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Abstract

Intrinsically disordered proteins are attractive therapeutic targets owing to their prevalence in several diseases. Yet their lack
of well-defined structure renders ligand discovery a challenging task. An intriguing example is provided by the oncoprotein
c-Myc, a transcription factor that is over expressed in a broad range of cancers. Transcriptional activity of c-Myc is
dependent on heterodimerization with partner protein Max. This protein-protein interaction is disrupted by the small
molecule 10058-F4 (1), that binds to monomeric and disordered c-Myc. To rationalize the mechanism of inhibition,
structural ensembles for the segment of the c-Myc domain that binds to 1 were computed in the absence and presence of
the ligand using classical force fields and explicit solvent metadynamics molecular simulations. The accuracy of the
computed structural ensembles was assessed by comparison of predicted and measured NMR chemical shifts. The small
molecule 1 was found to perturb the composition of the apo equilibrium ensemble and to bind weakly to multiple distinct
c-Myc conformations. Comparison of the apo and holo equilibrium ensembles reveals that the c-Myc conformations binding
1 are already partially formed in the apo ensemble, suggesting that 1 binds to c-Myc through an extended conformational
selection mechanism. The present results have important implications for rational ligand design efforts targeting intrinsically
disordered proteins.
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Introduction

It is now apparent that many proteins do not adopt a unique

fold in native conditions, but rather exist as an ensemble of distinct

conformations in rapid exchange. [1,2] These intrinsically

disordered proteins (IDPs) are highly abundant in nature, it has

been suggested that up to half of proteins in mammals contain long

consecutive stretches (.30) of disordered residues. [3] IDPs often

participate in protein-protein interactions and form ordered

protein-complexes by coupled folding and binding. [4] This

molecular recognition mechanism is characterized by high-

specificity low-affinity complexes owing to the high entropic cost

of complex formation. [5] The structural flexibility of IDPs enables

interactions with several protein partners, explaining why IDPs

play essential roles in a broad range of cellular functions such as

cell-signaling and transcription. [1,2,5] Additionally IDPs have

been shown to be predominantly implicated in a wide range of

diseases. Iakoucheva et al. report that ca. 80% of cancer-

associated proteins are predicted to contain intrinsically disordered

regions, [6] whereas Uversky et al. have reported ca. 60% of

proteins associated with cardiovascular and neurodegenerative

disorders can also be classified as IDPs. [7] Given the important

role of IDPs in human health, the development of small molecule

chemical probes to modulate IDP function is desirable. [8,9] The

task is challenging, historically IDPs have largely been considered

‘‘undruggable’’, so there is little prior data to guide ligand-based

design methods. The considerable structural flexibility of IDPs also

limits the applicability of established structure-based methods such

as NMR or crystallography to probe in details protein-ligand

interactions. [10] Yet a few success stories suggest that small

molecule inhibition of IDPs may be feasible.

The oncoprotein c-Myc provides a striking example. Tempo-

rary inhibition of c-Myc has been shown to selectively kill mouse

lung cancer cells, and c-Myc is therefore a potential cancer drug

target. [11] c-Myc belongs to the Myc family of transcription

factors and Myc-dependent transactivation requires heterodimer-

ization of its basic-Helix-Loop-Helix-Leucine zipper (bHLHZip)

domain with the bHLHZip domain of the partner protein Max.

[12] The c-Myc/Max heterodimer interface is a parallel, left-

handed, four-helix bundle where each monomer forms two a-

helices separated by a small loop. The bHLHZip domains of

monomeric c-Myc and Max are intrinsically disordered and the c-

Myc/Max complex is thus an example of coupled folding and

binding. Several inhibitors of c-Myc/Max have been identified in

the past decade. [13] Notably Yin et al. used a high-throughput

screen to identify structurally diverse small molecule inhibitors of

the c-Myc/Max interaction. [14] Extensive biophysical studies of

small molecule binding to c-Myc have been performed using

NMR, circular dichroism and fluorescence assays. [15,16,17]

These studies have led to the conclusion that many of the small

molecules inhibitors disrupt the c-Myc/Max interaction by

binding to monomeric c-Myc and stabilizing conformations

incompatible with Max heterodimerization, as illustrated in

Figure 1.
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Remarkably, multiple distinct small molecule binding sites are

present in the c-Myc bHLHZip domain. Hamoudeh et al. have

shown that small molecule ligands that target distinct sites can

bind simultaneously to the c-Myc bHLHZip domain. In addition,

truncated segments of 10–40 amino acids bind different small

molecule ligands with similar affinity to the full length domain.

These observations suggest that the protein/ligand interactions are

local and largely dictated by the protein primary sequence. [17]

To illustrate, the small molecule 10058-F4 (1) binds c-Myc353–437

with a Kd of 5 mM and c-Myc402–412 with a Kd of 13 mM in a

fluorescence polarization assay. [16] Additionally, similar chemical

shift perturbations are observed upon binding of 1 to c-Myc353–437

and c-Myc402–412. Therefore c-Myc402–412 is a good model of the

interactions of 1 with full length c-Myc. Although the measured

Kds indicate 1 does not bind strongly c-Myc, they are similar to

the measured Kds for formation of the c-Myc/Max complex (ca.

1 mM), [15] thus 1 can disrupt effectively the c-Myc/Max

interaction. Indeed, extensive cellular studies of c-Myc function

have been performed with 1, [18,19] but rapid clearance has

hindered progress to animal models and clinical studies. [20] The

development of improved c-Myc/Max inhibitors to evaluate new

clinical anti-cancer therapies would benefit greatly from detailed

structural models of c-Myc/small molecule interactions. [21] More

generally IDPs have just started to be considered druggable and it

is important to establish the mechanisms of molecular recognition

between small molecules and IDPs to guide rational drug design

efforts. [8,9].

Molecular dynamics (MD) simulations present an attractive

option to achieve this goal given the difficulty in obtaining high-

accuracy IDP structures using biophysical methods. [10,22]

Simulation studies of IDPs do raise profound technical challenges.

The reliability of standard biomolecular force fields for IDPs is not

well understood as they have been historically validated against

other protein classes. Further, accurate resolution of IDP

ensembles requires extensive conformational sampling which

remains difficult to achieve and currently requires either massive

computational power, coarse-graining, implicit solvent models, or

enhanced sampling methods. [23,24] Nevertheless, molecular

simulation studies have already shed new insights into IDP

structure and mechanisms of interactions with other proteins.

[25,26,27,28,29,30,31].

In the present manuscript, the bias-exchange variant of the

metadynamics method (BEMD) has been used to sample

extensively the energy landscape of c-Myc402–412 (sequence

YILSVQAEEQK) and the c-Myc402–412/1 complex using

explicit solvent models and classical force-fields. [32,33] Detailed

comparison of the computed apo (c-Myc402–412 alone) and holo

(c-Myc402–412 in the presence of 1) structural ensembles reveals

how ligand binding modulates the equilibrium ensemble of c-

Myc402–412, provides new insights into the mechanisms of

molecular recognition between a small molecule and an IDP,

and has important implications for structure-based strategies to

design improved c-Myc/Max inhibitors.

Results

Enhanced Sampling Improves the Accuracy of the
Computed c-Myc402–412 Structural Ensemble

Exhaustive enumeration of structural ensembles for IDPs is a

challenging task. In this study structural ensembles for c-Myc402–

412 and the c-Myc402–412/1 complex were obtained using the bias-

exchange metadynamics technique. [33] The approach entails

running a set of molecular dynamics simulations. The sampling of

molecular conformations in each simulation is biased by a history-

dependent potential constructed as a sum of Gaussians centered

on a collective variable (CV). After an equilibration period, the

Gaussian biases compensate free energy barriers and rapid

diffusive behavior is achieved along the CV. [34] In addition,

exchanges between the biasing potentials used in the different CVs

are periodically attempted according to a replica exchange

scheme. Finally, a neutral replica that is not biased by any CV

is also simulated. The neutral replica has been shown in other

studies to produce an ensemble similar to the equilibrium

ensemble of the system. [33,35,36,37] BEMD has been shown to

allow extensive sampling of the folding free energy landscape of

small proteins and protein/ligand complexes on timescales of a

few dozen ns (see Methods for details on the protocols used).

[32,38] Convergence of the simulations was first assessed by

constructing several one dimensional free energy profiles along the

CVs used to enhance conformational sampling. These were

obtained from the negative of the accumulated Gaussian biases

along each CV, which in the limit of a sufficiently long simulation,

reproduce the free energy of the system up to an additive constant.

To assess reproducibility of the free energy profiles two apo and

holo simulations were performed, each initiated from uncorrelated

sets of configurations. The results are shown in Figure 2 and 3. In

general the free energy profiles within 10 kJ/mol of the global

minimum are well reproduced (within ca. 1 kBT or less) for most

Figure 1. Small molecule inhibition of the c-Myc/Max interaction. The small molecule 10058-F4 (1, purple star) disrupts heterodimerization
of the bHLHZip domains in c-Myc (blue) and Max (red) by stabilizing conformations in monomeric c-Myc incompatible with c-Myc/Max dimerizaton.
doi:10.1371/journal.pone.0041070.g001
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CVs between the two independent simulations. The largest

discrepancy is observed for CV2 in the apo simulations in the

range of CV values of 40–50. In the holo simulations, more

variability is observed in the regions of high free energy for CV3

and CV4 (Fig. 3C and Fig. 3D). Conformations in these regions

contribute little weight to the equilibrium ensemble, and the

overall equilibrium properties obtained by reweighting statistics

from the biased simulations (see Methods) are fairly consistent for

the two independent simulations (e.g. Table 1 and Figure 4).

Visualization of the apo neutral replica ensemble reveals that a

broad range of compact, extended, structured and unstructured

conformations have been sampled in both simulations (Figure S1

panel A). The BEMD neutral replica ensembles were compared to

two 100 ns unbiased MD simulation performed using the same

potential energy function and system setup. The first MD

simulation was initiated from an extended conformation which

collapses into a short a-helical conformation around Leu404-Ala408

after a few ns. This a-helix occasionally briefly unwinds, but

remains otherwise stable throughout the simulation, eventually

extending to include Ile403 and Tyr402 after about 90 ns (Figure S1

panel C). The conformations sampled in the second MD

simulation are very different and mostly unstructured (Figure S1

panel D). Thus the unbiased MD simulations provide an

inconsistent picture of the c-Myc402–412 structural ensemble in

comparison to the BEMD simulations. It is likely that orders of

magnitude increase in the duration of the MD simulation would

be necessary to achieve a sampling of the energy landscape

comparable to the BEMD simulation for this system.

To assess the accuracy of the computed ensembles, snapshots

collected during the MD and BEMD simulations of c-Myc402–412

were used to back-compute NMR chemical shifts using the

software Camshift. [39] Figure 4 compares with available

experimental data the computed 1H and 13C secondary chemical

shifts for Ha protons, backbone amide protons, Ca and Cb

carbons. [15] The secondary chemical shifts computed from the

two BEMD ensembles are fairly consistent and there is little

difference between the chemical shifts obtained by averaging over

snapshots from the neutral replicas or by reweighting snapshots

from the biased simulations (Figure 4). By contrast, greater

variability and inconsistency is observed between the chemical

shifts computed from the two unbiased MD simulations (Figure

S2). The mean-unsigned errors for the Ha, H, Ca and Cb chemical

shifts computed from the two reweighted BEMD simulations are:

0.09/0.08, 0.43/0.44, 0.32/0.28 and 0.35/0.32 ppm respectively.

These figures are very similar to the mean-unsigned errors

computed for the neutral replica ensembles: 0.09/0.08, 0.45/0.46,

0.32/0.29 and 0.34/0.35 ppm respectively. By comparison the

mean-unsigned errors computed from the two MD simulations

are: 0.15/0.13, 1.25/0.80, 0.50/0.42, 1.01/0.86 ppm respectively.

Thus in addition to predicting equilibrium properties that are

much more consistent between independent runs, the overall

errors in predicted secondary chemical shifts have been roughly

halved using the BEMD protocol.

The overall secondary structure content of the computed

ensembles estimated using the software DSSP, [40] STRIDE, [41]

and PROSS [42] for the BEMD and MD simulations is reported

in Table 1. These figures can be compared to the secondary

structure content estimated from experimentally measured chem-

ical shifts using the software d2D. [43] The first MD ensemble

largely overestimates the helical content of c-Myc402–412, fails to

detect any sheet content and underestimates the polyproline II

content. The second MD ensemble has a negligible amount of

helical structures or sheet content, but reproduces better the

polyproline II content measured experimentally. By contrast the

structural ensembles computed by BEMD simulations are fairly

consistent to within a few percent. The helical content is

overestimated and the sheet content slightly underestimated,

which may reflect a systematic bias from the force field used in the

simulations. The computed polyproline II content is otherwise in

good agreement with the measured polyproline II content. Given

that both simulations have been performed on the same system

with the same force field, the greater discrepancies in computed

observables for the MD simulation arise from greater sampling

errors. Although it is likely that optimized force fields could

decrease further discrepancies with experiment, the computed

BEMD ensemble is overall in reasonable agreement with the

available experimental data for this system.

The equilibrium properties of c-Myc402–412 predicted by

reweighting the biased simulations or by simple averaging over

snapshots sampled by the neutral replica are remarkably similar

(Table 1, Fig. 4). This suggests, in agreement with other bias-

exchange metadynamics studies, that the neutral replica is a good

approximation of the canonical ensemble. To assert further this

claim, one-dimensional free energy profiles along all collective

variables used in the biased simulations were constructed from the

statistics collected in one of the neutral replica. Comparison of the

free energy profiles between the neutral replica and the biased

simulations (Figure S3) indicates that the global minimum in free

energy is well reproduced, but that regions of high free energy are

systematically overrepresented in the neutral replica. This

observation explains why the equilibrium properties predicted by

reweighting the biased simulations or by averaging over snapshots

sampled from the neutral replica agree well, since conformations

of low free energy contribute with a greater weight to the

equilibrium properties of the system. Nevertheless this analysis

suggests that the accuracy of the neutral replica ensemble

decreases rapidly for conformations of higher free energy.

Consequently, analyses in the rest of the manuscript were

performed on ensembles constructed by reweighting snapshots

from the biased simulations (see Methods).

The c-Myc402–412 Apo Ensemble Contains Collapsed,
Extended and Helical Conformations

The equilibrium ensemble is heterogeneous and includes several

extended and collapsed conformations, consistent with c-Myc402–412

Table 1. Percentage of secondary structure content of apo c-
Myc402–412.1

Helix Sheet Polyproline II

BEMD run 1 13.9 10.0 0.7 0.9 12.6

BEMD run 2 10.9 9.4 0.6 0.2 12.1

BEMD run1
neutral

14.2 11.9 0.7 1.0 11.6

BEMD run2
neutral

10.5 9.2 0.5 0.2 11.7

MD run 1 34.3 41.5 0 0 5.5

MD run2 0.1 0.1 0.5 0.5 13.5

Exp2 4 3 13

1helix and sheet content computed according to the DSSP and STRIDE methods
respectively. A helix was defined as G + H + I and a sheet as B + E using the 7
letter DSSP code. The polyproline II content was estimated using the software
PROSS.
2Secondary structure content estimated from measured chemical shifts, using
the webserver d2d.
doi:10.1371/journal.pone.0041070.t001
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being intrinsically disordered. Clustering indicates there are dozens

of structurally diverse clusters of conformations. [44] Figure 5 shows

representative conformations from the ninth largest clusters

calculated for the apo ensemble. Although the ensemble properties

of the peptide are well reproduced, not all clusters are equally well

populated in the two independent BEMD simulations, as evidenced

by the standard error estimates of the cluster populations. Longer

simulations would be required to obtain more precise population

estimates. The largest cluster (Figure 5A) is a random coil structure

stabilized by hydrophobic contacts between Tyr402, Ile403 and

Val406 and electrostatic interactions between Lys412 and Glu409.

Other partially collapsed conformations are apparent (e.g. Figure 5D

and 5E), but extended conformations are also observed (e.g

Figure 5F and 5I). Additionally, several clusters include conforma-

tions containing short a or 310 helices (Figure 5B, 5G), that account

for the overall computed helical content of c-Myc402–412.

c-Myc402–412 Remains Disordered upon Binding the Small
Molecule 10058-F4

To assess the impact of the binding of 1 on the conformations of

c-Myc402–412, the average number of contacts between protons

(d,3.0 Å) in 1 and different protein residues was computed for the

apo and holo BEMD simulations. Figure 6 shows the difference in

contact probabilities between the holo and apo simulations, red

indicates increased contact probabilities, blue indicates decreased

contact probabilities, whereas white indicates unchanged contact

probabilities. Figure 6A shows that 1 contacts primarily the N-

terminal region of c-Myc402–412, with a strong preference for

contacts with Tyr402. Lys412 is the only side-chain in the C-

terminal region of c-Myc402–412 that forms significant contacts

with 1. Given that 1 contains a moderately polar heterocycle and a

hydrophobic ethylphenyl group, it is not surprising that intermo-

lecular contacts occur preferentially with the N-terminal region as

it is enriched in hydrophobic amino acids. Figure 6B depicts the

difference in average number of contacts between protein residues

in the apo and holo simulations. This analysis reveals whether

ligand binding changes contact probabilities between residues in c-

Myc402–412. Overall decreased contacts of Tyr402 with nearby

amino-acids are observed because 1 lies frequently between these

side-chains. Increased contacts between Lys412 and the N-terminal

amino acids correlate with decreased contats with amino acids in

the C-terminal region. This occurs because c-Myc402–412 adopts

more frequently conformations that wrap around 1. Comparison

of computed and measured chemical shifts for the c-Myc402–412/1
complex is not possible owing to the lack of parameters in

Camshift to describe the ligand. However the simulations suggest

formation of a hydrophobic cluster between 1 and the side chains

of Tyr402, Ile403, Leu404, Val406, which is in qualitative agreement

Figure 2. Free energy profiles for the c-Myc402–412 apo simulations projected along several collective variables. Black: Simulation
apoA, Red: Simulation apoB. A) CV1, B) CV2, C) CV3, D) CV4 E) CV5 F) CV6 G) CV7. See the Methods section in the main text for a definition of each CV.
doi:10.1371/journal.pone.0041070.g002
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with the interpretation of the limited NOEs measured by Follis

et al. [16] The holo ensemble remains heterogeneous, thus

binding of 1 does not structure considerably c-Myc402–412. The

overall helical content, 1361% or 1161% (DSSP and STRIDE

respectively), is relatively unchanged from the apo ensemble. The

negligible sheet content, and polyproline II content, 1261%

(PROSS) are broadly similar to the quantities computed for the

apo ensemble.

The Small Molecule 10058-F4 Binds to Multiple Distinct c-
Myc402–412 Conformations

Although there are no dramatic changes in secondary structure

content upon ligand binding, detailed analysis reveals that the

nature and the population of the c-Myc402–412 equilibrium

conformations is substantially affected by 1. The ligand retains

considerable mobility and can adopt a multitude of different

binding modes against structurally distinct c-Myc402–412 confor-

mations. Consequently clustering analysis of the holo ensemble

produces a large number of negligibly populated clusters.

Nevertheless, it is possible to identify more frequently observed

binding modes. Figure 7 depicts nine conformations representative

of the most populated clusters from the holo ensemble. The first

cluster (Figure 7A) features stacking interactions between the

phenyl rings of 1 and Tyr402, as well as hydrophobic contacts

between the ethylphenyl group of 1 and Leu404. Ile403 forms a

small hydrophobic cluster with Leu404 and Tyr402. Additional

stabilizing hydrogen-bonding interactions between Gln411 and the

peptide backbone are present. In Figure 7B the ethylphenyl group

of 1 is sandwiched between the side-chains of Tyr402 and Lys412,

whereas the thiazolidinone ring forms hydrogen bonding interac-

tions with the backbone of Leu404 and Gln407. In some cases

(Figure 7D, 7I) the ligand stabilizes a-helical conformations

whereas in several other clusters, 1 forms relatively limited

contacts with the more hydrophobic N-terminus (Figure 7E, 7F,

7G, 7H). Comparison of the computed holo c-Myc402–412

conformations with the conformation of c-Myc402–412 observed

in the crystallographic structure of the c-Myc/Max dimer

systematically indicates steric clashes with Max, [12] thus binding

of 1 to c-Myc is not compatible with c-Myc/Max dimerization.

The broad range of c-Myc conformations binding 1 may

explain the relatively forgiving structure-activity relationships

observed for analogs of 1, [21,45] i.e. few small ligand

modifications would prevent binding to all observed conforma-

tions. The most populated conformations do not closely resemble

the structure of the c-Myc402–412/1 complex derived using

chemical-shift constraints and docking. [16] As it has been pointed

Figure 3. Free energy profiles for the c-Myc402–412/1 holo simulations projected along several collective variables. Black: Simulation
holoA, Red: Simulation holoB. A) CV1, B) CV2, C) CV3, D) CV4, E) CV5, F) CV6, G) CV7, H) CV8. See the Methods section in the main text for a definition
of each CV.
doi:10.1371/journal.pone.0041070.g003
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out by Follis et al., a single average structure obtained from

minimization of NMR derived restraints may not be representa-

tive of the multiple distinct conformations adopted by a disordered

protein. [16] This highlights the usefulness of molecular dynamics

simulation protocols to generate structural ensembles for IDPs and

guide the interpretation of NMR measurements.

The c-Myc402–412 Conformations Binding 10058-F4 are
Partially Formed in the Apo Ensemble

To investigate the mechanisms of molecular recognition, the

frequently observed apo and holo c-Myc402–412 conformations

were compared to the computed apo and holo ensembles. Broad

fluctuations in backbone conformations are observed within the

apo and holo ensembles, Figure 8A–D reports histograms of

backbone root mean square deviation (RMSD) of the apo and

holo structural ensembles to selected holo and apo conformations

depicted in Figure 5 and Figure 7. There is some arbitrariness in

the definition of a criterion to consider whether two conformations

are structurally similar, but overlay of several low RMSD

structures suggests that a backbone RMSD around 2.5 Å or less

identifies broadly similar backbone conformations for this system.

According to this criterion, in all cases the c-Myc402–412 apo

ensemble contain conformations that are structurally similar to

those seen more frequently in the holo ensemble (Figure 8A–8C,

insets), albeit with a lower probability. Likewise, the holo ensemble

also contains conformations that have a RMSD ,2.5 Å to the apo

conformation shown in Figure 5A (Figure 8D). To illustrate,

Figure 8 also depicts an overlay of the conformation sampled from

the apo (Figure 8A–8C) or holo (Figure 8D) ensemble that has the

lowest RMSD to the apo/holo conformations depicted in

Figure 7A–7C and Figure 5A. These results suggest that there is

significant structural overlap between the apo and holo ensembles.

However additional side-chain adjustments are typically necessary

to dock 1 into the apo structures to reproduce the holo

conformations depicted in Figure 7 because a few side-chains

would otherwise clash with the ligand.

Discussion

In comparison with standard molecular dynamics, the present

bias-exchange metadynamics simulations have been shown to

dramatically enhance conformational sampling in explicit solvent

of a segment of the intrinsically disordered protein c-Myc. These

results add to the growing literature evidence for the usefulness of

metadynamics to study biomolecular interactions. [32,38] Because

standard biomolecular force fields have not been tested extensively

on intrinsically disordered proteins, it is important to validate as

much as possible computed trajectories against experimental data.

NMR is an established methodology to perform experimental

studies of IDPs structure, and the back-computation of chemical

shifts from molecular dynamics trajectories provides an excellent

opportunity to connect simulations with experiments for disor-

dered proteins. [46] The larger errors in predicted chemical shifts

for the MD simulation versus the BEMD simulations reported in

this manuscript highlight the importance of achieving a broad

sampling of energy landscapes, at least the regions of low free

energy, to reliably compare simulations with experiments. The

simulated ensembles will otherwise not be well reproducible, and it

will be difficult to diagnose systematic force field errors and devise

more accurate potential energy functions [47].

The current results indicate that there is large conformational

heterogeneity in both the apo and holo equilibrium ensembles of

c-Myc402–412. To obtain a complete picture of the energy

landscape it would be desirable to obtain as well information

Figure 4. Comparison of computed and observed secondary
chemical shifts for apo c-Myc402–412. A) 1Ha chemical shifts. B) 13Ca

chemical shifts. C) 1H backbone amide chemical shifts. D) 13Cb chemical
shifts. Black: experimental data. Solid red and blue: predicted by
reweighting the biased BEMD simulations apoA and apoB respectively.
Dotted red and blue: predicted from the neutral replicas of the BEMD
simulations apoA and apoB respectively. Not all experimental 13Cb

chemical shifts were reported. Camshift does not report chemical shifts
for terminal residues.
doi:10.1371/journal.pone.0041070.g004
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about kinetic properties. Owing to the use of a replica-exchange

methodology and a time-dependent biasing potential, this

information is not readily accessible from the present BEMD

simulations. It is possible to project the BEMD trajectories on a

space defined by the collective variables to build a kinetic model,

[35] however we find that this analysis is of limited utility here

because the structural ensemble of c-Myc402–412 is too diverse to

resolve well several kinetic basins in a low dimensional CV space.

An interesting alternative would be to conduct extended unbiased

MD simulations to reversibly simulate binding/unbinding in this

system and analyze the computed trajectories using Markov State

models. [48,49] Such study could also allow in principle a direct

Figure 5. Representative conformations from the computed equilibrium ensemble for apo c-Myc402–412. The conformations depicted
are those closest to the center of the most populated clusters. The fractional cluster populations are: 0.10160.018 (A), 0.07560.034 (B), 0.06060.040
(C), 0.05960.027 (D), 0.05560.016 (E), 0.04360.004 (F), 0.03060.017 (G), 0.02160.009 (H), 0.02160.003 (I). Figure prepared with the software VMD
[78].
doi:10.1371/journal.pone.0041070.g005

Figure 6. Average number of contacts between 1 and c-Myc402–412. A) Average number of 1H contacts between different c-Myc402–412

residues and 1. Color coded from white (no contacts) to red (high number of contacts). The extreme values of this color scale range from 0.02 to 1.08.
B) Difference in the average number of 1H contacts between different c-Myc402–412 residues in the holo and apo ensembles. Red/blue indicates an
increased/decreased average number of contacts upon binding of 1. The extreme values of this color scale range from 21.22 to +0.67.
doi:10.1371/journal.pone.0041070.g006
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estimation of dissociation constants and kinetics of binding and

conformational transitions, [50] although it may be difficult to

unambiguously define bound/unbound states for an IDP.

An intriguing result from this study is the observation that no

clearly dominant binding mode emerges for the c-Myc402–412/1
complex. Rather, binding seems to result from a multitude of weak

interactions to distinct conformations. This contrasts with the

frequently observed disorder-to-order transitions in complexes

involving one or two IDPs. [5,51] Coupled folding and binding

typically arises from a fine balance between a large conformational

entropy loss and the formation of several intermolecular contacts

across an often large interface. [5] Arguably, a drug-like molecule

may be too small to form extended contacts that could overcome

the large conformational entropy loss required to structure a

disordered protein. Thus it seems more likely that the current

small molecule inhibitors of c-Myc/Max stabilize a broad range of

inactive c-Myc conformations, rather than conformationally

trapping c-Myc in an inactive state. [52] The fact that several

structurally diverse small molecules inhibitors of c-Myc/Max were

identified with a reasonable success rate through screening

relatively modest libraries supports the hypothesis that the

conformational flexibility of IDPs facilitates interactions with

small molecules through a large number of weak interactions. [8]

Further evidence in support of this molecular recognition

mechanism is provided by examples of IDPs that remain partially

disordered when in complex with other proteins, for instance the

CFTR/NBD1 complex, [53] or the cytoplasmic domain of the T-

cell receptor e chain/SIV nef protein complex. [54] The lock and

key model cannot explain binding in the system studied here, but

neither would pure conformational selection or induced fit

mechanisms. The backbone conformations of c-Myc402–412 that

more frequently bind 1 are populated with a lower probability in

the apo ensemble, but further minor conformational adjustments,

mainly repositioning of side-chains, are necessary before 1 can be

docked without steric clashes. These observations are more in line

with the extended conformational selection model to describe

ligand binding in this system. [55] A recent simulation study using

Gõ models from Ganguly et al. also favors this mechanism for the

binding of the NCBD domain of CBP with the p160 steroid

receptor coactivator ACTR. [56] Cino et al. have also reached

similar conclusions from a molecular dynamics study of the

interactions of the IDP Prothymosin alpha with the Neh2 domain

of Nuclear factor erythroid 2-related factor 2 and Kelch-like ECH-

associated protein 1. [57] To obtain further evidence, extensive

reversible atomistic simulations of the binding/unbinding of 1 to

c-Myc402–412 are desirable to establish the nature of the transition

state conformations.

The broad range of observed protein/ligand interactions in this

system raises profound questions regarding the possibility of

designing specific small molecule ligands for IDPs. The contact

matrix in Figure 6A, as well as the representative snapshots in

Figure 7 suggest that 1 interact preferentially with Tyr402. The

primary sequence of the c-Myc bHLHZip domain contains a

single Tyrosine, furthermore, the c-Myc segment 401–406

contains a cluster a hydrophobic amino acids that defines the

most hydrophobic region of the c-Myc bHLHZip sequence in a

hydrophobicity plot (Figure S4). Thus a simple explanation for the

location of the c-Myc binding site of 1, is that the ligand binds to

this segment because it contains several hydrophobic and aromatic

residues. Interestingly, the bHLHZip domain of the protein Max

lacks such hydrophobic clusters and appears overall less hydro-

phobic on a hydrophobicity plot (Figure S4). This may explain

why the ligand 1 does not disrupt the Max/Max homodimer.

Nevertheless, experimental evidence suggests that many of the

small molecules inhibitors of c-Myc/Max identified from in vitro

and cellular assays also disrupt other related protein-protein

Figure 7. Representative conformations from the computed equilibrium ensemble for the c-Myc402–412/1 complex. The conformations
depicted are those closest to the cluster center. The fractional cluster populations are: 0.02160.008 (A), 0.01960.002 (B), 0.01860.005 (C),
0.01560.010 (D), 0.01460.003 (E), 0.01160.008 (F), 0.01160.005 (G), 0.01160.001 (H), 0.01060.003 (I). Figure prepared with the software VMD [78].
doi:10.1371/journal.pone.0041070.g007
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Figure 8. Comparison of selected holo and apo conformations to the apo and holo ensembles. A) Probability distribution of backbone
RMSD of conformations from the apo (black curve) and holo (red curve) ensembles to: A) holo cluster center 7A, B) holo cluster center 7B, C) holo
cluster center 7C, D) apo cluster center 5A. The inset shows the low-RMSD regions. Each panel also shows an overlay of the lowest RMSD apo or holo
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interactions. [8] In a series of yeast two hybrid assays on 32 HLH,

HLHZip or bZip pairs, the small molecule 1 was found to inhibit

strongly c-Myc/Max, but also to inhibit moderately Myod/E2–2,

Mad1/Max, Mxi1/Max and Mad3/Max. [14] Given that the

present simulations suggest that ligand binding to c-Myc is

primarily driven by weak non specific interactions with hydro-

phobic patches, it is interesting to establish why 1 has been

identified as a c-Myc/Max inhibitor in previous high-throughput

screens. A noteworthy feature of 1, as well as several other

reported c-Myc ligands, is the presence of a benzylidene rhodanine

scaffold. Such class of small molecules frequently produces low-

micromolar hits in a broad range of assays and against diverse

biomolecular targets. [58] Mengden et al. have analysed in details

the binding promiscuity of rhodanines and concluded that this

behavior is not related to aggregation or reactivity towards

biological nucleophiles, but rather that this scaffold has a

pronounced propensity to form intermolecular interactions with

proteins. [59] Indeed Wang et al. recently reported the discovery

of a benzylidene-rhodanine ligand highly similar to 1 (o-nitro

group instead of p-ethyl group on the benzylidene group) and that

binds to the bZIP domain of the transcription factor DFosB. [60]

Although other scaffolds have been reported to disrupt the c-Myc/

Max interaction by binding to monomeric c-Myc, these observa-

tions suggest that the binding specificity of novel c-Myc ligands

should be carefully assessed against a broad range of targets. There

are documented cases of initial non specific hits obtained from

small molecule library screen that were subsequently optimized to

show higher specificity for c-Myc/Max. [61,62] Although clearly a

challenging endeavor, one could seek to exploit the present

computational approach to modify 1 in order to enhance binding

affinity towards c-Myc conformations that offer several contacts to

the ligand whilst minimizing binding affinity to conformations

likely to offer little ligand specificity. Alternatively, larger synthetic

molecules that disrupt c-Myc/Max by folding c-Myc upon binding

may achieve higher binding specificity.

Materials and Methods

Metadynamics Simulations
The AMBER99SB* forcefield was selected for c-Myc402–412 as it

has been calibrated to reproduce the secondary structure

preferences of peptides, [63] the GAFF forcefield for 1, [64] and

the TIP3P model was used for water. [65] The GAFF parameters

for the ligand were obtained by using the software acpype, [66] in

combination with the antechamber utility from the AMBER11

software package. [67] Atomic partial charges were assigned using

the AM1-BCC method. [68,69] Molecular models of c-Myc402–412

and the c-Myc402–412/1 complex were built in an extended

conformation using the software Maestro. [70] The peptide

termini were acetylated and amidated to be consistent with

experimental data. The models were then solvated in a triclinic

box of 2843 and 3211 water molecules respectively and charge

neutrality was enforced through introduction of one sodium ion.

The simulations were performed at 300 K and 1 atm with the

software package GROMACS 4.5.5, [71] compiled with the

metadynamics plugin PLUMED 1.3. [72] Apo and holo

simulations were initially equilibrated in NPT conditions, using a

stochastic Berendsen thermostat and Parinello-Rahman barostat

with relaxation times of 0.1 and 2 ps respectively. [73,74] A time

step of 2 fs was used. Particle-mesh Ewald was used to treat long-

range electrostatic interactions with a short-range cutoff of 0.9 nm.

A cutoff of 0.9 nm was used for the Lennard-Jones interactions. A

long-range correction term was used for the energy and pressure.

[75] After NPT equilibration, BEMD simulations were performed

in NVT conditions as the PLUMED software does not compute

the contribution of the metadynamics forces to the virial. Short

preliminary runs were performed to optimize the selection of CVs

and Gaussian parameters. The CVs were chosen on the basis of

previously published BEMD studies to remove possible energetic

barriers between degrees of freedom describing backbone and

side-chain conformational changes. The parameters of the CVs

(Gaussian height and width), which control the rate of conver-

gence and accuracy of the free energy profiles were adjusted in

preliminary runs in implicit solvent so as to obtain reasonably

converged free energy profiles on a timescale of several dozen

nanoseconds. The apo and holo simulations were performed with

8 and 9 replicas respectively. In the production runs, each replica

was simulated for 120 ns. Each simulation was repeated twice,

using different starting coordinates for each replica. These starting

coordinates were obtained from preliminary runs and it was

checked that they were structurally diverse and uncorrelated. Thus

a total of 4 BEMD simulations were performed: two apo

simulations (apoA and apoB) and two holo simulations (holoA

and holoB).

Gaussian potentials of height 0.2 kJ.mol-1 were added every

2.0 ps. Collective variables and snapshots were saved every 2.0 ps

and exchanges between replicas were attempted every 20.0 ps. All

bond lengths were constrained to their equilibrium length with the

LINCS algorithm. [76] The CVs used in the production runs

were:

N Apo simulations: CV1: coordination number Ca atoms.

width 0.7; CV2: coordination number Cc atoms, width 0.5;

CV3, similarity of backbone dihedral psi angle to a-helical

region, width 0.25; CV4, correlation of successive backbone

dihedral angles; CV5: number of backbone - backbone

hydrogen bonds, width 0.25; CV6: number of sidechain -

sidechain hydrogen bonds, width 0.25; CV7: number of

sidechain - backbone hydrogen bonds, width 0.25;

N Holo simulations: CV1: coordination number Ca atoms.

width 0.7; CV2: coordination number Cc atoms, width 0.5;

CV3, similarity of backbone dihedral psi angle to a-helical

region, width 0.25; CV4, correlation of successive backbone

dihedral angles; CV5: number of backbone - backbone

hydrogen bonds, width 0.25; CV6: number of sidechain -

sidechain hydrogen bonds, width 0.25; CV7: number of

sidechain - backbone hydrogen bonds, width 0.25; CV8:

minimum distance ligand C1 atom to peptide Ca atoms. C1 is

the aromatic carbon atom bonded to the methylene

group of 1.

Accumulation of the biases gradually enables exploration of a

larger range of values along each CV. This trend is more

pronounced for CVs defined by counting interatomic contacts and

eventually leads to the sampling of high energy configurations that

cause hysteresis in the convergence of the free energy profiles for

the biased replicas. However these high-energy configurations are

almost never transferred to other replicas during replica exchange

tests. To maintain a reasonable exchange rate between replicas

and to focus conformational sampling in the regions of low free

structure to cluster centers from panels A–D. For clarity only the peptide backbone (tube representation, apo conformations in blue, holo
conformations in orange) and ligand atoms (CPK) are shown. Figure prepared using VMD [78].
doi:10.1371/journal.pone.0041070.g008
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energy, half-harmonic potentials (walls) were added to penalize

exploration of CV values below or above minimum/maximum

values such that the computed free energy profiles are within

approximately 10 kBT from the global minimum. The position of

the walls was chosen by performing unrestrained preliminary

BEMD runs.

N Walls: CV1: minimum 57, maximum 96; CV2: minimum 36,

maximum 63; CV3: minimum 1, maximum 9; CV4,

minimum 1.5, maximum 9.9; CV5, minimum 0.50, maximum

10.50; CV6, minimum 0.40, maximum 9.00; CV7 minimum

1.25, maximum 10.25; CV8 minimum 0.33, maximum 0.97.

With this setup the average exchange probability between

biased replicas and neutral replicas was about 33% for both apo

and holo simulations. The input files used to perform the apo and

holo simulations are available in the supporting information

(Dataset S1). On the basis of observed fluctuations in the values of

the CVs over the duration of the BEMD simulations, the first

20 ns of the simulations was discarded to allow the Gaussian biases

to compensate free energy barriers and enable broad sampling

along each CV. The free energy profiles shown in Figure 2 and

Figure 3 were taken as the negative of the averaged metadynamics

biasing potential over the last 100 ns of each simulations.

Two different techniques were used to compute equilibrium

properties from the BEMD ensembles. In the first approach,

snapshots from all the biased replicas were reweighted using the

method of Marinelli et al. [35] In this technique, the biased

trajectories are first clustered in a N-dimensional CV space made

of hypercubes forming a regular grid. The free energy of each bin

is then estimated by a weighted histogram analysis procedure

(WHAM) based on the number of snapshots and the value of the

converged metadynamics bias potentials assigned to each bin. For

the approach to be reliable, a large number of bins must be

populated by several structurally similar snapshots. Increasing the

dimensionality of the CV space decreases the statistics of each bin,

but improves the structural similarity of snapshots within each bin.

Multiple clustering schemes were tested to balance these two

parameters, using the METAGUI plugin, [77] for the VMD

software. [78] The best protocol identified for this system involved

a 4-dimensional clustering using CV1, CV3, CV4, CV5 with a bin

width of approximately 2si, where si is the Gaussian width of

CVi. These 4 CVs were chosen as they were found to be the least

correlated with each other, thus maximizing structural similarity of

snapshots assigned to each bin. The bin width of 2si is on the

order of the resolution of the metadynamics free energy profiles.

With this setup about 9000 bins contained at least 5 snapshots.

Lower dimensionality clustering produced bins that lumped

together structurally dissimilar states, whereas higher dimension-

ality clustering yielded very few bins populated with more than five

snapshots. Molecular observables were averaged between snap-

shots assigned to the same bin. Ensemble properties were then

obtained by weighting the properties of each bin by its WHAM

derived free energy. In the second technique, ensemble properties

were computed by simple averaging of the properties of each

snapshot recorded in the simulation of the neutral replica.

Two unbiased molecular dynamics simulations of c-Myc402–412

were also performed for comparison with the BEMD simulations

(mdA and mdB). The simulations parameters were identical to the

BEMD simulations, with the exception of the time step that was set

to 5 fs as virtual sites were used, [79] and the simulations duration

was 110 ns. The first 10 ns were discarded to enable relaxation of

the system To evaluate statistical errors for the various computed

properties from all simulations, standard errors were estimated

from properties computed from two independent simulations.

Simulations Analysis
To assess the accuracy of the computed structural ensembles,

the software Camshift was used to predict experimentally

measured backbone H, Ha, Ca and Cb chemical shifts for c-

Myc402–412. [39] Camshift does not predict chemical shifts for N

and C terminal residues so no predictions for Tyr402 and Lys412

could be made. Secondary structure preferences were computed

using several algorithms. DSSP, [40] STRIDE, [41] and PROSS.

[42] The webserver d2D was used to estimate secondary structure

preferences from the measured chemical shifts. [43] For the

BEMD simulations, the probability of contacts between protons in

different peptide residues or the ligand was computed for the apo

and holo ensembles and expressed as a contact matrix. A cutoff of

3 Å was used to define a proton-proton contact, which is

intermediate between distances compatible with strong/medium

NOEs. Small variations in this cutoff (60.5Å) did not affect

significantly the observed trends. RMSD clustering was performed

using the method of Daura et al. to identify structurally distinct

clusters of protein conformations and to estimate their population.

In this approach, the RMSD of atom positions between all pairs of

structures in a trajectory is first determined. For each structure, the

number of structures that have a RMSD below a cutoff value are

counted. The structure with the highest number of neighboring

structures defines a cluster centre. This structure, along with all

neighboring structures, is removed from the trajectory. This

procedure is iterated until no structures are left unassigned. An

advantage of this algorithm over alternative methods such as k-

means or k-medoids is that the number of clusters is automatically

determined, at the cost of a high memory requirement. [44] To

reduce the memory requirements of the algorithm, a subset of the

biased snapshots was used in the clustering analysis, by only

selecting snapshots from bins that were within 6kT from the bin of

lowest free energy. To estimate errors on the cluster populations,

the ensembles from the two apo/holo simulations were combined.

A RMSD cutoff of 3.5 Å was used to group structures. For the apo

ensemble the RMSD calculations were performed using the

coordinates of heavy atoms, excluding atoms that can form

symmetry equivalent conformations (e.g. Valine Cc atoms). For

the holo ensemble, a different protocol was used to finely resolve

different binding modes of the ligand. The RMSD calculations

were performed on the protein Ca and Cb atoms and non-

symmetry equivalent ligand heavy atoms. The ligand coordinates

were weighted by a factor of 3 in the RMSD calculations to in

order to cluster together conformations that contained similar

ligand coordinates.

Supporting Information

Figure S1 Secondary structure content of c-Myc402–412.
Residue secondary structure preferences colored according to the

STRIDE code (white: coil, cyan: turn, blue: 310 helix, purple: a-

helix, maroon: bend, yellow: extended). A) and B) BEMD

ensembles from the neutral replicas for simulations apoA and

apoB. C) and D) Unbiased ensembles from MD simulations mdA

and mdB.

(TIF)

Figure S2 Comparison of computed and observed
secondary chemical shifts for apo c-Myc402–412. A) 1Ha

chemical shifts. B) 13Ca chemical shifts. C) 1H backbone amide

chemical shifts. D) 13Cb chemical shifts. Black: experimental data.
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Red: predicted from MD simulation mdA. Blue: predicted from

MD simulation mdB.

(TIF)

Figure S3 Comparison of free energy profiles of c-
Myc402–412 obtained from the neutral replica and the
biased replicas. Black: Neutral replica, Red: Biased replica.

Data generated using BEMD simulation apoA.

(TIF)

Figure S4 Hydrophobicity plot of the sequence of the c-
Myc and Max bHLHZip domains. Black: c-Myc. Red: Max.

Regions with a positive score are considered hydrophobic. The

location of the c-Myc segment corresponding to amino acids 401

to 406 has been highlighted in bold. Plots generated using a Kyte-

Doolittle hydrophobicity scale. [80] To detect relatively short

sequences of hydrophobic and aromatic sites that may interact

favorably with small organic molecules the scale was modified so

that Tyrosine has a hydrophobicity score equal to Phenylalanine

and a window width of 3 was used. Plots produced using the

sequences c-Myc353–437 (84 amino acids) and Max24–102 (78 amino

acids).

(TIF)

Dataset S1 Input files for the apo and holo BEMD
simulations.

(ZIP)
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