 (macro) for GeneMANIA. It is worth noting that DCA per-

forms consistently worse than GeneMANIA at this task, possibly

due to the fact that GeneMANIA adaptively integrates the input net-

works for each functional label to optimize performance on training

data. In yeast, clusDCA achieved 0.9025 micro-AUROC on BP

labels with 3–10 annotations, which is again substantially higher

than 0.6645 for DCA and 0.8504 for GeneMANIA. In mouse,

clusDCA achieved 0.8627 micro-AUROC and 0.8802 macro-

AUROC on BP labels with 3–10 annotations, which is again sub-

stantially higher than 0.5873 (micro), 0.5937 (macro) for DCA and

0.7609 (micro), 0.8245 (macro) for GeneMANIA. A similar im-

provement was observed for functional labels with 11–30 annota-

tions and also for the MF labels in human, yeast and mouse (Fig. 3

and Supplementary Fig. S2). We found most of the improvements to

be statistically significant (P<0.05; paired Wilcoxon signed-rank

test). The improvement was most pronounced in human overall,

presumably because the human dataset is much sparser than the

other two.

The above results suggest that the topological information in

ontology graphs can be exploited to greatly improve function pre-

diction performance for sparse labels. It remains to be shown

whether clusDCA is better than other approaches to incorporating

the ontology. To this end, we found that clusDCA substantially out-

performs HC. For instance, in human, our method achieved 0.8984

micro-AUROC and 0.9135 macro-AUROC on MF labels with 3–10

annotations, which is much higher than 0.7435 (micro), 0.7580

(macro) for HC. The improvement was more pronounced where the

number of GO labels was large (e.g. human BP). This is likely be-

cause the number of candidate predictions for HC grows exponen-

tially with the number of GO labels. As a result, HC is highly prone

to overfitting in a dataset with a large number of labels. Notably,

HC also invariably performed worse than GeneMANIA in most of

our experiments.

In addition, we observed consistent improvements over

GeneMANIA with respect to the AUPRC. In human, our method

achieved 0.0429 macro-AUPRC on BP labels with 3–10 annotations,

which is higher (better) than 0.0368 AUPRC for GeneMANIA.

In yeast, clusDCA achieved 0.1360 AUPRC on MF labels with 3–10

annotations, which is substantially higher than 0.1075 macro-AUPRC

for GeneMANIA. Similarly, in mouse, clusDCA achieved 0.0516

macro-AUPRC on BP labels with 3–10 annotations, which is substan-

tially higher than 0.0389 macro-AUPRC for GeneMANIA

Interestingly, we note that the improvement of our method

is negatively correlated with the number of annotations of the GO

labels. In other words, we observed a greater improvement of

clusDCA over previous methods for sparser labels. This observation

suggests that clusDCA indeed addresses the overfitting issue, which

has more significant impact on the sparsely annotated labels.

3.5 clusDCA achieves comparable performance for

labels with a large number of annotations
In addition to sparsely annotated labels, our approach also achieved

a performance comparable to GeneMANIA and greatly outper-

formed HC and DCA on labels with a large number of annotations

(i.e. 31–100 and 101–300) with respect to both AUROC and

AUPRC. The difference between clusDCA and GeneMANIA is not

statistically significant in this case, but clusDCA is still marginally

better than GeneMANIA on most categories.

3.6 clusDCA accurately predicts genes for new GO

labels
Given that the current GO database is likely incomplete, in the event

that a new GO label is created, we hope to automatically find genes

that this label may be associated with. Remarkably, our framework

can be directly used to tag genes with a newly created GO label

using only the topological information from the ontology graph and

other annotated labels. When the new GO labels are added to the

ontology graph, we first obtain the low-dimensional vectors of these

labels with DCA. Then, given the low-dimensional vectors for both

genes and functions, we can inversely project function vectors onto

the gene vector space and predict associated genes for the new GO

labels. This approach can also potentially help to refine and enhance

the current GO annotation database, thus serving as a verification

platform.

As a proof-of-concept, we repeatedly held out one-third of the

GO labels as the validation set of ‘uncharacterized’ labels. We then

used the remaining two-third GO labels to learn the projection

model and to predict genes that are associated with the held out

labels. Figure 4 shows the result of this experiment in yeast. We

observed that our framework achieves a promising performance

on all categories with micro-AUROC ranging from 0.81 to 0.87. It

is worth noting that, to our best knowledge, no other existing

method is able to predict associated genes for new GO labels with-

out any existing annotations. Disease gene prioritization is a closely

related task where the goal is to predict genes associated with a par-

ticular disease, but most algorithms proposed for this problem also

require an initial set of associated genes to be able to make

predictions.

3.7 Choice of the dimensionality of low-dimensional

representations
Here, we examined the impact of the number of dimensions used for

clusDCA on the prediction performance. To this end, we calculated

the micro-AUROC of BP label prediction in yeast with different

number of dimensions (Supplementary Fig. S3 in Supplementary

Data). We observed that our method is quite robust over a wide

range of dimensions. A good performance is achieved from 1000 di-

mensions and above, with a notable exception of the [3–10] label

Fig. 4. Micro ROC curve of predicting genes for new GO labels on MF in yeast
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group, which seems to improve further at 2000 dimensions.

Interestingly, we found that labels with more annotations are less af-

fected by this parameter. In our previous work (Cho et al., 2015),

DCA achieved a good performance with only 500 dimensions. We

think this is due to the fact that the GO graph is sparser than the

yeast interactome and thus shows less clustering properties locally;

random walks are therefore more localized on the GO graph, which

requires more dimensions to be accurately modeled.

4 Conclusion

We introduced a novel algorithm, clusDCA, for gene function pre-

diction. The major idea of clusDCA is to leverage similarity between

functional labels in addition to similarity between genes to prevent

overfitting of sparsely annotated GO labels. We achieve this goal by

learning low-dimensional vector representations of genes and func-

tions and matching gene vectors to function vectors via a projection

that best preserves known gene-function associations. Similar labels

are co-localized in the vector space, which allows the transfer of in-

formation between neighboring functions when genes are assigned

to them. Since learning the projection solves the prediction of all

labels simultaneously, our method has the added benefit of being

scalable to datasets with a large number of annotations.

Although based on DCA, clusDCA is a substantial advance, as

evidenced by its superior performance over DCA, as well as

GeneMANIA and HC, on sparsely annotated GO labels, while

maintaining a comparable performance on labels with many genes.

Moreover, we demonstrated clusDCA’s ability to identify putatively

associated genes for newly created GO labels without any annota-

tions, which suggests that our method can be used to improve poorly

annotated labels and thus takes a significant step towards more

comprehensive understanding of gene or protein function in various

organisms.

Funding

This research was partially supported by grant 1U54GM114838 awarded by

NIGMS through funds provided by the trans-NIH Big Data to Knowledge

(BD2K) initiative (www.bd2k.nih.gov). The content is solely the responsibil-

ity of the authors and does not necessarily represent the official views of the

National Institutes of Health.

Conflict of Interest: none declared.

References

Ashburner,M. et al. (2000) Gene ontology: tool for the unification of biology.

The Gene Ontology Consortium. Nat. Genet. 25, 25–29.

Cao,M. et al. (2014) New directions for diffusion-based network prediction of pro-

tein function: incorporating pathways with confidence. Bioinformatics, 30,

i219–i227.

Cao,M. et al. (2013) Going the distance for protein function prediction: a new

distance metric for protein interaction networks. PloS One, 8, e76339.

Cho,H. et al. (2015) Diffusion component analysis: unraveling

functional topology in biological networks. In: Research in

Computational Molecular Biology. Lecture Notes in Computer Science,

Springer International Publishing, Switzerland, Vol. 9029, pp. 62–64.

Clark,W.T. and Radivojac,P. (2013) Information-theoretic evaluation of pre-

dicted ontological annotations. Bioinformatics, 29, i53–i61.

Dutkowski,J. et al. (2013) A gene ontology inferred from molecular networks.

Nat. Biotechnol., 31, 38–45.

Eisner,R. et al. (2005) Improving protein function prediction using the hier-

archical structure of the gene ontology. In: Computational Intelligence in

Bioinformatics and Computational Biology, 2005. CIBCB’05. Proceedings

of the 2005 IEEE Symposium on. IEEE, pp. 1–10.

Franceschini,A. et al. (2013) STRING v9.1: protein-protein inter-

action networks, with increased coverage and integration. Nucleic Acids

Res., 41 (Database issue), D808–D815.

Gligorijevic,V. et al. (2014) Integration of molecular network data recon-

structs Gene Ontology. Bioinformatics, 30, i594–i600.

Golub,G.H. and Reinsch,C. (1970) Singular value decomposition and least

squares solutions. Numer. Math., 14, 403–420..

Guan,Y. et al. (2008) Predicting gene function in a hierarchical context with

an ensemble of classifiers. Genome Biol., 9 (Suppl 1), S3.

Jiang,Y. et al. (2014) The impact of incomplete knowledge on the evaluation

of protein function prediction: a structured-output learning perspective.

Bioinformatics, 30, i609–i616.

Karaoz,U. et al. (2004) Whole-genome annotation by using evidence integra-

tion in functional-linkage networks. Proc. Natl. Acad. Sci. USA, 101, 2888–

2893.

Kim,W.K. et al. (2008) Inferring mouse gene functions from genomic-scale

data using a combined functional network/classification strategy. Genome

Biol., 9 (Suppl 1), S5.

Kohler,S. et al. (2008) Walking the interactome for prioritization of candidate

disease genes. Am. J. Hum. Genet., 82, 949–958.

Kramer,M. et al. (2014) Inferring gene ontologies from pairwise similarity

data. Bioinformatics, 30, i34–i42.

Letovsky,S. and Kasif,S. (2003) Predicting protein function from protein/

protein interaction data: a probabilistic approach. Bioinformatics, 19

(Suppl 1), i197–i204.

Milenkovic,T. et al. (2010) Systems-level cancer gene identification from pro-

tein interaction network topology applied to melanogenesis-related func-

tional genomics data. J.R. Soc. Interface, 7, 423–437.

Milenkovic,T. and Przulj,N. (2008) Uncovering biological network function

via graphlet degree signatures. Cancer Inform., 6, 257–273.

Mostafavi,S. and Morris,Q. (2010) Fast integration of heterogeneous data

sources for predicting gene function with limited annotation.

Bioinformatics, 26, 1759–1765.

Mostafavi,S. et al. (2008) GeneMANIA: a real-time multiple association net-

work integration algorithm for predicting gene function. Genome Biol., 9

(Suppl. 1), S4.

Murali,T.M. et al. (2006) The art of gene function prediction. Nat.

Biotechnol., 24, 1474–1475; author reply 1475–1476.

Nabieva,E. et al. (2005) Whole-proteome prediction of protein function via

graph-theoretic analysis of interaction maps. Bioinformatics, 21 (Suppl 1),

i302–i310.

Obozinski,G. et al. (2008) Consistent probabilistic outputs for protein func-

tion prediction. Genome Biol., 9 (Suppl 1), S6.

Pen�a-Castillo,L. et al. (2008) A critical assessment of Mus musculus gene func-

tion prediction using integrated genomic evidence. Genome Biol., 9, S2.

Radivojac,P. et al. (2013) A large-scale evaluation of computational protein

function prediction. Nat. Methods, 10, 221–227.

Sefer,E. and Kingsford,C. (2011) Metric labeling and semi-metric embedding

for protein annotation prediction. In: Research in Computational Molecular

Biology. Springer, London, pp. 392–407.

Smoot,M.E. et al. (2011) Cytoscape 2.8: new features for data integration and

network visualization. Bioinformatics, 27, 431–432.

Sokolov,A. and Ben-Hur,A. (2010) Hierarchical classification of Gene

Ontology terms using the GOstruct method. J. Bioinform. Comput. Biol., 8,

357–376.

Wang,H. et al. (2013) Function–function correlated multi-label protein

function prediction over interaction networks. J. Comput. Biol., 20, 322–

343.

Wang,H. et al. (2014) Correlated protein function prediction via maxi-

mization of data-knowledge consistency. In: Research in Computational

Molecular Biology. Springer, London, pp. 311–325.

Zhu,C. et al. (1997) Algorithm 778: L-BFGS-B: Fortran subroutines for large-

scale bound-constrained optimization. ACM Trans. Math. Softw., 23,

550–560.

i364 S.Wang et al.

www.�bd2k.�nih.�gov

	btv260-M1
	btv260-M2
	btv260-M3
	btv260-M4
	btv260-M5
	btv260-M6
	btv260-M7
	btv260-M8
	btv260-M9
	btv260-M10
	btv260-M11
	btv260-M12
	btv260-M13
	btv260-M14
	btv260-M15
	btv260-M16
	l
	btv260-M17

