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Background: Timely diagnosis of ischemic stroke (IS) in the acute phase is extremely
vital to achieve proper treatment and good prognosis. In this study, we developed a
novel prediction model based on the easily obtained information at initial inspection to
assist in the early identification of IS.

Methods: A total of 627 patients with IS and other intracranial hemorrhagic diseases
from March 2017 to June 2018 were retrospectively enrolled in the derivation cohort.
Based on their demographic information and initial laboratory examination results,
the prediction model was constructed. The least absolute shrinkage and selection
operator algorithm was used to select the important variables to form a laboratory
panel. Combined with the demographic variables, multivariate logistic regression
was performed for modeling, and the model was encapsulated within a visual and
operable smartphone application. The performance of the model was evaluated on an
independent validation cohort, formed by 304 prospectively enrolled patients from June
2018 to May 2019, by means of the area under the curve (AUC) and calibration.

Results: The prediction model showed good discrimination (AUC = 0.916, cut-
off = 0.577), calibration, and clinical availability. The performance was reconfirmed in the
more complex emergency department. It was encapsulated as the Stroke Diagnosis Aid
app for smartphones. The user can obtain the identification result by entering the values
of the variables in the graphical user interface of the application.
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Meng et al. Prediction Model for Ischemic Stroke
Conclusion: The prediction model based on laboratory and demographic variables
could serve as a favorable supplementary tool to facilitate complex, time-critical acute
stroke identification.

Keywords: ischemic stroke, prediction model, laboratory variables, demographic variables, least absolute
shrinkage and selection operator, smartphone app

INTRODUCTION equipments are usually expensive, bulky, difficult to popularize,

Stroke is currently the second cause of death worldwide and
the leading cause of death in China. Approximately 70% of
all strokes are ischemic and this will significantly increase the
health burden due to the aging population (Zhou et al., 2016;
GBD 2016 Causes of Death Collaborators, 2017; Wang et al,,
2017). When it comes to treatment, intravenous tPA (tissue-
type plasminogen activator) has been used to treat most acute
ischemic strokes (AISs). However, it is highly risky and can
be lethal in the case of intracerebral hemorrhage (ICH) (Zerna
et al, 2018). Therefore, determining the stroke subtype in
an early, timely, and accurate manner is essential to achieve
proper treatment and good prognosis (Hankey, 2017; Deboevere
et al., 2019). Furthermore, stroke mimics, which present with
an acute neurological deficit simulating AIS and represent a
significant percentage of all acute stroke hospital admissions,
pose a diagnostic challenge to emergency physicians (Vilela, 2017;
Liberman et al., 2019). A recent meta-analysis was performed
on 23 studies, including a total of 15,721 patients and reported
that the initial diagnosis was misdiagnosed in 26-40% of the
cases. Besides, 2-26% of ischemic stroke (IS) patients were
misdiagnosed (Tarnutzer et al., 2017). This might be due to the
absence of acute ischemic signs or the presence of non-specific
stroke symptoms on initial computed tomography (CT) imaging,
as well as the interference of stroke mimics (Walsh, 2019). In
such cases, the diagnosis may not be confirmed until additional
imaging tests are performed several hours or even a day later,
which results in missing the optimal intervention time (Martins
et al., 2020). In addition, neuroimaging examination needs to
be performed in a qualified medical institution with specialized
equipment and under the guidance of professional physicians;
these conditions seem overly ideal and unreliable for community
hospitals and hospitals in most underdeveloped regions in Asia
and Africa (Clarke et al, 2017). In China, only 10-20% of
stroke patients can reach the medical institution qualified to
complete neuroimaging examination within 3 h (Jin et al., 2012;
Jiang et al., 2016). In addition, these neurological examination

Abbreviations: IS, ischemic stroke; HP, hypertension; DM, diabetes mellitus;
HLP, hyperlipidemia; RBC, red blood cell; Hb, hemoglobin; Hct, hematocrit;
RDW, red cell distribution width; CV, coefficient of variation; SD, standard
deviation; PLT, platelets; WBC, white blood cell; PT, prothrombin time;
APTT, activated partial thromboplastin time; TT, thromboplastin time; FIB,
fibrinogen; AT-III, antithrombin III; TBIL, total bilirubin; DBIL, direct bilirubin;
ALT, alanine aminotransferase; IBIL, indirect bilirubin; TP, total protein;
Alb, albumin; CREA, serum creatinine; URIC, uric acid; GLU, glucose; AST,
glutamic oxaloacetic transaminase; ALP, alkaline phosphatase; CK, creatine
kinase; GGT, y-glutamyl transpeptidase; LDH, lactate dehydrogenase; HBDH,
hydroxybutyrate dehydrogenase; TG, triglyceride; CHOL, cholesterol; HDLC,
high-density lipoprotein cholesterol; LDLC, low-density lipoprotein cholesterol;
TBA, total bile acid; DCA, decision curve analysis; AUC, area under the curve.

and in need for highly educated, trained, and skilled operators.
Obviously, this is not conductive to the early clinical diagnosis
and treatment in the case of inadequate medical conditions,
such as community hospitals, primary hospitals, and clinics in
regions where patients often do not have rapid access to imaging
examinations (Chen et al., 2018; Mathur et al., 2019). Therefore,
clinicians need a useful supplementary tool to promote early
diagnosis and provide possible directions for the triage process
and referral management at the initial visit, which is not to replace
CT/magnetic resonance imaging but to complement its work and
provide a necessary supplement.

The comprehensive diagnostic efficacy of blood biomarkers
has been seriously underestimated or even ignored in stroke.
However, with the recent research development, their application
value has been revisited (El-Serag et al.,, 2014; Valappil et al.,
2017; Lee et al,, 2018; Dagonnier et al., 2021). Unlike univariate
analysis in neuroimaging, some preliminary studies related to
stroke classification have focused on models that combine blood
biomarkers, showing great potential (Misra et al., 2017; Makris
et al., 2018). As a result, more attention has been paid to blood
biomarkers that can be objectively measured in the laboratory at
hyperacute phase, hoping to assist in the accurate identification
of ISs. The application of fast, reliable, and inexpensive blood
biomarkers as an auxiliary tool, along with CT characteristics,
would provide more diagnostic information that may improve
stroke identification and management, especially in atypical or
hyperacute IS (Wu et al., 2019; Fan et al., 2020; Baez et al., 2021).

In this study, we propose a stroke prediction model that
combines demographic and laboratory variables to provide an
early and accurate stroke prediction. Then, we validate the model
in a more complex emergency department. This model can serve
as a supplemental tool to help clinicians get more information to
improve the identification of IS in the acute phase and provide
the patients with an accurate treatment, which could significantly
promote the prognosis.

MATERIALS AND METHODS
Study Subjects

The derivation cohort consisted of 322 patients with IS and
305 patients with other intracranial hemorrhagic diseases,
including hemorrhagic stroke, subarachnoid hemorrhage,
subdural hematoma, and brain tumor-associated ICH,
who were admitted to West China Hospital of Sichuan
University from March 2017 to June 2018. These patients
were retrospectively enrolled to construct the prediction
model. The exclusion criteria included patients younger
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than 18 years or those treated with anticoagulation therapy
before hospitalization. All the patients underwent a
preliminary clinical evaluation, including the demographic
characteristics, ~physical examination, electrocardiogram,
laboratory examinations, and neuroimaging. The laboratory
examinations were completed within 45 min after
admission. The final diagnosis of all the patients was
reconfirmed by a team of experienced vascular neurologists
(three independent neurologists) based on the World
Health Organization definitions, clinical symptoms, and
neuroimaging findings.

The validation cohort consisted of 304 patients from
the emergency department with suspected stroke symptoms
(headache, dizziness, nausea, walking instability, partial sensory

disturbance, language dysfunction, coma, etc.) on admission
from June 2018 to May 2019. These patients were prospectively
and consecutively included for the model validation. The
same preliminary clinical evaluation was performed on all
the patients, and their final definite diagnosis was obtained
(IS, subarachnoid hemorrhage, hemorrhagic stroke, or stroke
mimics) by a team of neurologists. The research process is shown
in Figure 1.

Informed consents were obtained from all the participants.
This study was approved by the Clinical Trials and Biomedical
Ethics Committee of West China (no. 812) and was performed
in accordance with the ethical standards as laid down in the 1964
Declaration of Helsinki and its later amendments or comparable
ethical standards.

1399 IS and other cerebrovascular diseases control
were enrolled from March, 2017 to May, 2019

EXCLUDED 468 patients

-Age <18 (n=36)

-without CT or MRI confirmed(n=17)
P -tPA before blood collection (n= 24)

v

p
1062 patients were retrospectively included through
EHR from March, 2017 to June, 2018

A

-Symptoms appear more than 24 hours (n= 109)

-No definite diagnosis (n= 57)

-Severe infection, malignancy, autoimmune disease (n= 137)
-Incomplete information (n= 88)

v

627 patients were retrospectively included in
derivation cohort: 322 IS VS. 305 other
cerebrovascular diseases control

v

Construction of identification model

(1) Laboratory and demographic information collection
(2) prediction model construction and internal evaluation
(3) construction of model-based Smartphone application

v

4 A

4 N\

ﬂXCLUDED 435 patients \

-Age <18 (n=30)

-without CT or MRI
confirmed(n=17)

-tPA before blood collection
(n=24)

-Symptoms appear more than
24 hours (n= 109)

-No definite diagnosis (n= 52)
-Severe infection, malignancy,
autoimmune disease (n= 130)

337 patients with suspected stroke from the emergency
department between June, 2018 to May, 2019

klncomplete information (n= 7y
N

EXCLUDED 33 patients

A4

304 patients prospectively included in validation cohort
were used to validate the prediction model

N -Severe infection, malignancy,

~ -No definite diagnesis (n= 5)

4

A\ 4 A\ 4

L -Age <18 (n=6)

autoimmune disease (n=7)
-Incomplete information (n= 8)

-Transferred to other hospitals (n=7)

[ Probable IS patients N=160 ] [ Probable Other cerebrovascular disease N=144 ]

Final| diagnosis Final| diagnosis
~
Ischemic Other Ischemic Other
stroke cerebrovascular stroke cerebrovascular
N=142 disease N=18 N=17 disease N=127
J

FIGURE 1 | Studly flowchart.
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Variable Collection

The demographic characteristics (Table 1), including the age,
smoking habits, drinking, hypertension, hyperlipidemia,
and diabetes, were collected according to the uniform
format by the resident physicians on admission. If the
patients dysphasic, aphasic, or unconscious, the
information was then provided orally by their close relatives
or legal representatives and documented in the patient’s
medical history.

The laboratory findings before therapy were collected
through the laboratory management system of West China
Hospital, including 35 indicators (Table 1) of complete
blood count (SYSMEXXN-10, Sysmex, Japan), coagulation
tests (SYSMEXCS-5100, Sysmex, Japan), and biochemical
examination (Cobas c702, Roche, Germany). All tests were
conducted according to the standard operating procedure
(Supplementary 1).

were

Variable Selection and Laboratory Panel

Construction

In the derivation cohort, in order to select the IS predicting
factors and obtain the corresponding coefficients, we first
performed a statistical consolidation of all the laboratory
variables using the least absolute shrinkage and selection operator
(LASSO). First proposed by Robert Tibshirani in 1996, LASSO
is a method of shrinkage estimate based on model reduction.
The main idea of LASSO is to construct a first-order penalty
function to shrink the regression coefficient of each variable
to a certain range, independent of variable selection based
on statistical significance. The variables with a coefficient of
0 are eliminated, and a panel of optimal and representative
variables is finally obtained. Thus, the coefficients are optimized,
and relatively unimportant variables are excluded. This can
effectively avoid the influence of factors such as the number
of variables, different orders of magnitude, various units, and
possible colinearity between the indicators on the classical
analysis methods. In this regard, the LASSO program can choose
the truly valuable variables to constitute the model and has
been well applied in multiple types of studies on different
subjects (radiomics, genomics, and histology). In this work, the
resulting predictors were combined to form a scoring formula
called the “laboratory panel.” As a result, a large number
of laboratory variables were integrated into a single variable
associated with IS.

Construction of the Prediction Model
and Smartphone Application

The prediction model was constructed based on the demographic
variables together with the laboratory panel using univariate
and multivariate logistic regression. Through 10-fold cross-
validation, the model with the highest accuracy was selected
and encapsulated as a visual Java-based smartphone application
(app) (Wojciechowski et al., 2015). The app can be easily used
by both patients and clinicians, who can input the required
predictors into the graphical user interface to obtain the
probability of IS.

Evaluation of the Prediction Model

The model was evaluated by comparing the predicted results
with the confirmed diagnoses in the validation cohort to
calculate the metrics of sensitivity, specificity, positive predictive
value (PPV), and negative predictive value (NPV). The area
under the curve (AUC) and calibration curve were used
to comprehensively evaluate the model’s discrimination and
consistency (Muntner et al., 2014).

Statistical Analysis

Continuous variables are represented by the median (upper
and lower quartiles). Categorical variables are expressed in
terms of frequency. Comparisons of the categorical variables
and continuous variables were performed using the 2 test
and Mann-Whitney U test. The LASSO algorithm was used to
select laboratory variables and construct the “laboratory panel.”
Univariate logistic regression was used to select predictors of
IS, and the model was constructed using multivariate logistic
regression. All statistical analyses were completed using the R
software version 3.5.0. The LASSO algorithm was performed
by the “glmmet” R package, and the logistic regression model
was constructed by the “glm” R package. The app was
developed in Java.

RESULTS

Patient and Clinical Characteristics

A total of 931 patients were included in this study, among
which 627 patients (322 IS vs. 305 controls) were enrolled
in the derivation cohort, and 304 patients (159 IS vs. 145
controls) were enrolled in the validation cohort. There was
no statistically significant difference in the frequency of IS
between the derivation cohort (51.35%) and validation cohort
(52.30%). The comparison of both control groups (derivation vs.
validation) and IS groups (derivation vs. validation) is listed in
Supplementary 2.

Development of the Laboratory Panel

and Prediction Model

Fourteen representative variables were screened by the LASSO
method and integrated into a laboratory panel (Table 2 and
Figures 2A,B), which could obtain a C-index of 82%. The
formula is as follows:

Laboratory score = —2.4449367225 + 0.0324156962 x age +
0.3467528672 x hematocrit (Hct) — 0.0328739639 x red cell
distribution width standard deviation (RDWSD) + 0.0023251346
x platelets (PLT) — 0.1514963590 x white blood cell (WBC)
+ 0.0880501180 x thromboplastin time (TT) + 0.2269026873
x fibrinogen (FIB) + 0.0037785538 x antithrombin III (AT-
III) + 0.0023879174 x alanine aminotransferase (ALT) +
0.0075773496 x indirect bilirubin (IBIL) — 0.0010988689 x
serum creatinine (CREA) — 0.0493824972 x glucose (GLU)
— 0.0002345279 x creatine kinase (CK) + 0.0558149527
X urea.
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TABLE 1 | Baseline patient characteristics.

Group Derivation cohort (627) Validation cohort (304)
Study group (322) Control group (305) Study group (159) Control group (145)

Subtype IS (322) HS (176) IS (159) HS (60)

SAH (45) SAH (21)

SDH (62) SDH (14)

Brain tumor—associated ICH (22) Brain tumor—associated ICH (11)
- SM (39)

Age, y 63 (52.25-73.75) 53 (43-64) 65 (54-75) 54 (45-65)
Sex (female) 114 (35.40%) 99 (32.46%) 55 (34.59%) 50 (34.48%)
Drinking 136 (42.24%) 103 (33.77%) 63 (39.62%) 48 (33.10%)
Smoking 148 (45.96%) 100 (32.79%) 78 (49.06%) 48 (33.10%)
Height 163 (157-170) 165 (159-170) 165 (158-170) 165 (158-170)
Weight 65 (55.62-70) 65 (55-72) 65 (59.50-72.50) 65 (61-75)
HP 223 (69.25%) 201 (65.90%) 113 (71.07%) 102 (70.34%)
DM 114 (35.40%) 25 (8.20%) 42 (26.42%) 13 (8.97%)
HLP 51 (15.84%) 4 (1.31%) 18 (11.32%) 1(0.69%)
RBC 4.63 (4.21-4.96) 4.58 (4.17-5.00) 4.59 (4.28-4.93) 4.46 (4.02-4.92)
Hct 0.41 (0.38-0.44) 0.41 (0.38-0.45) 0.41 (0.38-0.44) 0.41 (0.37-0.44)
Hb 139 (127-150) 139 (125-152) 137 (124-149.50) 137 (123-149)
RDW-CV 13.50 (12.90-14.30) 13.60 (13.00-14.50) 13.60 (13.00-14.60) 13.70 (13.00-14.40)
RDW-SD 43.70 (41.02-46.68) 43.90 (41.40-46.50) 44.20 (41.70-47.65) 44.10 (40.90-47.30)
WBC 7.63 (6.20-9.39) 10.80 (7.95-14.37) 7.63 (6.56-9.32) 10.92 (7.41-13.29)
PLT 181 (134.25-219.75) 172 (130-213) 177 (137.50-230) 165 (124-222)
PT 11.50 (10.90-12.30) 11.30 (10.70-11.90) 11.00 (10.50-11.80) 11.20 (10.60-12.00)
APTT 27.50 (25.22-29.70) 26.00 (23.80-28.20) 26.50 (24.95-28.30) 25.20 (23.40-27.60)
TT 18.20 (17.50-18.90) 18.00 (17.30-18.90) 17.90 (17.30-18.60) 18.00 (17.30-18.60)
FIB 2.85 (2.40-3.58) 2.58 (2.07-3.23) 2.83(2.41-3.42) 2.60 (2.14-3.35)
ATl 90.50 (82.43-99.60) 90.10 (81.70-98.90) 87.90 (80.65-95.20) 89.60 (78.40-98.10)
D-dimer 0.44 (0.23-1.03) 0.73(0.31-1.68) 0.63 (0.27-1.64) 0.64 (0.27-1.38)
TBIL 12.65 (8.83-18.98) 13.00 (9.50-18.00) 12.00 (9.50-17.00) 11.00 (8.60-15.90)
DBIL 4.65 (3.30-6.88) 4.90 (8.30-6.50) 3.90 (2.80-5.75) 3.90 (8.00-5.70)
IBIL 7.95 (5.50-11.78) 8.10 (5.80-11.20) 8.20 (6.15-11.20) 6.90 (5.10-10.30)
TP 71.70 (68.32-75.60) 72.00 (68.40-77.00) 72.50 (68.60-75.90) 72.50 (68.40-76.40)
Alb 42.65 (39.80-45.00) 43.00 (40.50-46.00) 42.70 (39.35-45.00) 43.40 (40.10-45.60)
Globin 29.05 (26.40-32.30) 29.10 (26.00-32.10) 29.60 (26.95-32.40) 29.80 (25.80-32.80)
CREA 74 (61-91) 72 (60-86) 72 (63-86) 67 (55-82)
URIC 338 (273.25-403) 318 (248-409) 329 (263.50-407.50) 315 (243-382)
GLU 6.75 (5.88-8.36) 7.46 (6.13-9.72) 6.74 (5.93-8.61) 7.76 (6.37-9.75)
ALT 19 (13-27.75) 19 (14-30) 19 (18.50-31) 20 (15-28)
AST 20.50 (17-27) 23 (18-31) 20 (16-27) 22 (17-28)
ALP 81 (67-96) 80 (66-97) 83 (68-97.50) 77 (67-103)
CK 86 (56-131.75) 110 (72-176) 86 (56.50-128) 95 (64-125)
GGT 29 (18-46.75) 25 (15-50) 28 (19-51.50) 31 (16-53)
LDH 185 (155-220) 205 (176-252) 185 (159-215) 202 (177-240)
HBDH 148 (125-179.75) 167 (142-203) 151 (132.50-180) 165 (144-198)
TG 1.39 (0.96-2.01) 1.16 (0.75-1.82) 1.27 (0.95-1.92) 1.08 (0.73-1.49)
CHOL 4.29 (3.54-5.09) 4.30 (8.71-4.93) 4.22 (3.37-5.08) 4.25 (3.69-4.96)
HDL-C 1.17 (0.93-1.42) 1.27 (0.98-1.55) 1.12(0.92-1.38) 1.32 (1.08-1.62)
LDL-C 2.48 (1.93-3.14) 2.56 (2.04-3.09) 2.64 (1.90-3.30) 2.58 (2.07-3.14)
TBA 3.50 (1.70-6.18) 2.30 (1.10-4.50) 3.20 (1.70-5.50) 2.20 (1.20-4.80)
Urea 5.60 (4.50-7.09) 5.00 (3.90-6.30) 5.10 (4.20-6.67) 4.90 (3.90-6.26)

Data are presented as n (%) for categorical variables and as median (upper and lower quatrtiles) for continuous variables. *p < 0.05.
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TABLE 2 | Indicators in the Stroke Diagnosis Aid app.

Derivation cohort (627)

Validation cohort (304)

p-Value OR 95% ClI p-Value OR 95% CI
Age <0.001 0.945 0.928, 0.963 <0.001 0.917 0.890, 0.945
Smoking <0.001 2.342 1.473, 3.723 0.005 2.289 1.206, 4.346
HP 0.370 0.539 0.335, 0.867 0.890 0.447 0.210, 0.954
DM <0.001 6.790 3.294, 13.997 <0.001 8.157 2.576, 25.827
HLP <0.001 8.634 2.632, 28.324 <0.001 35.415 3.735, 335.760
Hct 0.869 0.173 0.002, 13.43 0.370 0.004 0.000, 2.198
RDWSD 0.630 1.087 1.030, 1.147 0.792 1.046 0.970, 1.127
PLT 0.143 0.996 0.992, 0.999 0.249 0.992 0.987, 0.997
WBC <0.001 1.250 1.172,1.334 <0.001 1.228 1.115, 1.352
T 0.186 0.739 0.619, 0.882 0.783 1.033 0.847,1.262
FIB <0.001 0.631 0.480, 0.828 0.020 0.762 0.558, 1.042
ATIN 0.753 0.979 0.961, 0.997 0.501 0.969 0.942, 0.996
ALT 0.194 0.989 0.981, 0.997 0.916 0.985 0.970, 1.000
IBIL 0.939 0.965 0.930, 1.001 0.028 0.936 0.874, 1.003
CREA 0.124 1.006 1.001, 1.011 0.013 1.004 0.998, 1.010
GLU 0.009 1.134 1.048, 1.228 0.004 1.281 1.120, 1.465
UREA <0.001 0.793 0.700, 0.897 0.171 0.823 0.715, 0.949
CK <0.001 1.001 1.000, 1.002 0.179 1.000 0.999, 1.001

Data are presented as n (%) for categorical variables and as median (upper and lower quatrtiles) for continuous variables. *p < 0.05.

Next, we combined the demographic variables and laboratory
panel and constructed a model through univariate and
multivariate logistic regression. The formula is as follows:

Risk = 1/{1 + EXP [—(1.624515 x laboratory score +
0.2387812 + 0.8346704 x smoke — 0.5875043 x hypertension
(HP) + 2.2938255 x hyperlipidemia (HLP) + 1.7165673 x
diabetes mellitus (DM))]}, AUC = 0.916, cut-off = 0.577.

This prediction model was further encapsulated as the Stroke
Diagnosis Aid app. It is freely available, and Android users can
download it through the link' or QR code (Supplementary 3).
In addition, we also provide an operational and free Web app
for the Stroke Diagnosis Aid app at* to reduce usage restrictions
(Supplementary 4).

Independent Validation

The performance of the proposed model was evaluated
using the data of 304 patients with suspected stroke from
the emergency department, among which 159 patients had
confirmed IS, and 145 had confirmed hemorrhagic stroke,
subarachnoid hemorrhage, or stroke mimics, including subdural
hematoma, intracranial tumor, hypoglycemic encephalopathy,
epileptic seizures, hepatic encephalopathy, hysteria, intracranial
infections, or moyamoya disease. The results showed that
the sensitivity, specificity, PPV, and NPV values were 89.31%
[95% confidence interval (CI), 83.18-93.46%], 87.59% (95%
CI, 80.83-92.28%), 88.75% (95% CI, 82.56-93.01%), and
88.19% (95% CI, 81.51-92.77%), respectively. The AUC
was 0.896 (Figure 3C). The calibration curve showed good

http://t.cn/AGAKOPT]
Zhttps://zirui.shinyapps.io/shiny/

performance (Figures 3A,B) in both the derivation and
validation cohorts. The p-value of the Hosmer-Lemeshow test
was much greater than 0.05.

DISCUSSION

Our research showed an excellent performance of the laboratory
and demographic variables in assisting the identification of AIS.
On the one hand, the predictors in our model are objective,
biologically plausible, and initially available. All the laboratory
variables are common and have a short turnaround time, which
is convenient for primary health care and community hospitals.
Besides, they can provide possible management directions for
the patients with no immediate access to CT scans. On the
other hand, the computational predictions can be less influenced
by subjective judgments, especially that they do not rely on
the experience of the clinicians. For patients with atypical
symptoms, the predicted results can be used to strengthen the
awareness and reduce the chance of misdiagnosing stroke. It
can be a good complementary tool for stroke management,
especially for atypical or hyperacute IS, although it cannot be
used as an independent diagnostic method. To the best of
our knowledge, our study presents the most comprehensive,
timely, and practical laboratory method to assist in the early
identification of stroke.

Notably, many previous studies used variables with
statistically significant differences in disease diagnosis (Kadayifci
et al, 2017; Zhang et al., 2018; Han et al,, 2019; Sui et al,
2019). However, it has been indicated that too much reliance
on the statistically significant threshold could result in wasted
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resources and even misleading decisions (Amrhein et al., 2019).
To this end, we adopted the LASSO algorithm, which does not
depend on statistical significance for regularization but shrinks
the coefficients of complex laboratory variables and excludes
relatively unimportant ones. Finally, a set of valid and concise
variables was selected and synthesized into a laboratory panel.
This normalization can also avoid the difference of the same
index caused by different laboratory methods to a certain extent.

Although the selected predictors are not specific to IS or
the brain, and one single index does not play a decisive role
in identifying IS, they may reflect the changes in different

pathways (coagulation function, inflammatory response, and
oxidative stress damage) in the body during the occurrence
and development of IS. Besides, the joint assessment of these
predictors with a suitable weighting model can help us to achieve
a more comprehensive IS identification.

Another inspiring finding in this work might be that the
model also showed a relatively precise identification in the
validation cohort, which contains more various cerebrovascular
diseases (IS, hemorrhagic stroke, subarachnoid hemorrhage, or
stroke mimics). This indicates that the model has a stable
performance even under real and complex clinical conditions.
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The results showed high specificity and PPV, which means that
the rate of misdiagnosis is low, and our model can help to avoid
the risk of misusing tPA. Meanwhile, the model showed high
sensitivity and NPV, which indicates that it can well recognize
the presence of IS, providing additional incremental evidence
for the clinicians to identify AIS. The results also showed a
satisfactory discrimination ability (AUC = 0.896) and a prediction
curve that is close to the actual curve, which indicates that the
model can correctly identify IS and provide prediction results
that are highly consistent with the actual ones. Therefore, it may
be more applicable to Asian populations and certain conditions
than some of the currently recommended screening scales and
biomarkers (with a specificity of 37-75%) (Demir et al., 2015;
Wendt et al., 2015).

Although some of the previously proposed diagnostic models
based on programming have the feature of visualization,
they require specific programming experience, which greatly
limits their convenient app and promotion. In this study,
we developed a more user-friendly design of the app, called
the Stroke Diagnosis Aid app. Our app is qualified with
visualization and also has a strong operability (Lynch, 2015).
Both clinicians and patients can use this app on their
own smartphones. By entering the value of the required
indicators, dragging the slider, or selecting individual items
to enter the corresponding parameters on the app client
or web app, the user can intuitively obtain the probability
of having an IS.

Our model can be applied to the following conditions to
improve the diagnosis of IS. First, it can help the patients
to receive reference information in the case of inadequate
medical conditions, such as in community hospitals, primary
hospitals, and clinics in the remote areas of low- to middle-
income countries. In these conditions, patients often do not
have rapid access to imaging examinations; thus, our model
can provide possible directions for the early triage and referral
management at the initial visit. Second, it can act as a decision-
support system for clinicians when the patients have atypical
clinical characteristics and imaging manifestations. In fact, 70%
of IS patients have atypical CT features in the hyperacute phase
(<24 h of onset) (Lin and Liebeskind, 2016). This tool can
assist in identifying and assessing the patient’s condition from
different perspectives. In addition, our app is an open-source,
web-based online prediction model, which can be installed on
the personal mobile of the clinical staff in all kinds of medical
and health institutions at all levels to build a communication
network between medical institutions. Furthermore, we can
safely implant this software into the laboratory reporting system
once the agency’s permission is granted. The probability of IS
can be directly calculated as the laboratory test is completed
to save more time.

In this work, we do not deny the important role of imaging
technology in the stroke diagnosis or intend to replace it. The
purpose is to present our app as a necessary and important
supplement. We hope that our research can help the physicians
to obtain reference information concerning stroke evaluation
when the medical conditions can benefit from support, such
as community hospitals, primary hospitals, and clinics in

regions with relatively scarce medical resources. The patients
in these areas are often limited by insufficient CT inspection
equipment or high costs and are unable to quickly obtain
the imaging results. Under these circumstances, our model
can provide valuable preinspection auxiliary information. While
the contribution of our model might be less significant in
developed countries or capitals, the vast majority of the world’s
population lives in areas lacking basic medical resources, where
our model can be of great benefit. It is worth mentioning
that expensive imaging techniques are far more difficult to
promote than experimental diagnostic techniques. In fact,
training qualified medical imaging physicians also requires a
huge investment in the medical resources. Still, there is a
clinical need for early and rapid diagnosis of stroke, and with
the popularization of digital medical and mobile terminals,
we believe that our research can provide better diagnostic
services in this regard.

Our study has some limitations. First, because of the
urgency of emergency stroke, we did not repeatedly measure
the laboratory indicators, and dynamic testing results may
correlate with the disease progression and prognosis, which
is of great importance. Second, this model can be used
only as a supplementary tool in the earlier period of stroke
identification to provide predictive insights rather than an
independent diagnosis app. Finally, as this work is a hospital-
based, case-control study, inherent selection bias cannot be
completely excluded. Our study was designed as a nested
case-control study that involved a prospective collection of
the validation cohort to avoid extreme selection bias that can
affect inference and conclusions (Sallam, 2015; Simmons et al.,
2019). In the future, we plan to enhance the model with
some specific markers and clinical symptoms to improve its
diagnostic efficiency. In addition, we intend to dynamically
detect the laboratory indicators to explore their value in
the prognosis of stroke. We will also validate this model
in various mimicking diseases and across many centers to
ensure its generalization capabilities. The smooth development
of these tasks may greatly enhance the early identification and
treatment of IS.

CONCLUSION

In conclusion, our study confirmed the important value of
the laboratory variables and demographic variables in the
identification of stroke and used these variables to construct a
new, universal, and applicable supplementary tool to provide
more reference information to increase awareness. The proposed
model can help to improve the identification of AIS, even in the
absence of specific manifestations or adequate medical resources.
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