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Despite increasing evidence that precision therapy targeted to the molecular drivers of a
cancer has the potential to improve clinical outcomes, high-grade epithelial ovarian can-
cer (OC) patients are currently treated without consideration of molecular phenotype, and
predictive biomarkers that could better inform treatment remain unknown. Delivery of
precision therapy requires improved integration of laboratory-based models and cutting-
edge clinical research, with pre-clinical models predicting patient subsets that will benefit
from a particular targeted therapeutic. Patient-derived xenografts (PDXs) are renewable
tumor models engrafted in mice, generated from fresh human tumors without prior in vitro
exposure. PDX models allow an invaluable assessment of tumor evolution and adaptive
response to therapy. PDX models have been applied to pre-clinical drug testing and bio-
marker identification in a number of cancers including ovarian, pancreatic, breast, and
prostate cancers. These models have been shown to be biologically stable and accu-
rately reflect the patient tumor with regards to histopathology, gene expression, genetic
mutations, and therapeutic response. However, pre-clinical analyses of molecularly anno-
tated PDX models derived from high-grade serous ovarian cancer (HG-SOC) remain limited.
In vivo response to conventional and/or targeted therapeutics has only been described for
very small numbers of individual HG-SOC PDX in conjunction with sparse molecular anno-
tation and patient outcome data. Recently, two consecutive panels of epithelial OC PDX
correlate in vivo platinum response with molecular aberrations and source patient clinical
outcomes. These studies underpin the value of PDX models to better direct chemother-
apy and predict response to targeted therapy. Tumor heterogeneity, before and following
treatment, as well as the importance of multiple molecular aberrations per individual tumor
underscore some of the important issues addressed in PDX models.

Keywords: ovarian cancer, patient-derived xenografts, pre-clinical models, targeted therapy, clinical trials

INTRODUCTION
Cell lines and archival tumor tissue have provided a platform for
discovery and validation of novel therapeutic targets in epithe-
lial ovarian cancer (OC). However, despite increasing evidence
that precision therapy targeted to the molecular driver(s) of a
tumor has the potential to impact overall survival (1), patients with
high-grade epithelial OC are currently treated with a “one-size fits
all” approach, without consideration of molecular phenotype or
biomarkers of response that could better inform treatment. Pre-
clinical models to predict those patients who will benefit from
targeted therapy are imperative to implement effective precision
therapy strategies. Classic cell line-derived xenograft models have
provided invaluable mechanistic insight toward the key signaling
pathways and oncogenic drivers of OC tumorigenesis, malignant
progression, and chemotherapeutic resistance. The translational
potential of models, generated from either human OC, many years
ago, with scant histo-pathologic data about the source OC tumor
from which they were derived or from human ovarian surface
epithelial (OSE) cell lines, remains questionable (2). In both cases,

the cell lines used to generate xenografts have been expanded
in vitro, and as such, have likely acquired significant alterations
in morphology, motility, and proliferation that do not necessarily
reflect the physiologic state of the tumor (3). More importantly,
recent evidence suggests that the ovarian surface may not be the
origin of “ovarian cancer” (4, 5).

The majority of epithelial OC are serous in sub-type (50%
of OC) and display Fallopian tube-like or “endosalpingeal” char-
acteristics. Endometrioid OC (20% of OC) and mucinous OC
(10% of OC) represent additional epithelial sub-types displaying
features of epithelia from other Mullerian tract (developmental
female genital tract) organs, resembling endometrial and endocer-
vical epithelia, respectively (6). Two main phenotypic groupings of
human EOC have been described. Type I EOC includes low-grade,
mucinous, and clear cell cancers, with progression identifiable
from adenoma-borderline-cancer. Type II EOC comprises lethal,
high-grade serous (HG-SOC), endometrioid, and undifferentiated
EOC. Although previously thought not to have recognizable pre-
cursor lesions (7), the current consensus indicates an association
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with early lesions being found in the distal Fallopian tube in carri-
ers of BRCA1/2 mutations (5, 8). The Fallopian tubes are derived
from the Mullerian ducts (also of mesodermal origin) and consist
of muscular, ciliated, and secretory epithelia (9). Fallopian tube
cancer and primary Peritoneal cancer (the latter is derived from
the coelomic epithelium, as is the OSE), behave in a clinically simi-
lar fashion to serous EOC and while often studied together, distinct
molecular differences are evident (10, 11).

The OSE has long been postulated to be the source of puta-
tive cancer initiating cells for epithelial “ovarian” cancer (12),
with an alternative origin postulated to derive from the distal
ends of the Fallopian tube and malignant or pre-malignant cells
migrating to and settling on contiguous OSE (5, 8). A propor-
tion of malignant lesions originate in the Fallopian tube and
may potentially metastasize to the OSE (13). The OSE persists
as a single layer of squamous to cuboidal epithelium that covers
the ovary (14), is derived from coelomic epithelium (of mes-
enchymal origin), has a basement membrane and, unusual for
a surface epithelium, can undergo epithelial-mesenchymal tran-
sition (EMT) (15). The OSE has been described as a facultative
stem cell niche, with cells retained within this niche maintaining
pluripotency and expressing markers typical of a stem cell-like
quiescent state (12). However, it is possible that the OSE pro-
vides a suitable “niche” for the development of “ovarian” cancer
and that the majority of HG-SOC in fact derive from secretory
cells from the fallopian tube (16). Many reports of OC xenografts
and patient-derived xenografts (PDXs) have mixed together OC
sub-types, which may have very different implications for cell
of origin or treatment approaches. By not taking into account
sub-type, the likelihood of deriving useful information is greatly
diminished.

Furthermore, traditional in vivo pre-clinical models do not
accurately recapitulate the complexity and heterogeneity of patient
tumors (17). As each tumor’s molecular phenotype impacts prog-
nosis and response to treatment, detailed genomic annotation of
each xenograft is necessary for comprehensive evaluation of tar-
geted therapies. Xenografts derived from a cell line originating
from OC have to undergo extensive selection. More often these
lines reflect the in vitro culture system and are devoid of the com-
plex pathology and molecular attributes of the original patient
tumor. A compelling example of this discordant phenomenon was
reported in a study involving 41 cell lines, each of which rarely
contained BRCA1 and/or BRCA2 mutations (18). The authors
concluded that the use of these cell lines for xenograft studies
would not accurately reflect the patient population. Moreover,
xenografts derived from cell lines cultured from potentially irrel-
evant tissues (e.g., non-surface epithelium), may be even more
flawed as models of human HG-SOC.

Xenografts may be derived directly from patient tissue without
prior in vitro culture (PDXs), in which tumor tissue excised at
the time of surgery is immediately transplanted into immune-
deficient mice. Importantly, digestion of tumor material using
protocols known to involve harsh cell dissociation buffers may
inadvertently strip the cell surface of molecules integral toward
in vivo cell–cell interactions. Alternatively, methods such as minc-
ing of tumor fragments or the use of whole fragments may more
closely model the heterogeneity of clinical disease. PDXs derived

from non-digested OC can provide extremely flexible models for
pre-clinical analysis of novel therapeutics (19). Primary OC and
resultant serial PDX can be histologically assessed for known diag-
nostic and prognostic markers and characterized by molecular
techniques including genome sequencing. These PDX models can
therefore be extensively annotated and serve as powerful mod-
els for pre-clinical studies of targeted therapeutic strategies, thus
bridging the gap between lab bench discoveries and clinical trans-
lation. As such, there has been an increase in characterization and
application of PDX models for drug screening across a range of
cancers [reviewed in Ref. (17)].

Thus, major concerns regarding OC PDX literature to date are
as follows: numerous papers lack detail regarding histologic sub-
type, molecular phenotype, a detailed description of the methods
used to generate and maintain the PDX, limited genomic charac-
terization has been performed (e.g., CGH or CNV analysis), and
the stability of various phenotypes over successive generations is
noteworthy. As a result, a substantial barrier to the study of OC
is the paucity of translationally (e.g., transient in vitro primary
cell lines) and clinically (e.g., archived tissues from retrospective
analyses) relevant models, thereby highlighting the salient need
for an alternative, clinically relevant means to rapidly translate
results from bench-to-bedside. The development of personalized
PDX models, with each patient having a PDX generated across
her disease progression (primary tumor, metastasis, recurrence)
and stage of treatment (prior to treatment, at relapse), with avail-
ability of source biospecimens (germline DNA, serum, frozen,
and FFPE tissue, etc.) and prospective clinical annotations could
overcome many of the current hurdles (e.g., the dependence on
isolation/digestion and subsequent amplification in vitro prior to
establishment and testing in animals). These PDX models recapit-
ulate primary patient tumors (e.g., formation of bowel metastases,
obstruction, ascites, etc.), reproducibly engraft, retain the molecu-
lar and gross phenotypic characteristics of the donor OC patient,
can be accurately monitored for tumor detection and progression
(e.g., gross tumor palpation, calipers, ultrasound-guided imaging,
etc.) and represent a practical and highly translatable medium to
study the effects of both standard chemotherapy and precision
targeted therapeutics.

METHODOLOGY
As previously noted, standard OC xenografts are derived from
established, highly annotated, and widely available cell lines. While
OSE models are commonly utilized and have become a mainstay
workhorse to investigators, their uncommon origin (e.g., murine-
derived) brings into question functional significance. For example,
the ID8 cell line was originally developed as a syngeneic mouse
model to study the early molecular and immune events related to
ovarian carcinogenesis (20). As a result, greater attention toward
patient-derived OC models has been expended.

Patient-derived xenograft (digested) have played a key role
toward the study of the cancer stem cell (CSC) niche and identi-
fied tumor-initiating cells (TICs) as key players in primary patient
ovarian xenografts (21). The frequency of TICs represents an
intrinsic property of the primary patient tumor. However, the
integrity of the TIC landscape (e.g., proportion of CD133 posi-
tive versus negative cells) is altered in PDX models. It is plausible
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that the extensive ex vivo digestion prior to PDX engraftment is
the confounding source of TIC PDX discrepancies.

Patient-derived xenograft (fragments) are generated by section-
ing of fresh tumor tissue and engrafting (1–2 × 1–3 mm3) pieces
either subcutaneously or orthotopically into immuno-deficient
mice (e.g., NOD-SCID IL2Rγ−/−). Engraftment rates for this gen-
eration (T1) range from 25 to 80% depending on tumor type (22),
and growth usually takes 2–6 months. Once the T1 PDX tumor
has reached ∼700–1500 mm3 (23), it is harvested and directly
re-transplanted for expansion in later serial generations (T2, T3)
which are used for in vivo drug response, biomarker studies and
generating cell lines for additional drug response and molecu-
lar studies. Alternatively, the fresh patient tumor can be minced
and cryo-preserved in DMSO for later thawing and transplanta-
tion, thus ensuring the renewability of the resource. For molecular
comparisons, the original patient tumor and the PDX models
can undergo extensive histo-pathological and genomic analysis.
In addition, for OC PDX models, the T1 PDX can be analyzed for
platinum response and homologous recombination (HR) activity,
which are key clinical indicators of drug response.

PDX MODELS IN OVARIAN CANCER
Patient-derived xenograft models have been applied to pre-clinical
drug testing and biomarker identification in a number of cancers
including pancreatic cancer (24), NSCLC (25, 26), melanoma (27),
breast cancer (28, 29), and prostate cancer (30). As reviewed by
Tentler et al. comprehensive genomic analysis including sequenc-
ing, expression, and copy number, have demonstrated that PDX
models maintain overall global gene expression and activity as
the source tumor (17). In OC, PDX models have been devel-
oped that accurately reflect the patient tumor and have success-
fully been used to examine drug response and effects of targeted
treatment (22).

Some of the earliest applications of OC PDXs in studies of drug
response were reported by the Repasky group. They developed
20 different PDX models in severe combined immuno-deficient
(SCID) mice. Histo-pathologic and in situ hybridization analy-
ses were carried out to confirm similarity to the source tumor.
While all implanted PDXs eventually formed tumors, 65% (13/20)
of them reached 1–2 cm within 2–6 months and were further
expanded. Three of the later generation PDX models developed
metastases and two developed ascites, representing clinical pro-
gression of the disease (31). The group then applied their subcuta-
neous PDX models in two separate studies to examine the effects
of IL-12 and Flt-3 ligand on ovarian tumor growth. Following
engraftment, PDX mice were treated with either placebo or IL-12
(32), or placebo or Flt-3 ligand (33), and tumor volume was mea-
sured over time. Treatment with IL-12 or Flt-3 ligand resulted in
decreased tumor growth compared to control-treated mice, with
increased NK cells and necrosis in the tumors of IL-12 or Flt-3 lig-
and treated mice. These findings suggest an immunologic reaction
in response to IL-12 and Flt-3 ligand, supporting their potential
therapeutic roles in the treatment of OC (32, 33).

Ghamande et al. followed up these studies by examining the
effect of CD40 ligand therapy, previously shown to decrease
growth in OC cells, on CD40 receptor-positive PDX serous OC
models (34). PDX mice with subcutaneous or intra-abdominal

tumors were treated with vehicle or increasing concentrations of
recombinant CD40 ligand and tumor growth was assessed over
time. Tumor growth in both locations was decreased following as
little as one cycle of treatment, regardless of concentration. In addi-
tion, once tumors were excised following treatment, histological
analysis revealed disruption of tissue architecture and increased
fibrosis and apoptosis, providing further insight into the mech-
anism of therapy. Furthermore, the authors utilized these PDX
models to examine the effect of combination therapy using stan-
dard chemotherapeutic agents and CD40 ligand therapy, further
demonstrating an augmented effect when both drugs were used
in treatment of CD40-positive tumors (34). These studies high-
light the utility of PDX models in evaluating drug efficacy and
mechanism of action.

While a majority of HG-SOC patients initially respond to
first-line treatment (generally, a platinum drug in combination
with a taxane), a large proportion eventually relapse and develop
platinum-resistant disease. OC PDX models can be useful for
screening drug sensitivity, which in turn provides guidance for
clinical management of the patient who presents with recur-
rent disease. Kolfschoten et al. established 15 subcutaneous OC
PDX models and examined sensitivity to standard chemotherapy
(35). They reported that response rates in the PDX models cor-
related with those in OC patients (e.g., 40% of PDXs responded
to cisplatin while 48% of patients respond). As detoxification by
glutathiones has been demonstrated to render cells resistant to
platinum treatment, the authors also investigated the glutathione-
based mechanisms involved in the development of resistance. They
measured levels of glutathione and glutathione-related enzymes in
the PDX models and related them to drug response. They identi-
fied a correlation between glutathione reductase activity and effi-
cacy of chemotherapeutic agents cisplatin and cyclophosphamide,
suggesting that glutathione-related enzymes may be useful as pre-
dictors of drug sensitivity (35). These findings speak to the value
of PDX models for expanding in vitro findings of drug response
and relating them to patient tumors.

Because HG-SOC patients frequently develop resistance to
platinum-based chemotherapy, it is imperative to identify novel
therapies with efficacy toward tumors with de novo or acquired
resistance. In an effort to investigate the efficacy of lurbinectedin,
a new DNA binding drug, Vidal et al. generated serous PDX mod-
els by engrafting primary tumor tissue directly onto the mouse
ovary surface (36). They included tumors with cisplatin sensitiv-
ity, as well as a tumor selected for acquired cisplatin resistance
by repeated in vivo exposure. They reported a high correlation of
histo-pathologic features between the patient and the platinum-
sensitive and -resistant PDX tumors. The platinum-sensitive PDX
displayed a dose-dependent response to cisplatin treatment, char-
acterized by significant tumor volume reduction. Interestingly,
30–50% of treated mice relapsed at 6 months following treatment,
and histo-pathologic features of the relapsed tumors were similar
to the un-treated xenografts (36). As expected, cisplatin treat-
ment did not significantly inhibit tumor growth in the cisplatin-
resistant PDX model compared to control-treated mice. How-
ever, lurbinectedin treatment alone significantly decreased tumor
growth in both cisplatin-sensitive and -resistant PDX models, and
lurbinectedin in combination with cisplatin was more effective
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than either drug alone (36). Additional studies demonstrated an
increase in apoptosis and mitotic catastrophe in lurbinectedin-
treated PDX mice, providing further insight into its mechanism of
action. Thus, drug-resistant PDX models can be used to identify
therapies that may be effective in patients with tumors resistant to
standard agents.

In addition to subcutaneous and intra-peritoneal (IP) engraft-
ments, OC PDX models have been established in mice by sub-renal
capsule xenografts, allowing for follicle maturation. Lee et al. have
demonstrated a high take-rate (95%) in sub-renal capsule PDX
models, including low- or moderate-grade OC tissues that are
typically difficult to engraft in subcutaneous or IP models (37).
The authors compared histo-pathologic features in the original
patient tumor, pre-graft tissue, and post-graft tissue and found
no architectural or cytological differences, nor any major dif-
ferences in immunomarker expression including CK20, CK7, or
WT-1 (87–91% overall concordance). This group then investi-
gated five individual sub-renal PDX models for drug response
and genetic stability over subsequent passages (38). The authors
analyzed the primary tumor and corresponding PDX by array
CGH and reported similar gene copy numbers, with the primary
tumors consistently clustering with their matching PDX. Further-
more, there was no significant difference in copy number changes
between the primary tumor and corresponding PDX (38). These
findings further support the accurate reflection of the patient
tumor in PDX models. Furthermore, the high engraftment rate
of sub-renal capsule PDX models may provide the opportunity to
investigate the differences in tumor progression between low- and
high-grade ovarian tumors.

As most HG-SOC tumors present at advanced stage, following
peritoneal dissemination, IP PDX models are useful for investiga-
tion of tumor progression and metastasis. Bankert et al. generated
IP PDX models from five different OC patients to examine metas-
tasis and the microenvironment of human ovarian tumors (39).
In these mice, tumor growth and spread reflect the patterns that
occur clinically whereby tumors grew on surfaces within the peri-
toneal cavity including the omentum, spleen, ovaries, pancreas,
and liver. In addition, these PDX mice formed distended abdomens
with ascites fluid containing viable tumor cells, and CA-125 was
present in their ascites and blood. Thus PDX OC models not only
accurately reflect the histo-pathologic features of the tumor, but
also present with clinically relevant disease, making them excellent
models to investigate tumor progression.

Patient-derived xenograft models generated from patient
ascites may also be useful for investigation of tumor progression
and metastasis, and are readily transplanted. Ascites-derived PDX
models have been used to characterize genome-wide chromosomal
aberrations in BRCA1-mutated tumors (40). In addition, Stew-
art et al. generated ascites-derived PDX models to identify and
characterize ovarian TICs (21), and found that these cells are mole-
cularly heterogeneous across different tumors. Direct comparisons
of PDX models generated from primary tumors and associated
ascites would be helpful to determine whether ascites-derived PDX
models accurately reflect the heterogeneity of the solid tumor. Not
all patients develop ascites during their clinical course, suggesting
that PDX derived only from ascites may not reflect the full disease
spectrum.

PDX MODELS TO TEST TARGETED THERAPY
A targeted therapy currently under clinical investigation in OC
treatment is inhibition of poly(ADP-ribose) polymerase (PARP),
which targets cells with HR defects. PARP inhibition leads to accu-
mulation of single-strand breaks, which generates double-strand
breaks in DNA at replication forks. While double-strand breaks
are effectively repaired in normal cells by HR repair, cells with
deficiencies in BRCA1/2 use error-prone mechanisms resulting
in chromosomal instability and cell death (41). Germline muta-
tions in BRCA1/2 are present in 17% of HG-SOC cases (42) and
in 25% of HG-SOC patients under the age of 50 (43). In addi-
tion, loss of BRCA function by genetic or epigenetic processes
has been reported in 50% of HG-SOC cases (44). This high
frequency of BRCA deficiency makes HG-SOC patients ideal can-
didates for PARP inhibition. PARP inhibitors have been shown
in vitro and in Phase I/II clinical trials to be an effective treat-
ment in some BRCA-deficient tumors, although it is still unclear
why all patients with BRCA1/2 mutations do not respond to
PARP inhibitors (45). Furthermore, a proportion of those who
do respond eventually progress and thus studies are still necessary
to determine the mechanism of resistance to PARP inhibitors. HG-
SOC PDX models, generated from tumors before and after treat-
ment, are extremely useful to better understand the mechanisms
of therapeutic response and resistance.

The Wang group further analyzed two of their sub-renal PDX
models that carried alterations in BRCA1 and BRCA2 (38). In
one case, DNA sequencing revealed a germline mutation in exon
2 of BRCA1, as well as loss of heterozygosity. In the other case,
promoter hypermethylation of BRCA1 was identified in the pri-
mary tumor, as well as a sequence variant in intron 2 of BRCA2.
All of these alterations were maintained in the xenograft tumor.
In assessing drug response in these models, tumor volume was
decreased in carboplatin/paclitaxel-treated versus control-treated
mice; however treatment with the PARP inhibitor PJ34 did not
affect tumor growth in the BRCA models, despite decreased PAR
expression in these tumors (38). It is unclear whether the lack of
response was due to poor potency of this PARP inhibitor or due
to additional tumor biology causing PARP inhibitor resistance.

In a more recent study to investigate targeted therapy, Kort-
mann et al. established PDX models from a BRCA wild-type
and a BRCA2 germline-mutated HG-SOC tumor to examine
response to the PARP inhibitor, olaparib (46). First generation
(T1) xenografts were analyzed following daily olaparib treatment
of 50 mg/kg for 4 weeks. Immunohistochemical analysis of the
BRCA2 mutated model demonstrated decreased tumor cell pro-
liferation and increased numbers of dead cells following olaparib
treatment, while wild-type tumor characteristics were not affected.
Moreover, olaparib treatment significantly decreased tumor vol-
ume in the BRCA2 mutant PDX while having no effect on the
BRCA wild-type PDX (46). These studies demonstrate the value
of PDX models for characterizing response to targeted therapy.

In addition to PARP inhibitors, signaling molecules make
attractive targets to inhibit tumor growth in HG-SOC and other
cancers. The Hedgehog (Hh) pathway promotes proliferation,
regeneration, and differentiation in adult somatic tissues, and
aberrant activation of the Hh pathway is associated with malig-
nant transformation in several cancers. Combination treatment
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Table 1 | Summary of ovarian cancer PDX models.

Reference Histotype (n) Culture Method Treatment Molecular annotation

Repasky

group

(31–33)

Serous (14), endometrioid

(1), mucinous (2), clear cell

(1), unspecified (2)

No prior

in vitro culture

Minced, implanted on GFP

or SC, SCID mice

IL-12, Flt-3 ligand (in serous

models)

Not reported

Ghamande

et al. (34)

Serous (6) No prior

in vitro culture

Minced, implanted SC,

SCID mice

CD40 ligand, cisplatin,

paclitaxel

Not reported

Kolfschoten

et al. (35)

Serous (5), mucinous (4),

clear cell (2),

undifferentiated (3),

carcinosarcoma (1)

No prior

in vitro culture

Fragmented, implanted

SC, athymic nude mice

Cisplatin, cyclophosphamide,

doxorubicin,

hexamethylmelamine,

methotrexate, 5-fluorouracil

Glutathione content and

glutathione-dependent

enzyme activity

Vidal et al.

(36)

Serous (1) No prior

in vitro culture

Implanted on ovary

surface, athymic nude

mice

Lurbinectedin (PM01183),

cisplatin

Not reported

Wang

group (37,

38, 44)

Serous (6), mucinous (2),

granulosa cell tumor (2),

leiomyosarcoma (1), clear

cell (1), unspecified (1)

No prior

in vitro culture

Fragments implanted

sub-renal, NOD/SCID mice

Carboplatin, paclitaxel,

PARP-1 inhibitor (PJ34) (in

BRCA1 null model)

CGH, BRCA1/2

mutations (three

serous, one clear cell,

one leiomyosarcoma)

Bankert

et al. (39)

Serous (4), undifferentiated

(1)

No prior

in vitro culture

Aggregates injected IP,

NSG mice

IL-12 Not reported

Kortmann

et al. (46)

Serous (2) No prior

in vitro culture

Fragments implanted

sub-renal, NOD/SCID mice

Olaparib, carboplatin BRCA1/2 mutations,

copy number

McCann

et al. (49)

Serous (4) No prior

in vitro culture

Single cell suspensions

injected SC, NOD/SCID

mice

Cyclopamine (1), Hedgehog

inhibitor (IPI-926), paclitaxel,

carboplatin (3)

Not reported

Hylander

et al. (50)

Serous (2) No prior

in vitro culture

Fragments implanted SC,

SCID mice

Not reported Stromal annotation by

IHC

Stewart

et al. (21)

Serous (31 primary tumor

or ascites)

No prior

in vitro culture

Digested, single cell

suspensions injected as

1:1 HBSS:Matrigel in

mammary fat pad,

NOD/SCID mice

Not reported Tumor-initiating cell

markers CD133, CD44,

CD117, EpCAM, ALDH1

Indraccolo

et al. (40)

Serous (2 ascites) No prior

in vitro culture

(T1), 2–3

passages (T2)

Ascitic fluid collected at

recurrence, IP injection in

SCID mice

Not reported BRCA1 mutations and

expression, LOH,

chromosomal

aberrations by MLPA

GFP, gonadal fat pad; SC, subcutaneous; IP, intra-peritoneal; NSG, NOD-SCID IL2Ry−/−; MLPA, multiplex ligation-dependent probe amplification.

with standard chemotherapy plus Hh pathway inhibitors has been
demonstrated to be effective against proliferation in basal cell can-
cer, medulloblastoma, and small cell lung cancer, amongst others
(47). In OC, it has been reported that 20–50% of cases include Hh
pathway activation (48). Furthermore, ectopic expression of Hh
factors results in increased proliferation and motility of OC cells,
while Hh inhibition impairs the growth of OC cell lines in vivo.
Thus the Hh pathway may be a potential therapeutic target in OC
treatment.

McCann et al. further examined the potential of Hh inhibitors
as OC treatment using subcutaneous PDX models of serous OC
(49). In this study, they treated a serous PDX model reported

to have an activated Hh signaling pathway with the Hh path-
way inhibitor cyclopamine. The cyclopamine-treated PDX mice
had significantly decreased tumor volume compared to control-
treated mice. In addition, the authors tested the efficacy of IPI-926,
a derivative of cyclopamine that has increased oral bioavailability
and potency and is currently in Phase I/II clinical trials, alone and
in combination with standard first-line chemotherapy. In three
different serous PDX models with activated Hh signaling path-
ways, Treatment with IPI-926 alone, or in combination, resulted
in decreased tumor growth similar to results from chemotherapy
alone, compared to controls (49). Interestingly, when the PDX
mice were maintained on IPI-926 alone following combination
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treatment, tumor regression was retained for up to 50 days fol-
lowing initial therapy. These studies indicate the utility of PDX
models in examining combination therapy as well as maintenance
therapy, in clinically relevant models.

PDX COHORTS
One of the most useful features of PDX models is their renewa-
bility, providing a repository of xenografts, tissues, and cell lines
for researchers to access, along with relevant clinical and mol-
ecular data (Table 1). These cohorts provide fully annotated,
genome-specific PDX models as training and test sets, providing
the opportunity to efficiently bring molecular targeted drugs into
clinical trials for the treatment of OC. In order for these cohorts
to be fully beneficial, comprehensive annotation is essential, par-
ticularly two major characterizations: (a) the methods utilized
to generate and maintain the PDX models (e.g., source tissue to
confirm HG-SOC origin, fragmentation or mincing versus diges-
tion to limit selection and possibly allow retention of infiltrating
stroma, no prior in vitro culture to ensure reflection of primary
tumor, method of implantation, etc.); (b) histotype, molecular,
and genomic characterization (mutation, gene expression, CGH,
CNV analysis), as well as response to standard therapy, of the PDX
models (Table 1). Upon complete characterization and annota-
tion, this resource will greatly accelerate the development of newly
targeted therapies and identification of predictive biomarkers in
OC, further bridging the gap between laboratory-based discoveries
of novel therapeutic targets and clinical care.

LIMITATIONS
Probably the most noted limitation of PDX models involves
the use of immunocompromised mice, which may attenuate the
impact of the tumor microenvironment on tumor growth and
drug response. In addition, stromal components such as vascula-
ture or secreted stromal factors are increasingly being targeted by
novel therapies. Thus, it is imperative that PDX models recapitu-
late the heterogeneity of the patient tumor in order to accurately
test these novel therapies. In a recent study, Hylander et al. inves-
tigated vascularization and stromal formation in 37 subcutaneous
PDX models in SCID mice created from a range of tumor types,
including ovary, pancreas, kidney, and colon cancers (50). Suc-
cessfully engrafted tumors were histologically examined for stro-
mal factors and blood vessels. Their findings demonstrated that
at the first passage (15–25 weeks), tumors no longer contained
human stromal factors or vasculature; indeed, the stromal fibrob-
lasts and vessel markers within the tumor were of murine origin
(50). Kinetic studies suggested that loss of human vascularization
markers occurred within 3–9 weeks, depending on tumor type.
The authors conclude that in PDX models in which tumors are
engrafted directly into immunocompromised mice, tumor growth
is supported by host stroma and vasculature, suggesting that stud-
ies of therapies targeting human stromal components may not be
adequate in these models.

To overcome these challenges, various approaches have been
applied and additional models have been generated with the aim
of recapitulating the tumor microenvironment. Engraftment of
whole, non-disrupted chunks of human tumor helps to pre-
serve tumor microenvironment components including leukocytes,

fibroblasts, extracellular matrix, and vasculature (51). In addition,
the use of NOD-SCID IL2Rγ−/− mice provides improved PDX
models for tumor–stromal interactions as they maintain tumor-
associated leukocytes and stromal fibroblasts for up to 9 weeks
after implantation (52). In the previously described IP OC PDX
study by Bankert et al. performed in NOD-SCID IL2Rγ−/− mice,
the authors identified functional human lymphocytes and fibrob-
lasts in tumors from multiple organs within the peritoneal cavity
up to 177 days following engraftment (39). These findings suggest
that future PDX models would provide greater value if generated
in NOD-SCID IL2Rγ−/− mice, particularly for studies involving
drug response or microenvironment-targeting treatments.

CONCLUSION
The establishment of PDX models that recapitulate the complex-
ity and genetic heterogeneity of HG-SOC will guide personalized
cancer therapy and be invaluable toward establishing research
priorities and strategies for developing new and more effective
approaches to treatment in patients with recurrent OC. A repos-
itory of extensively characterized HG-SOC PDX models can be
used for drug screening and discovery as well as biomarker devel-
opment and testing. Furthermore, PDX models generated at initial
diagnosis as well as at the time of recurrence will not only per-
mit personalized treatment options, but in the long-term serve to
enrich the recruitment and accrual of patients into early phase
clinical trials.
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