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Abstract

The Notch signaling pathway is a key regulator of skeletal muscle development and

regeneration. Over the past decade, the discoveries of three new muscle disease genes

have added a new dimension to the relationship between the Notch signaling pathway

and skeletal muscle: MEGF10, POGLUT1, and JAG2. We review the clinical syndromes

associated with pathogenic variants in each of these genes, known molecular and cellular

functions of their protein products with a particular focus on the Notch signaling pathway,

and potential novel therapeutic targets that may emerge from further investigations of

these diseases. The phenotypes associated with two of these genes, POGLUT1 and JAG2,

clearly fall within the realm of muscular dystrophy, whereas the third, MEGF10, is associ-

ated with a congenital myopathy/muscular dystrophy overlap syndrome classically known

as early-onset myopathy, areflexia, respiratory distress, and dysphagia. JAG2 is a canonical

Notch ligand, POGLUT1 glycosylates the extracellular domain of Notch receptors, and

MEGF10 interacts with the intracellular domain of NOTCH1. Additional genes and their

encoded proteins relevant to muscle function and disease with links to the Notch signal-

ing pathway include TRIM32, ATP2A1 (SERCA1), JAG1, PAX7, and NOTCH2NLC. There is

enormous potential to identify convergent mechanisms of skeletal muscle disease and

new therapeutic targets through further investigations of the Notch signaling pathway in

the context of skeletal muscle development, maintenance, and disease.

Abbreviations: ABCA1, adenosine triphosphate–binding cassette transporter 1; ADAM10, A disintegrin and metalloproteinase domain–containing protein 10; ADAMTS1, A disintegrin-like and

metalloproteinase with thrombospondin type 1 motif; BMD, Becker muscular dystrophy; C1q, complement component 1q; CK, creatine kinase; CMD, congenital muscular dystrophy; CSL, CBF-

1/RBPJ-κ, Suppressor of Hairless, Lag-1; DLL1, delta-like canonical Notch ligand 1; DLL4, delta-like canonical Notch ligand 4; DMD, Duchenne muscular dystrophy; DOS, Delta and OS M-11-like

protein; DRPR, Draper; DSL, Delta-Serrate-LAG2; EC, endothelial cell; EGF, epidermal growth factor–like domain; EMARDD, early-onset myopathy, areflexia, respiratory distress, and dysphagia;
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1 | INTRODUCTION

Since the landmark discovery in 1986 of DMD (dystrophin),1 the caus-

ative gene for Duchenne muscular dystrophy (DMD) and Becker mus-

cular dystrophy (BMD), dozens of additional genes have been

associated with various phenotypic subtypes of muscular dystrophy.

Common disease mechanisms across multiple subtypes have, how-

ever, been more difficult to identify, with only a few major clusters

such as the dystroglycanopathies identified to date. Given the com-

mon phenotypic features within muscular dystrophy categories, such

as limb-girdle muscular dystrophy (LGMD), there is a high likelihood

that convergent disease mechanisms exist across more muscular dys-

trophy subtypes than is currently recognized.

There are therapeutic implications of identifying deeper biological

ties between muscular dystrophy subtypes. In recent years, the US Food

and Drug Administration (FDA) has approved several molecular and

genetic therapies for neuromuscular disorders that target specific genes

and even specific mutation types within those genes. These approaches

are being applied to ever rarer forms of muscular dystrophies. However,

proceeding through the preclinical and clinical research studies needed

to attain FDA approval for a new therapy is lengthy and costly, and on

the current trajectory it will be decades before molecular and genetic

therapies are available for all known subtypes of muscular dystrophy.

The identification and characterization of disease mechanisms

that are shared by multiple muscular dystrophy subtypes could pave

the way for new pathway-based treatments that have therapeutic

effects for multiple disease subtypes.2 This has the potential to accel-

erate the timeline for broader therapeutic coverage of patients with

muscular dystrophy, with a greater impact on the entire muscular dys-

trophy population.

One disease mechanism that bears further analysis is the Notch

signaling pathway, which is known to maintain muscle stem cell

(MuSC, also known as satellite cell) quiescence. Recently, three differ-

ent muscle disease genes that are known to interact with the Notch

signaling pathway have been identified: MEGF10, POGLUT1, and most

recently JAG2. In this review we examine the clinical, genetic, bio-

chemical, and cellular knowledge of these genes and their protein

products, as well as their interactions with each other and with the

Notch signaling pathway.

1.1 | The Notch signaling pathway in muscle
development

The Notch signaling pathway has been a high-profile subject of investiga-

tion since its discovery in the early 20th century, with intensified interest

after the DrosophilaNotch gene was first reported in 1983.3 This pathway

is well-conserved across species and is regulated by a set of ligands and

receptors that promote cell-to-cell communications. Among other

activities, it plays a key role in determining specification and differentia-

tion of cell fates during various aspects of invertebrate and vertebrate

development and regeneration, including myogenesis.4–7

In mammals, Notch1, Notch2, Notch3, and Notch4 are the core

receptors in the Notch signaling pathway (Table 1). Each of these

receptors consists of a Notch extracellular domain (NECD), a trans-

membrane domain (TM), and a Notch intracellular domain (NICD).27

Both trans (intercellular) and cis (intracellular) interactions of ligands

with the Notch receptors have been discovered28–30 (Figure 1). In

mammals, the canonical Notch ligands include Delta-like1, Delta-like3,

Delta-like4, Jagged1, and Jagged231 (Table 1). These proteins are

encoded by the genes DLL1, DLL3, DLL4, JAG1, and JAG2, respec-

tively. In Drosophila there are two canonical Notch ligands: Delta and

Serrate (orthologous to the mammalian Delta-like and Jagged pro-

teins, respectively).32 The typical trans interaction begins with binding

of the extracellular domain of the ligand from the signaling cell to the

NECD of the signal receiving cell, initiating two cleavage events in the

Notch receptor of the receiving cell (Figure 1A). In the first cleavage

event, members of the ADAM family of metalloproteinases separate

the ligand-bound NECD from the TM-NICD.27 The NECD undergoes

endocytosis by the signaling cell, whereas the TM domain and NICD

are separated from each other by γ-secretase in the second cleavage

event.33 The NICD then enters the nucleus and binds to the DNA

transcription factor CBF-1/RBPJ-κ, Suppressor of Hairless, Lag-1 (also

known as CSL), converting it from a transcription-repressing state to

an activating state by displacing co-repressors and recruiting

Mastermind-like protein (MAML1) and other coactivators, initiating

the transcription of downstream Notch signaling pathway genes.34,35

Notch ligands also have an inhibitory effect on Notch within the same

cells (cis-inhibition) of Drosophila.36–38 The extracellular Delta-Serrate-

LAG2 (DSL) domain of human Jagged1 contributes to both trans-

activation and cis-inhibition.39 Most of the canonical Notch signaling

pathway components have known functions in skeletal muscle devel-

opment or function, yet aside from JAG2, the other canonical Notch

signaling pathway genes are associated with diseases that do not pri-

marily manifest in skeletal muscle (Table 1).

The Notch1 intracellular domain (N1ICD) is an active regulator of

cell fate choice for MuSCs, promoting their self-renewal via Pax7

upregulation while inhibiting MuSC proliferation.40 The N1ICD also

has the capability of dedifferentiating myocytes into Pax7+ quiescent

MuSCs, suggesting that the Notch signaling pathway has potential as

a therapeutic target for muscle diseases.41 The mechanisms of Notch

signaling pathway regulation of MuSCs remains incompletely under-

stood, but one key component is A disintegrin-like and metalloprotei-

nase with thrombospondin type 1 motif (ADAMTS1), which is

secreted by macrophages, targets NOTCH1, stimulates MuSC activa-

tion, and promotes muscle regeneration.42 Notch signaling and p53

activity diminish with aging, and stabilizing this Notch-p53 axis

improves the regenerative capacity of aged MuSCs.43
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The Notch signaling pathway regulates other components of

developing and mature skeletal muscle. For example, delta-like canon-

ical Notch ligand 1 (DLL1) activation restrains fibroadipogenic progen-

itor (FAP) differentiation, yet dystrophin-deficient FAPs are

unresponsive to this regulatory mechanism.44 There is emerging evi-

dence that Delta-like canonical Notch ligand 4 (DLL4) derived from

muscle endothelial cells (ECs) induces quiescence in MuSCs.45

With regard to potential immune system interactions, protein

O-fucosyltransferase 1 (POFUT1) modulates myogenesis via Notch

signaling46 and myoblast fusion via nuclear factor of activated T cells

c2/interleukin-4 (NFATc2/IL-4) signaling.47 POFUT1 deficiency in

skeletal myofibers is also associated with reduced Notch signaling and

degeneration of motor nerve innervation at the neuromuscular

junction.48

A growing list of noncanonical or less-characterized Notch ligands

that fine-tune Notch signaling is becoming recognized. Among these

is MEGF12 (also known as JEDI or PEAR1), a transmembrane protein

that has an inhibitory role in the Notch signaling pathway.49 Although

the specific mechanism of this interaction is yet to be understood, it is

hypothesized that MEGF12 competes with other Notch ligands, such

as Jagged1/2, to exert its inhibitory effect by repressing Notch activa-

tion49 (Figure 1B). Notably, MEGF12 is a paralog of the muscle dis-

ease gene MEGF10 (Figure 1C), which is discussed in greater depth in

the following sections.

TABLE 1 Expression and function of canonical Notch signaling pathway components in skeletal muscle

Notch

component

RNA

expression

Protein

expression Muscle function Disease association

NOTCH1 5.0 nTPM Medium Regulates MuSC fates8 Adams-Oliver syndrome 5,9 aortic valve disease 110

NOTCH2 6.5 nTPM Not detected MuSC self-renewal11 Alagille syndrome 2,12 Hajdu-Cheney syndrome13

NOTCH3 30.0 nTPM Low Inhibits Notch1 in MuSCs14 CADASIL15

NOTCH4 5.7 nTPM No data Unknown None known

DLL1 5.4 nTPM No data Inhibits myoblast differentiation16 Neurodevelopmental disorder17

DLL3 No data No data Unknown Spondylocostal dysostosis18

DLL4 10.1 nTPM Low Regulates skeletal muscle mass19 Adams-Oliver syndrome 620

JAG1 9.8 nTPM Medium Rescues DMD in dogs21 Alagille syndrome 1,22 Charcot-Marie-Tooth disease 2HH,23

tetralogy of Fallot24

JAG2 9.7 nTPM Medium Canonical Notch ligand JAG2-related muscular dystrophy25

Note: RNA and protein expression data from the Human Protein Atlas.26 Protein expression levels were measured in myocytes.

Abbreviations: CADASIL, cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy; DLL, delta-like canonical Notch

ligand; DMD, Duchenne muscular dystrophy; MuSC, muscle stem cell; nTPM, normalized transcripts per million.

F IGURE 1 Diagram of the Notch
signaling pathway showing putative
interactions between Notch receptors
and several key molecules of interest:
JAG1/JAG2 (A); MEGF12, also known
as JEDI (B); and MEGF10 (C). Several
key steps in the interaction between a
Notch receptor and a ligand are
numbered in the diagram.
Abbreviations: ADAM10, A Disintegrin
and metalloproteinase domain–
containing protein 10; CSL, CBF-1/
RBPJ-κ, Suppressor of Hairless,
LAG-1; JAG1/2, Jagged1/2; MAML1,
mastermind-like1; MEGF10/12,
multiple epidermal growth factor–like
domains protein 10/12; NECD, notch
extracellular domain; NICD, Notch
intracellular domain; TM,
transmembrane domain.
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1.2 | MEGF10 myopathy

Individuals with clinical features similar to spinal muscular atrophy

with respiratory distress type 1 (SMARD1) but with muscle histologi-

cal features indicating a primary myopathy, were described in 2007.50

The affected individuals in the initial case series had infantile-onset

weakness with early respiratory failure, normal echocardiograms, nor-

mal to mildly elevated serum creatine kinase (CK) levels, normal veloc-

ities on nerve conduction studies (NCS), and myopathic findings on

electromyography (EMG).50 Some affected individuals achieve inde-

pendent ambulation, typically with some limitations. The disease was

named early-onset myopathy, areflexia, respiratory distress, and dys-

phagia (EMARDD, OMIM 614399). Several years later, biallelic patho-

genic variants in the gene MEGF10 were discovered in a set of

individuals affected by EMARDD,51 followed by additional reports

substantiating the initial findings and expanding the phenotype to

include some features of muscular dystrophy, cleft palate in some

affected individuals, and in some individuals a milder clinical

course.52–58 Histological features on muscle biopsies range from mild

fiber size variability to dystrophic findings to minicores.50,52 These dis-

eases are now collectively referred to as MEGF10 myopathy to reflect

the phenotypic diversity. A range of pathogenic variants has been

described for MEGF10 (Figure 2A,B),51–59 with a high degree of con-

servation of affected amino acid residues (Figure S1). MEGF10 myop-

athy could be classified as an ultrarare disease; aside from the first

article linking the disease to pathogenic variants in MEGF10, most

subsequent reports in the literature describe one or two kindreds.

1.3 | MEGF10 and its orthologs and paralogs

The human gene MEGF10 is located on chromosome 5q23.260; the

longest known transcript contains 25 exons with a repetitive element

at the 30 end. The gene is highly expressed in the fetal and adult brain,

adult spinal cord, and regenerating skeletal muscle.61,62 The protein

product MEGF10 is a single transmembrane 1147 amino acid protein

F IGURE 2 A, Diagram of
pathogenic variants in MEGF10
mutations categorized by variant type:
nonsense, frameshift, missense, and
splice site. Variants’ positions were
determined using the reference human
MEGF10 transcript variant
1 (NM_032446.3). B, Diagram of
amino acids in the human MEGF10

protein affected by pathogenic
variants.

NOTCH PATHWAY IN MUSCLE 533



with an N-terminal extracellular signal sequence, an elastin microfibril

interfacer 1 (EMI) domain, a DSL motif, 17 epidermal growth factor–

like domain (EGF)-like domains, a transmembrane domain, and a C-

terminal intracellular domain (ICD) with 13 tyrosine residues.60,61,63

Homologous genes are descended from a common ancestral gene;

orthologs are homologous genes found in different organisms, and

paralogs are homologous genes that are found in the same genomes

of the same organisms. The mouse and zebrafish orthologs also have

an EMI domain, a DSL motif, 17 EGF-like domains and a transmem-

brane domain. Several isoforms of the orthologous Drosophila protein

Drpr have been identified, and three of them, named Drpr A, B, and C,

are well-characterized (these were previously known as Drpr II, I, and

III, respectively).64,65 Each has an EMI domain, a DSL motif, and a

transmembrane domain as well. However, the Drpr proteins differ

from their human, mouse, and zebrafish counterparts regarding the

number of EGF-like domains; Drpr B has 14 of these domains,

whereas Drpr A and C each has 4. Drpr A has an immunoreceptor

tyrosine-based inhibitory motif (ITIM) domain that is not seen in the

other isoforms (Figure 3). There is generally good conservation of key

domains among these orthologs and isoforms (Figure 3 and Table S1).

There are two mammalian paralogs of MEGF10: MEGF11 and

MEGF12.49,60 Despite expression of MEGF10 in the brain and retina,

patients with EMARDD do not have structural or functional brain

abnormalities, or visual defects.51,52 However, deficiencies in Drpr, the

Drosophila homolog of MEGF10, MEGF11, and MEGF12, lead to

muscle and brain defects in fruit flies.66 These observations suggest

that functional redundancy by MEGF11 and/or MEGF12 may com-

pensate for MEGF10 deficiency in mammalian brains. MEGF12, which

encodes a transmembrane protein, contains 14 EGF-like repeats and a

DSL domain. MEGF10 and MEGF11 are known to have a small but

significant protein structure homology with MEGF12 at their extracel-

lular domains.60

1.4 | Animal models of MEGF10 deficiency (Mus
musculus, Danio rerio, and Drosophila melangogaster)

Expression of Megf10 at neuromuscular junctions in Mus musculus

suggested a role of Megf10 in neuromuscular transmission, a process

that allows for communication between the central nervous system

and skeletal muscle.51 Repetitive nerve stimulation studies in the first

reported cases of EMARDD were normal and trials of cholinesterase

inhibitors were not therapeutic, suggesting that there is not a dra-

matic physiological defect in the neuromuscular junction in the setting

of human MEGF10 myopathy.50

A Cre-mediated Megf10 knockout (Megf10�/�) mouse model was

originally created for the study of retinal neurons.67 Our laboratory

reported a neuromuscular phenotype in skeletal muscle tissue and

MuSCs from these Megf10�/� mice.68 Megf10�/� mice showed

reduced motor activity, and their skeletal muscles displayed mild

F IGURE 3 Isoforms of the Megf10 protein in human, mouse, zebrafish, and fruit fly. Each isoform has an EMI domain, a Delta and OS
M-11-like (DSL) motif, epidermal growth factor–like domains, a transmembrane domain, and an Asn-Pro-x-Tyr (NPxY) domain. Immunoreceptor
tyrosine-based activator motif (ITAM) domain 2 is only conserved in human, mouse, and zebrafish. ITAM domain 1 is very well conserved across

species. Drpr A has an immunoreceptor tyrosine-based inhibitory motif (ITIM) domain, which is not present in the other isoforms or species.
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endomysial fibrosis and intracellular infiltration upon intraperitoneal

injections of Evans blue dye.68 Intramuscular barium chloride injec-

tions led to impaired muscle regeneration in Megf10�/� mice com-

pared with wild-type mice, providing more evidence of Megf10

involvement in myofiber regeneration.68,69

Morpholino knockdown of megf10 in Danio rerio (zebrafish) resulted

in muscle phenotype abnormalities similar to those reported in humans

with mutations in MEGF10.52 Zebrafish with megf10 knockdown had

curved tails, difficulty swimming, and disorganized muscle morphology.

Subsequently, a zebrafish line with a germline nonsense mutation demon-

strated muscle defects and delayed somite formations.54 Zebrafish

models are thus useful for elucidating disease mechanisms for MEGF10

myopathy.

Drosophila melanogaster, commonly known as the fruit fly, is a

useful system for modeling multiple human diseases, including neuro-

logical and neuromuscular diseases. Drosophila can recapitulate structural

and functional features of human neuromuscular diseases. Key cellular

and molecular processes are shared between Drosophila and humans,

including the neuromuscular unit.70,71 Two Drosophila genetic models of

Drpr (ortholog of MEGF10) deficiency in skeletal muscle have been stud-

ied. One is an amorphic allele containing a deletion in the promoter and

first exon of the drpr gene, and the other is a knockdown of drprmediated

by RNA interference (RNAi) in muscle.66,72 In both genetically modified

Drosophila models, the fruit flies showed abnormal position of legs,

decreased locomotor activity, and pathological alterations in the thoracic

striated muscle. In contrast, overexpression of Drpr in fly muscle resulted

in pre-adult lethality (toxic) when targeted at specific stages of myogen-

esis.65 Escaper flies that survived presented evident muscle abnormalities.

The gain-of-function of Drpr in Serrate-positive wing cells caused extra

branching at the wing margin, which phenocopies wing vein defects

observed with Notch loss of function.73 Further investigations of the spa-

tiotemporal expression of MEGF10 and its orthologs will be crucial to

understanding its function and provide insight into potential therapies.

1.5 | Megf10 in the central nervous system

In the eye, MEGF10 contributes to the formation of retinal mosaics.67

Elsewhere in the central nervous system, MEGF10 binds to dead neu-

rons, contributing to the engulfment activities of glial cells74 and phago-

cytic activities of neurons,75 indicating a key role in neuronal apoptosis.

Parallel functions have been identified for the Drosophila ortholog

Drpr.76–78 The ATP binding cassette transporter ABCA1 contributes to

the engulfment activity of MEGF10.79 MEGF10 is a receptor for C1Q, a

signaling molecule that marks apoptotic cells.80 This binding interaction is

impaired when pathogenic variants in MEGF10 are expressed on human

embryonic kidney-293 (HEK-293) cells.80 A discovery with neurodevelop-

mental implications focuses on contributions of MEGF10 to the engulf-

ment and phagocytosis of neuronal synapses, suggesting a role for

MEGF10 in the synaptic pruning process.81 At the other end of the life-

span, MEGF10 has been found to mediate uptake of amyloid-β into neu-

roblastoma cells, suggesting that a deficiency of MEGF10 may contribute

to the accumulation of senile plaques containing amyloid-β in Alzheimer

disease.82

1.6 | MEGF10 in skeletal muscle development
and regeneration

During muscle development, Notch signaling regulates myoblast prolifera-

tion, migration, and differentiation4–6 and cell adhesion activities.7 Activa-

tion of the Notch signaling pathway helps maintain MuSCs in the

quiescent state,83,84 and contributes to their self-renewal40 and to their

homing to target myofibers.85 In particular, it is likely that MEGF10 con-

tributes to the regulation of some of these processes in myoblasts and

MuSCs.

Megf10 expression is higher during myoblast proliferation than

differentiation68,86 and Megf10 deficiency impairs myoblast prolifera-

tion.68 In Drosophila, muscle and motor phenotypes were observed

with knockdown of drpr (the fly homolog of Megf10) in adult muscle

precursors.66 Overexpression of Drpr, however, was deleterious at

the differentiation and specification stages.65 Drosophila thus provides

an additional tool to further probe the role of Megf10 in regulating

myoblast proliferation and myoblast differentiation.

Murine MuSCs that express Pax7 also express Megf10,62 and

expression of both Megf10 and myogenin spikes after cardiotoxin-

induced skeletal muscle injury in mice.87 Myogenin is a transcription fac-

tor that binds sequences upstream of the Megf10 gene and activates its

expression,87 suggesting that it helps trigger a Megf10-mediated response

of MuSCs to muscle injury. In the setting of muscle injury induced by

intramuscular barium chloride injections, Megf10 deficiency is associated

with reduced regenerative potential.69

In addition, MEGF10 promotes the adhesion of HEK-293 cell

membranes to substrates,63 and Megf10 deficiency reduces murine

myoblast adhesion capabilities.68 It is not clear how adhesion may

contribute to muscle development or repair, but myoblast68 and

MuSC69 migration are both impaired in the setting of Megf10 defi-

ciency, suggesting that movement and positioning of these muscle

cells during these processes rely in part on Megf10 function.

1.7 | Interactions of MEGF10/Megf10/Drpr
with the Notch signaling pathway

Reports from several groups,49,62,85 including ours,68 demonstrate

that MEGF10 and Drpr interact with the highly conserved Notch sig-

naling pathway. The canonical DSL and Delta and OS M-11-like pro-

tein (DOS) domains, which are established Notch ligand motifs, are

both found in the extracellular N termini of MEGF10, MEGF11,

MEGF12, and Drpr, suggesting that these proteins may act as Notch

ligands.49 Our work has shown that MEGF10 and Notch interact at

their intracellular domains, that pathogenic mutations impair these

interactions, and that part of the MEGF10 interacting domain lies in

the stretch from M1003 to E114068 (Figure 1C). Thus, MEGF10 does

not appear to be a canonical Notch ligand. MEGF10 and MEGF12 are

tyrosine phosphorylated and regulate phagocytosis of apoptotic neu-

rons via the Src family kinase-Syk pathway.88,89 Our studies suggest

that tyrosine phosphorylation of Megf10 regulates the binding of

Megf10 with Notch1.68 Further investigations are needed to elucidate

the nature of the Megf10-Notch interaction in greater depth.
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1.8 | POGLUT1-related muscular dystrophy

The first human disease associated with pathogenic variants in

POGLUT1 was Dowling-Degos disease, an autosomal dominant der-

matologic condition characterized by progressive reticulate hyperpig-

mentation.90 Subsequently, biallelic pathogenic variants in POGLUT1

were associated with muscular dystrophy.91–94 The first reported fam-

ily was a large consanguineous kindred with multiple individuals

affected by a progressive limb-girdle muscular dystrophy (LGMD) phe-

notype that included scapular winging and loss of ambulation, with evi-

dence for reduced PAX7+ cells in muscle samples from affected

individuals.91 A more recent cohort of nine unrelated families with muscu-

lar dystrophy showed biallelic pathogenic variants in POGLUT1

(Figure 4A,B) affecting conserved amino acids (Figure S2), firmly establish-

ing the disease association.93 This cohort included affected individuals

with congenital muscular dystrophy (CMD) as well as those with LGMD

phenotypes. Serum CK levels ranged from normal to a high of 10 times

the upper limit of normal. A distinct radiological finding of “inside-to-out-
side” fatty degeneration was found on magnetic resonance images of

skeletal muscle in both reports. Based on the sparse reports from the lit-

erature to date, POGLUT1-related muscular dystrophy could be classified

as an ultrarare disease. The original designation for POGLUT1-related

muscular dystrophy was LGMD type 2Z (LGMD2Z). However, the desig-

nation “Z”meant that this classification system had been exhausted; thus,

as part of a reclassification effort, the disease phenotype is now recog-

nized as LGMDR21.95

The gene POGLUT1, previously known as hCLP46, contains 11 exons

and encodes a protein with 392 amino acids96 that has orthologs across

multiple species (Figure 5 and Table S2).97 POGLUT1's ortholog in Dro-

sophila, Rumi, is a protein O-glycosyltransferase that glycosylates serine

residues in the extracellular domain of Notch98 and regulates Notch sig-

naling.99 Studies in mammalian cell culture systems, including C2C12

myoblasts, identified corresponding regulatory activities of POGLUT1 on

the Notch signaling pathway.100,101 However, POGLUT1 has two known

enzymatic functions, serving as a glucosyltransferase and xylosyltransfer-

ase, with variable effects on cellular proliferation under different circum-

stances.97 Deficiency of POGLUT1 and its orthologs also has divergent

effects on Notch receptor expression in different contexts, leading to

F IGURE 4 A, Pathogenic variants
in POGLUT1 are predominantly
missense changes distributed widely
throughout the gene. B, Amino acid
changes corresponding to the
nucleotide changes in A. The
predominance of missense variants
indicates that the protein is sensitive
to an array of conformational changes.

536 VARGAS-FRANCO ET AL.



accumulation in one context98 and depletion in another.100 This may

explain in part why POGLUT1 deficiency has been associated with two

different human disease phenotypes.

The most sophisticated animal model of POGLUT1-related mus-

cular dystrophy to date has been developed in Drosophila. Rumi defi-

ciency impairs muscle development in Drosophila, with more

prominent rescue of the phenotype shown with overexpression of

wild-type POGLUT1 compared with POGLUT1 that harbors a patho-

genic variant (c.699 T > G, p.D233E).91

1.9 | JAG2-related muscular dystrophy

Biallelic pathogenic variants in JAG2 were found in a cohort of

13 unrelated families with muscular dystrophy, with severity ranging

from an early-onset congenital muscular dystrophy (CMD) phenotype

to a later-onset LGMD phenotype.25 Serum CK levels ranged from

normal to four times the upper limit of normal. Some individuals

remained ambulatory into adulthood, whereas others lost ambulation

in childhood or adolescence. Neck weakness was a prominent feature

in a number of affected individuals, and EMG patterns were

myopathic in all cases where this test was performed. Muscle biopsy

findings included dystrophic patterns and increased fiber size

variability.

Affected amino acids are conserved across species

(Figure S3),25 as well as key domains of the protein in general

(Figure 6 and Table S3). Several of the affected individuals were

found to have a distinct “outside-to-inside” pattern of fatty degen-

eration on magnetic resonance images of skeletal muscle, similar

to the pattern seen in collagen VI–related muscular dystrophy102

but the reverse of the pattern observed in POGLUT1-related mus-

cular dystrophy.93 One additional report of JAG2-related muscular

dystrophy has since been published,103 and the milder form of the

disease is now classified as LGMD R27. Given the recent discovery

of this genetic association, its epidemiology is currently unclear; it

may be somewhat rare among muscular dystrophy subtypes.

In contrast to MEGF10, JAG2's protein product is an estab-

lished ligand of the Notch receptors Notch1,104 Notch2,105 and

Notch3,104 and furthermore cleaves Notch2.105 The association

between JAG2 and muscle disease may come as a surprise in view

of the complex literature that has accumulated on this gene and its

orthologs over the past three decades. The Serrate gene was

F IGURE 5 Conservation of key domains of POGLUT1 across species, including the signal peptide sequence, CAP10 domain, and the
endoplasmic reticulum (ER) retention sequence.
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described for Drosophila in 1990,106 followed by the orthologous

rat gene Jagged2,107 the murine Jag2,108 and the human

JAG2.108–110 The protein products (in humans known as JAG2 or

Jagged2) have EGF-like domains111 and are conserved canonical

Notch ligands. In oncology, Jagged2 is known to promote metasta-

sis112,113 and tumorigenicity114 in certain types of cancer, poten-

tially due at least in part to pro-angiogenic activity115; thus,

investigators are examining the means by which to inhibit Notch

signaling in cancer biology.116–118 JAG2 regulation is a potential

target for this strategy for selected cancer subtypes.

Even in view of those findings, there are hints suggesting JAG2's

link to skeletal muscle disease. JAG2 is expressed in mammalian skele-

tal muscle,119 along with several other organs (including the

brain,120,121 gut122/enteric nervous system,123 immune system,124,125

and ovarian follicles126,127). Expression patterns in zebrafish mirror

those in mammals.128–130 At the tissue level, JAG2 is also expressed

in mammalian endothelial cells,131 particularly in arterial vessels,132 as

well as MuSCs.45 This raises the possibility that JAG2 may mediate

signaling between MSCs and endothelial cells and trigger angiogenesis

in response to muscle injury.

The regulatory environment upstream of JAG2 is not well char-

acterized in skeletal muscle. However, hnRNP L is an intriguing

molecule that is a known splice regulator,133 and hnRNP L binding

sites on the JAG2 transcript have been identified.134 Previous

reports in the literature have linked hnRNP L to the Notch signaling

pathway. Overexpression of hnRNP I (also known as PTBP1), which

is a partner of hnRNP L135 in zebrafish, destabilizes the NICD and

inhibits Notch signaling.136 Studies in mice demonstrated that loss

of the Notch inhibitory ligand DLL3 leads to increased levels in two

proteins, including hnRNP L.137 In addition, a screen carried out in

Drosophila using Notch mutants identified smooth, the fly homolog

of mammalian hnRNP L, as a genetic modifier of Notch.138 Notably,

hnRNP L downstream RNA targets also include Notch2,139

Notch3,134 Poglut1,140 and the Notch inhibitor Numb.134,139

Although these studies point to hnRNP L as a major regulator of

several Notch signaling pathway partners,45 the muscle-specific

aspects of this relationship remain to be investigated. Further

research is needed, but the studies to date strongly suggest that

MEGF10, POGLUT1, and JAG2 interactions synergistically influ-

ence Notch signaling (Figure 7).

1.10 | Other links between the Notch signaling
pathway and skeletal muscle disease

There are two other muscle disease genes with protein products that

may have links to the Notch signaling pathway, with hints of such an

association seen in the literature to date: TRIM32141 and ATP2A1

(SERCA1).142,143 In addition, JAG1 is not directly associated with a

skeletal muscle disease but a specific variant in JAG1 appears to have

modifying effects on muscular dystrophy.21

Biallelic pathogenic variants in TRIM32 are associated with limb-

girdle muscular dystrophy type R8 (LGMDR8, formerly known as

LGMD2H).144 The protein product is a ubiquitin ligase that localizes

F IGURE 6 Key domains of the JAG2 (Jagged2) protein are conserved across multiple species.
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to the Z disk of myofibers, regulates dysbindin,145 and ubiquitylates

thin filament and Z-band proteins.146 Expression of specific patho-

genic variants in tn (ortholog of TRIM32) leads to myofibrillar abnor-

malities in Drosophila.147 The link to the Notch signaling pathway

arises in the mouse hippocampus, where Trim32 deficiency was found

to be associated with upregulation of several relevant genes, including

Notch1 and Hes1.141 This relationship bears exploration for potential

relevance to skeletal muscle function and disease.

Brody myopathy is a recessive muscle disorder characterized

by childhood-onset muscle stiffness and delayed muscle relaxa-

tion148,149 that is associated with biallelic pathogenic variants in

ATP2A1,150 which encodes sarcoendoplasmic reticulum calcium

ATPase 1 (SERCA1). The phenotype includes individuals with clini-

cal paramyotonia but without electrical myotonia.151 The associa-

tion between SERCA1 and the Notch signaling pathway has been

explored primarily in the context of cancer research, with SERCA1

having been identified as a potential therapeutic target.142,143 Fur-

ther study of potential interactions between SERCA1 and the

Notch signaling pathway in skeletal muscle models may yield novel

insights on disease mechanisms and therapeutic targets.

Dominant pathogenic variants in JAG1 have been associated with

Alagille syndrome, a multiorgan system disease that does not have prom-

inent skeletal muscle manifestations,22,152 familial tetralogy of Fallot,24

and an axonal form of Charcot-Marie-Tooth disease, known as type

2HH.23 The protein product JAG1 (also known as Jagged1) is a canonical

Notch ligand, along with JAG2 (Jagged2). There have been hints of JAG1

activity in skeletal muscle, including a reduction of JAG1 muscle expres-

sion in older humans153 and in mdx mice.154 JAG1 expression also

appears to be induced in activated MuSCs.155 Intriguingly, a recent study

identified a variant in the promoter region of Jag1 that creates a novel

myogenin binding site, increasing Jag1 expression in skeletal muscle and

rescuing Duchenne muscular dystrophy in Golden Retriever dogs.21

Recessive pathogenic variants in PAX7 are associated with a

congenital myopathy phenotype, as described in five affected indi-

viduals from four unrelated consanguineous kindreds.156 The dis-

ease manifestations include hypotonia, ptosis, and scoliosis, with

atrophic fibers and fibroadipose replacement on muscle biopsy.

N1ICD expression restores the proliferative potential of

Pax7-deficient MuSCs, linking Pax7 to the Notch signaling path-

way.157 Elevated Notch signaling activity has also been associated

with an undifferentiated myogenic cell population, characterized

by high levels of Pax7 expression.158

NOTCH2NLC bears some resemblance to NOTCH2 and its protein

product is also involved in the regulation of Notch signaling. Patho-

genic CGG repeat expansions in the 50 untranslated region of

NOTCH2NLC have been associated with oculopharyngodistal myopa-

thy (OPDM),159 neuronal intranuclear inclusion disease (NIID),160,161

and hereditary essential tremor.162 Clinical features of this form of

OPDM include ptosis, ophthalmoplegia, dysarthria, and muscle

weakness.159

2 | POTENTIAL THERAPEUTIC TARGETS

Components of the Notch signaling pathway are drawing increas-

ing attention as therapeutic targets. For example, some investiga-

tional compounds target γ-secretase, which cleaves the TM from

the NICD in the Notch receptor.163 These and other compounds

targeting the Notch signaling pathway have primarily been

assessed in nonmuscle diseases164; given the emerging body of

work linking the Notch signaling pathway to muscle disease, exam-

inations of the effects of some of these compounds in muscle con-

texts may be warranted. There is also emerging evidence that the

Notch signaling pathway is a promising target for therapy in skele-

tal muscle. Specific small molecule candidate drugs have been

found to promote human myotube formation,165 and sertraline has

been found to ameliorate MEGF10 myopathy in cellular, Drosoph-

ila, and zebrafish model systems.54

2.1 | Future directions

Numerous insights into the key contributions of the Notch signaling

pathway in skeletal muscle development, maintenance, and repair

F IGURE 7 Schematic diagram of Notch signaling pathway proteins directly related to human skeletal muscle disease in the muscle fiber vs
capillary (left) accompanied by a diagram showing the localization of orthologous proteins in Drosophila (right). Human and Drosophila orthologous
pairs include the proteins JAG2 (Jagged2) and Ser (Serrate), MEGF10 and Drpr (Draper), and HNRNP L and Sm (Smooth). The question mark
denotes the potential presence of Megf10 in endothelial cells.
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have been described. The clinical relevance of the Notch signaling

pathway for muscle disease has become apparent over the past

decade with the discoveries of three Notch signaling pathway-related

muscle disease genes: MEGF10, POGLUT1, and JAG2. Further study of

these genes and their encoded proteins, along with exploration of

TRIM32, ATP2A1 (SERCA1), and JAG1 in the same context, are likely

to yield a better understanding of skeletal muscle disease. It is likely

that additional genes and proteins related to the Notch signaling path-

way will be linked to muscle diseases in the future. Sertraline has

shown therapeutic effects in models of MEGF10 myopathy, with evi-

dence indicating that it acts via the Notch signaling pathway in this

context.54 This finding, coupled with the potential therapeutic effects

of JAG1 augmentation in muscular dystrophy, indicate that the Notch

signaling pathway promises to be a robust area of investigation for

new therapeutic targets in muscular dystrophy and other skeletal

muscle diseases.
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