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Abstract. Dysregulated lipid metabolism promotes the 
progression of various cancer types, including breast cancer. 
The present study aimed to explore the lipidomic profiles 
of patients with breast cancer, providing insights into the 
correlation between lipid compositions and tumor subtypes 
characterized by hormone receptor (HR) and human epidermal 
growth factor receptor 2 (HER2) status. Briefly, 30 patients 
with breast cancer were categorized into four groups based 
on their HR and HER2 status: HR+ no HER2 expression 
(HER2‑0), HR+ HER2‑low; HR+ HER2‑positive (pos) and 
HR‑ HER2‑pos. The lipidomic profiles of these patients were 
analyzed using high‑throughput liquid chromatography‑mass 
spectrometry. The data were processed through principal 
component analysis (PCA), partial least squares‑discriminant 
analysis (PLS‑DA) and random forest (RF) classification to 
assess the lipidomic variations and significant lipid features 
among these groups. The profiles of the lipids, particularly 
triglycerides (TG) such as TG(16:0‑18:1‑18:1)+NH4, were 
significantly different across the groups. PCA and PLS‑DA 
identified unique lipid profiles in the HR+ HER2‑pos and HR+ 
HER2‑0 groups, while RF highlighted phosphatidylinositol‑3,
4,5‑trisphosphate(21:2)+NH4 as a crucial lipid feature for accu‑
rate patient grouping. Advanced statistical analysis showed 
significant correlations between lipid carbon chain length 

and the number of double bonds within the classifications, 
providing insights into the role of structural lipid properties 
in tumor biology. Additionally, a clustering heatmap and 
network analysis indicated significant lipid‑lipid interactions. 
Pathway enrichment analysis showed critical biological path‑
ways, such as the ‘Assembly of active LPL and LIPC lipase 
complexes’, which has high enrichment ratio and statistical 
significance. In conclusion, the present study underscored that 
lipidomic profiling is crucial in understanding the metabolic 
alterations associated with different breast cancer subtypes. 
These findings highlighted specific lipid features and interac‑
tions that may serve as potential biomarkers for breast cancer 
classification and target pathways for therapeutic intervention. 
Furthermore, advanced lipidomic analyses can be integrated 
to decipher complex biological data, offering a foundation for 
further research into the role of lipid metabolism in cancer 
progression. 

Introduction

Breast cancer is the most prevalent form of cancer among 
women worldwide, and notably, breast cancer has the 
highest incidence rate among all cancer types. Furthermore, 
~2.26 million [95% uncertainty interval, 2.24‑2.79 million] 
new cases of breast cancer were reported in 2020 world‑
wide (1). Human epidermal growth factor receptor 2 (HER2), 
a tyrosine kinase receptor, is intricately linked with cellular 
proliferation  (2‑4), metastasis  (5‑8), invasion  (9‑12) and 
angiogenesis (13,14), and is thus often considered a negative 
prognostic factor for breast cancer. In total, 30‑40% of breast 
cancer cases lack HER2 expression (HER2‑0) (15), 15‑20% 
are HER2‑positive [including HER2 immunohistochemistry 
(IHC) 2+ and fluorescence in situ hybridization (FISH) 
positive or IHC 3+] and 45‑55% have low HER2 expression 
[including HER2 IHC 1+ or IHC 2+ and FISH negative] (16). 
Thus, breast cancer cases with low HER2 expression represent 
approximately half of all types, underscoring their growing 
significance.

Although targeted therapies can improve the quality of life 
of patients with cancer, anti‑HER2 therapies such as trastu‑
zumab, are limited to patients with HER2 + cancer, and thus do 
not improve the prognoses of patients with low HER2 expres‑
sion (HER2 IHC 1+ or IHC 2+ and FISH negative) (17,18). 
Antibody‑drug conjugates (ADCs), including trastuzumab 
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deruxtecan (a compound containing an anti‑HER2 antibody 
and a cytotoxic topoisomerase I inhibitor) have expanded the 
efficacy of targeted treatments for patients with low HER2 
expression. ADCs combine the selectivity of targeted therapy 
with the cytotoxicity of chemotherapy (19). Besides, extensive 
ongoing and completed research on low HER2 expression 
has confirmed that novel ADC treatments can benefit these 
patients, necessitating accurate differentiation between 
HER2‑0 and HER2 1+ and HER2 2+ cases (20‑23).

Abnormal lipid metabolism is common in breast cancer, 
which can impact various biological processes across different 
cancer subtypes, including hormone receptor (HR)+, HER2 + 
and triple‑negative (24‑26). Each subtype exhibits specific 
and overlapping lipid dependencies. Numerous studies have 
demonstrated that changes in lipid metabolism influence 
various aspects of breast cancer, including cell growth, 
survival, adaptability, resistance to treatment and the ability 
to spread (27‑30). Lipids, which are either non‑polar or polar 
(amphipathic) biomolecules, are synthesized within the cells 
or absorbed from the surrounding environment (31). Although 
lipidomic profiles have the potential for predicting and diag‑
nosing breast cancer, numerous challenges remain unresolved, 
such as sample complexity and heterogeneity, as well as 
biomarker validation.

The present study aimed to analyze the lipidomic profiles 
of 30 patients with breast cancer, categorizing the patients into 
four groups based on the HR and HER2 status. Differences 
in lipid compositions among the groups were revealed using 
liquid chromatography‑mass spectrometry (LC‑MS) and 
various statistical methods, such as principal component 
analysis (PCA), partial least squares‑discriminant analysis 
(PLS‑DA) and random forest (RF) classification. These find‑
ings may enhance the understanding of the link between breast 
cancer subtypes and lipid metabolic changes as well as provide 
potential biomarkers and therapeutic targets for breast cancer 
classification and treatment in the future.

Materials and methods

Study population. The present study was conducted at the 
Department of Breast and Thyroid Surgery, Shaoxing People's 
Hospital (Shaoxing, China) between September, 2021 and 
December, 2023. In total, 30 patients with breast cancer were 
included in this study. The patients were recruited prospec‑
tively and consecutively according to the eligibility criteria as 
follows: i) Patients with breast cancer confirmed via patholog‑
ical examination; ii) patients who could withstand study tests; 
iii) verbal informed consent obtained from the patient, legal 
representative or responsible caregiver; and iv) patients with a 
knowledgeable and reliable caregiver accompanying them to 
all clinic visits during the study. The exclusion criteria were as 
follows: i) Patients with other severe disease; and ii) patients 
with comorbidities such as other types of cancer, severe 
depression, severe renal or hepatic insufficiency and severe 
cardiac or respiratory failure. The present study followed the 
relevant principles of the Declaration of Helsinki. The demo‑
graphic and disease information of the patients was obtained 
from the medical records, including age, sex, World Health 
Organization (WHO) grade, Ki67 status, prognosis and lipid 
profiles were collected from the patients' medical records.

Detection of markers via IHC or FISH. HR status is defined 
as the presence or absence of the estrogen receptor (ER) and 
progesterone receptor (PR) on the surface of breast cancer 
cells. Tumors with these receptors are known as HR+. In the 
IHC protocol, tissues are first fixed with formaldehyde (10%, 
room temperature, 24 h), embedded in paraffin and sectioned 
(5 µm) to create paraffin‑embedded slides. These slides are 
then deparaffinized and rehydrated. Antigen retrieval was 
performed using a citrate buffer (100˚C, 30 min) to enhance 
antigen binding efficiency. Non‑specific binding was mini‑
mized by applying 5% goat serum (Beyotime Institute of 
Biotechnology; cat.  no.  C0265). Endogenous peroxidase 
activity was blocked using a hydrogen peroxide solution 
(2%, 10 min). The slides are subsequently incubated at room 
temperature for 2 h with primary antibodies targeting ER 
(Roche Diagnostics; clone: SP1; cat.  no.  790‑4325), PR 
(Roche Diagnostics; clone: 1E2; cat. no. 790‑4296) or HER2 
(Roche Diagnostics; clone: 4B5; cat. no. 790‑2991) at a 1:500 
dilution, followed by incubation with a secondary antibody 
with horseradish peroxidase (Thermo Fisher Scientific, Inc.; 
cat. no. 31430) at room temperature for 30 min at a 1:1,000 
dilution. Visualization was achieved using DAB (Roche 
Diagnostics; cat. no. 760‑500) to detect the bound antibodies. 
An optical microscope (Zeiss AG; OPMI PENTERO 900) 
was used to observe and collect images, and the HALO plat‑
form (version 3.4; Indica Labs, Inc.) was used to analyze the 
IHC staining. Patients with a HER2 IHC score of 2+ required 
further testing using FISH.

FISH utilized the same paraffin‑embedded sections 
as IHC, meaning the processes of tissue collection and 
fixation, paraffin embedding and slide preparation were 
identical. The HER2 gene test kit (Anbiping Pharmaceutical 
Technology Co., Ltd.; cat. no. 2408001) was used to further 
assess HER2 status. Denaturation, hybridization, washing 
and restaining were performed according to the manufac‑
turer's instructions. The signals were then detected using 
a fluorescence microscope. A ratio of HER2/chromosome 
17 signal was classified as negative, while a ratio ≥2.0 was 
classified as positive.

Lipidomic profiling. The lipidomic profiles of patients were 
established through non‑targeted LIPIDOMIC studies. 
The sample was added to water and methyl‑tert‑butyl ether, 
followed by vortex mixing. Methanol was then added and the 
mixture was vortexed again. The mixture underwent ultrasoni‑
cation for 20 min, incubated at room temperature for 30 min 
and then centrifuged (14,000 x g, room temperature, 15 min) 
to collect the supernatant. The organic phase was dried under 
nitrogen, redissolved in a 90% isopropanol/acetonitrile solu‑
tion, vortexed and centrifuged (14,000 x g, room temperature, 
15 min) again for analysis. The extracted lipids were analyzed 
using high‑throughput LC‑MS with an Agilent 1290 liquid 
chromatography system (Agilent Technologies, Inc.) connected 
to an Agilent 6550 iFunnel Q‑TOF mass spectrometer (Agilent 
Technologies, Inc.). LC‑MS analysis was performed in both 
positive and negative ion modes to capture comprehensive 
data to ensure a detailed lipidomic profile. The key parameters 
of electrospray ionization were as follows: Spray heater gas 
temperature (nitrogen), 300˚C; nebulizer pressure, 30 psi; gas 
flow rate, 10 l/min.
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Statistical analysis. Age differences among the four groups 
were analyzed using analysis of variance (ANOVA). Post hoc 
comparisons were conducted using Tukey's HSD test. Other 
variables such as laterality, World Health Organization (WHO) 
grade (32) and Ki67 status were evaluated using the Fisher test. 
WHO grading was used to assess the invasiveness and growth 
rate of tumors and was classified into grades I to III based 
on severity. P<0.05 was considered to indicate a statistically 
significant difference. Lipidomics data were processed and 
analyzed using the ‘MetaboAnalystR’ package (version 4.0) 
in R (version 4.3.0; R Foundation for Statistical Computing; 
https://www.R‑project.org/) (33). Differential lipids were iden‑
tified by integrating P‑values from the unpaired t‑test, variable 
importance in projection (VIP) scores from the OPLS‑DA 
model and log fold change (logFC) criteria. The selection 
criteria were set at P<0.05, VIP ≥1 and logFC ≥1 or logFC 
≥‑1, to ensure the inclusion of only the most relevant lipids. 
Lipid pathway enrichment analysis was conducted using the 
RaMP‑DB database ( https://github.com/ncats/) (P<0.05), 
linking differential lipids to potential biological functions. 
Additionally, the relationships between lipids were assessed 
using Spearman correlation (P<0.05), visualized in Cytoscape 
(version 3.9.1; https://cytoscape.org/) (34). Lipid centrality was 
determined using the cytoHubba plugin, which was used to 
construct a lipid interaction network diagram.

Results

Patient characteristics. The characteristics of the patients, 
including age, sex, in situ carcinoma type, lymph node metas‑
tasis, HR status and HER2 status are shown in Table I. The 
30 patients with breast cancer were divided into four groups 

based on the HR and HER2 status according to the guide‑
lines for breast cancer diagnosis and treatment by the China 
Anti‑Cancer Association (2024 edition) (35): i) HR+ HER2‑0: 
HR IHC positive, HER2 IHC score of 0; ii) HR+ HER2‑low: 
HR IHC positive, HER2 IHC 1+ or 2+ and FISH negative; iii) 
HR+ HER2‑positive (pos): HR IHC positive, HER2 IHC 3+ or 
2+ and FISH positive; and iv) HR‑ HER2‑pos: HR IHC nega‑
tive, HER2 IHC 3+ or 2+ and FISH positive. Fig. 1A displays 
representative HR (ER and PR) and HER2 IHC images for 
the four groups of patients. Fig. 1B displays representative 
HER2 FISH images (negative and positive). ANOVA (with 
Tukey's HSD post‑hoc test) and Fisher analysis revealed no 
significant differences in age, laterality or Ki67 status among 
the four patient groups. However, a significant difference in 
the distribution of WHO grades was observed among the four 
groups. Nearly all patients in the HR‑ HER2‑pos group were 
grade Ⅲ, whereas grades Ⅰ‑II were more prevalent in the HR+ 
HER2‑low group (Table I). The detailed patient information is 
listed in Tables SI and SII presents the follow‑up data for all 
patients, including recurrence status and the lipid profiles at 
the time of the last examination.

Lipidomic landscape. Changes in the lipid composi‑
t ion were detected using high‑throughput LC‑MS 
analysis. Specifically, lysophosphatidylcholine (LPC), 
triglycerides (TGs), phosphatidylcholine (PC) and sphin‑
gomyelin (SM) lipids were detected in patient plasma. 
Fig. 2A provides a detailed display of the distribution of 
relative abundance of lipid metabolites in all patients, 
with TG(16:0‑18:1‑18:1)+NH4, TG(16:0‑18:1‑18:2)+NH4, 
SM(d34:1)+H and TG(16:1‑18:1‑18:2)+NH4 showing higher 
relative abundances. Furthermore, significant lipid feature 

Table I. Baseline characteristic of the included patients with breast cancer.

	 HR+ HER2‑pos,	 HR+ HER2‑low,	 HR‑ HER2‑pos,	 HR+ HER2‑0,	
Characteristic	 n=4	 n=15	 n=7	 n=4	 P‑value

Mean age (SD), years	 54 (7.7)	 59.49 (10.7)	 59.5 (9.4)	 57.2 (8.3)	 0.1892
Age, n (%)					     0.6283
  <40 years	 0 (0)	 0 (0)	 0 (0)	 0 (0)	
  40‑59 years	 3 (75)	 8 (54)	 3 (43)	 3 (75)	
  ≥60 years	 1 (25)	 7 (46)	 4 (57)	 1 (25)	
Laterality, n (%)					     0.75
  Left	 2 (50)	 7 (46)	 5 (71)	 2 (50)	
  Right	 2 (50)	 8 (54)	 2 (29)	 2 (50)	
WHO grade n (%)					     <0.01a

  I‑II	 3 (75)	 14 (94)	 0 (0)	 1 (25)	
  III	 1 (25)	 1 (6)	 7 (100)	 2 (50)	
  Unknown	 0 (0)	 0 (0)	 0 (0)	 1 (25)	
Ki67, n (%)					     0.95
  <20%	 1 (25)	 0 (0)	 0 (0)	 1 (25)	
  ≥20%	 3 (75)	 15 (100)	 7(100)	 3 (75)	

aStatistically significant. HER2, human epidermal growth factor receptor 2; HR, hormone receptor; pos, positive; WHO, World Health 
Organization.

https://www.spandidos-publications.com/10.3892/ol.2024.14781
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differences among the groups were evaluated using ANOVA. 
The top 25 lipid features among the four groups are shown in 
Fig. 2B. For instance, significant differences were observed 

in the levels of TG(4:0‑11:2‑12:3)+NH4 across the four 
groups. The levels in the HR‑ HER2‑pos group were notably 
lower compared with the other groups.

Figure 1. Representative IHC and FISH images of the HR and HER2 staining of samples from the four groups of patients: (A) Representative ER and HER2 
IHC images. HR+ HER2‑pos (sample ID: 31), HR+ HER2‑low (sample ID: 38), HR‑ HER2‑pos (sample ID: 43) and HR+ HER2‑0 (sample ID: 51). Scale 
bar, 200 µm. (B) Representative HER2 FISH images. HER2‑FISH neg (sample ID: 42) and HER2‑FISH pos (sample ID: 39). Scale bar, 20 µm. ER, estrogen 
receptor; FISH, fluorescence in situ hybridization; HER2, human epidermal growth factor receptor 2; HR, hormone receptor; pos, positive; IHC, immunohis‑
tochemistry; PR, progesterone receptor.
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Figure 2. Lipid profile variations among the breast cancer subtypes. (A) Lipid composition profile showing the prevalence of TG(16:0‑18:1‑18:1)+NH4 in the 
plasma of patients with breast cancer, illustrating variations among the four groups based on the HR and HER2 status. (B) A synthesized overview of the lipid 
composition across the four patient groups, highlighting the significant differences as identified by ANOVA. **P<0.01, ***P<0.001, ****P<0.0001. Cer, ceramide; 
CerG2GNAc1, N‑acetylglucosaminyl(dihexosyl)ceramide; CerP, ceramide‑1‑phosphate; DG, diacylglycerol; FA, fatty acid; HER2, human epidermal growth 
factor receptor 2; Hex1Cer, hexosylceramide; HR, hormone receptor; LPC, lysophosphatidylcholine; PC, phosphatidylcholine; PE, phosphatidylethanolamine; 
pos, positive; SM, sphingomyelin; SPH, sphingosine; TG, triglyceride.

https://www.spandidos-publications.com/10.3892/ol.2024.14781
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Multivariate statistical analysis. The differences in lipid 
profiles among the four groups were also assessed using PCA 
(Fig. 3A) and PLS‑DA (Fig. 3B). PCA revealed unique lipid 

profiles in the HR+ HER2‑pos and HR+ HER2‑0 groups, 
while PLS‑DA distinguished the four groups. The VIP score 
plot for PLS‑DA indicated that TG(19:1‑16:0‑18:4)+H [VIP 

Figure 3. Statistical analysis of lipidomic data to differentiate the breast cancer groups. (A) Principal component analysis of the lipid profiles revealing unique 
patterns in the HR+ HER2‑pos and HR+ HER2‑0 groups, indicating diverse lipidomic characteristics across the groups. (B) Partial least squares discriminant 
analysis illustrating clear differentiation among the four groups based on lipid features, showing how these groups can be distinctly identified through lipi‑
domic data. (C) The variable importance in projection score plot for PLS‑DA displays the contribution of variables to the overall explanatory power within the 
PLS‑DA model. FDR, false discovery rate; HER2, human epidermal growth factor receptor 2; HR, hormone receptor; PC, principal component; pos, positive; 
TG, triglyceride; VIP, variable importance in projection.
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Figure 4. Key lipid features in breast cancer subtyping via random forest analysis. (A) RF analysis highlighting PIP3(21:2)+NH4 as a crucial lipid feature for 
accurately grouping patients, showcasing its potential as a biomarker for breast cancer subtypes. (B) Heatmap displaying the abundance of top‑ranked lipid 
features across the four groups, providing insights into the distribution variations and potential metabolic distinctions. Cer, ceramide; CL, cardiolipin; DG, 
diacylglycerol; GM3, monosialo ganglioside GM3; HER2, human epidermal growth factor receptor 2; Hex1Cer, hexosylceramide; HR, hormone receptor; 
LPC, lysophosphatidylcholine; LPE, lysophosphatidylethanolamine; PC, phosphatidylcholine; PIP3, phosphatidylinositol‑3,4,5‑trisphosphate; pos, positive; 
SM, sphingomyelin; TG, triglyceride.

https://www.spandidos-publications.com/10.3892/ol.2024.14781
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>1; ‑log10(FDR adjusted P) >1.301] was the metabolite with 
the greatest impact in the discriminant analysis (Fig. 3C). 

Figs. S1 and S2 display the PCA and PLS‑DA for the six 
pairwise combinations among the four groups.

Figure 5. Correlation between the lipid structural properties and the breast cancer subtypes. (A) Statistical analysis of the number of carbon atoms and double 
bonds in the differential lipids, showing significant correlations with group classification, suggesting that the structural properties of the lipids are potentially 
influential in cancer phenotypes. (B) Heatmap based on classified lipids, emphasizing the physical and chemical properties of lipids that contribute to group 
classifications, and highlighting the structural diversity and its implications. Cer, ceramide; CL, cardiolipin; ChE, cholesterol ester; DG, diacylglycerol; FC, 
fold change; HER2, human epidermal growth factor receptor 2; HR, hormone receptor; MG, monoacylglycerol; PC, phosphatidylcholine; PI, phosphatidylino‑
sitol; pos, positive; SM, sphingomyelin; TG, triglyceride.
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Figure 6. Network and pathway analyses of lipidomic data in breast cancer. (A) Clustering heatmap of differential lipid classes, revealing positive correlations 
among specific lipid types, illustrating interconnected lipid metabolic processes and their relevance to breast cancer. (B) Network analysis showing extensive 
correlations between TG and other lipids within the lipidome, underscoring the complex interactions in lipid metabolism in breast cancer. (C) Pathway enrichment 
analysis identifying significant pathways such as the ‘Assembly of active LPL and LIPC lipase complexes,’ highlighted by their statistical significance and high 
fold enrichment, indicating key metabolic pathways involved in breast cancer. **P<0.01, ***P<0.001. Cer, ceramide; CL, cardiolipin; ChE, cholesterol ester; DG, 
diacylglycerol; FDR, false discovery rate; MG, monoacylglycerol; PC, phosphatidylcholine; PI, phosphatidylinositol; SM, sphingomyelin; TG, triglyceride.

https://www.spandidos-publications.com/10.3892/ol.2024.14781
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Importance and variation analysis. The RF approach 
highlighted phosphatidylinositol‑3,4,5‑trisphosphate (PIP3) 
(21:2)+NH4 as a crucial lipid feature for sample grouping 
accuracy (Fig. 4A). Fig. S3 displays the importance of different 
metabolites in distinguishing the six pairwise combinations 
among the four groups. The results showed that TG(50:13)+NH4, 
TG(18:3e‑18:3‑21:1)+Na, PC(36:5)+H, TG(4:0‑11:2‑12:3)+NH4, 
TG(18:0‑20:4‑22:6)+NH4 and DG(16:0‑20:4)+H were impor‑
tant for distinguishing HR+ HER2‑pos and HR‑ HER2‑low, 
HR+ HER2‑pos and HR‑ HER2‑pos, HR+ HER2‑pos and 
HR+ HER2‑0, HR+ HER2‑low and HR‑ HER2‑pos, HR+ 
HER2‑low and HR+ HER2‑0 as well as HR+ HER2‑pos and 
HR+ HER2‑0, respectively. Additionally, the abundance of the 
top‑ranked lipid features is shown in a heatmap, providing a 
visual representation of lipid feature distribution across groups 
(Fig. 4B). These analyses were integrated into a single figure 
to display the importance and abundance variations of the 
lipid features.

Advanced analysis of the differential lipids. Fatty acids with 
different carbon chain lengths have different properties and 
functions. Lipid carbon chain length and the number of double 
bonds are closely related to lipid oxidation and function (36). 
The potential oxidation of lipids is lower when the carbon 
chain is longer or the number of double bonds is lower (37). 
Herein, only the number of carbon atoms and double bonds 
of the differential lipids were evaluated to identify significant 
correlations between the four groups (Fig. 5A). A heatmap 
based on the classified lipids further explored these relation‑
ships, emphasizing the physical and chemical properties of 
lipids that contribute to lipid group classification (Fig. 5B). 
The results indicated that TGs, including TG(20:4e‑12:3‑12:3), 
TG(10:0‑18:2‑18:2) and TG(19:1‑16:0‑16:0), as well as DGs 
such as DG(34:5e), DG(18:3‑18:2) and DG(16:0‑18:3), were the 
most distinct lipids promoting group classifications.

Correlation and pathway enrichment analysis of the 
differential lipids. A correlation heatmap of the differential 
lipid classes revealed that specific lipid types were positively 
correlated with one another (Fig. 6A). Blue and red indicate 
positive and negative correlations, with deeper shades indi‑
cating stronger associations. SMs were negatively correlated 
with TGs, whereas ceramides were positively correlated with 
TGs. Network analysis indicated that TGs were extensively 
correlated with other lipids (Fig. 6B). Pathway enrichment 
analysis showed that differential lipids were associated with 
various pathways, particularly the ‘Assembly of active LPL 
and LIPC lipase complexes’, which had a high fold enrichment 
and statistical significance (Fig. 6C).

Discussion

Fatty acid metabolism dysregulation plays a crucial role in 
the malignant transformation of various cancer types (38‑42), 
including breast cancer  (43,44). Key metabolic enzymes 
involved in fatty acid synthesis and oxidation have notable 
roles in the proliferation, migration and invasion of breast 
cancer cells (43). Fatty acid metabolism involves multiple path‑
ways, including fatty acid transport, storage in lipid droplets 
in the form of TGs and cholesterol esters, mobilization from 

phospholipids and TGs as well as fatty acid oxidation. Most 
human cells meet their fatty acid requirements by utilizing 
dietary fatty acids. De novo fatty acid synthesis pathways are 
only crucial in the liver, breast tissue and adipose tissue (45). 
The de novo fatty acid synthesis pathway has different roles 
in normal and cancerous tissues, making it an attractive 
therapeutic target (38).

A previous review showed that the lipid profile of tumors 
may be used to distinguish HER2 +, luminal and BRCA‑mutated 
tumors (46). In the present study, distinct lipidomic profiles 
associated with different breast cancer subtypes, defined by 
HR and HER2 status, were delineated. The grouping into 
four groups (HR+ HER2‑0, HR+ HER2‑low, HR+ HER2‑pos 
and HR‑ HER2‑pos) allowed for a nuanced analysis of how 
lipidomic landscapes vary with these biomarkers. Notably, 
the lipid profile diversity, particularly the prevalence of TGs, 
such as TG(16:0‑18:1‑18:1)+NH4, underscored the potential 
biological variance among these groups. Lipid metabolism 
is involved in cancer biology, influencing various processes, 
such as cell membrane composition, energy storage and 
signaling pathways. 

A recent study (47) showed that lipidomics‑based pheno‑
type heterogeneity can be used to classify cancer types where 
genetic analysis alone is insufficient. In the present study, 
the composition of PCs and TGs and their relationships with 
the HR/HER2 phenotypes in breast cancer were discovered. 
The results also underscored the significance of TGs, while 
indicating that DGs are less important. The correlation and 
pathway enrichment analyses indicated the broader biological 
implications of the study findings. The clustering heatmap and 
network analysis of differential lipids highlighted intercon‑
nected lipid metabolism pathways, particularly the assembly 
of active lipase complexes. Such pathways are crucial for lipid 
processing and can be integral in understanding the metabolic 
reprogramming in cancer cells. A recent study (48) indicated 
that lipoprotein lipase is associated with poor prognosis in 
breast cancer, indicating that the LPC pathway is crucial in 
breast cancer. 

The present study still has certain limitations that cannot 
be ignored, which should be addressed in future larger cohorts 
and longitudinal designs. First, it must be acknowledged that 
the small sample size is a significant limitation, rendering the 
present study a pilot study. Although some key lipids have been 
identified in the present study, the relatively small number of 
samples limits the statistical power and generalizability, 
preventing a direct assessment of how these specific lipids 
influence breast cancer cells. Larger cohorts are necessary 
to validate the potential of lipidomic analysis in the clinical 
context of breast cancer. To further understand the direct 
effects of these lipids, we plan to examine their roles in regu‑
lating cell proliferation, migration and invasion using breast 
cancer cell lines with different HR/HER2 phenotypes, thereby 
potentially identifying novel therapeutic targets. Furthermore, 
exploring the correlation between lipid profiles and clinical 
outcomes is essential. The lipid profiles and clinical outcomes 
of patients are shown in Table SII; however, the small sample 
size limits the validity of further analysis of the relationship 
between these two characteristics. The preliminary results of 
the present study provide valuable insights into the metabolic 
variations across different subtypes of breast cancer. Therefore, 
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our future research will focus on examining the relationships 
and differences between lipid profiles and survival outcomes 
across various breast cancer subtypes.

In summary, several lipid molecules were significantly 
different and could be used to distinguish between breast 
cancer groups based on the HR and HER2 status. These 
key lipid features include: i) TG: TG(16:0‑18:1‑18:1)+NH4, 
prominent lipid composition; TG(16:0‑18:1‑18:2)+NH4, another 
major lipid composition; TG(16:1‑18:1‑18:2)+NH4, featured 
prominently in lipidomic profiles; TG(50:13)+NH4, important 
for distinguishing between the HR+ HER2‑pos and HR+ 
HER2‑low groups; TG(18:3e‑18:3‑21:1)+Na, crucial for distin‑
guishing between the HR+ HER2‑pos and HR‑ HER2‑pos 
groups; TG(4:0‑11:2‑12:3)+NH4, significant for distinguishing 
between the HR+ HER2‑low and HR‑ HER2‑pos groups; 
TG(18:0‑20:4‑22:6)+NH4, important for distinguishing 
between the HR+ HER2‑low and HR+ HER2‑0 groups; 
TG(20:4e‑12:3‑12:3), TG(10:0‑18:2‑18:2) and TG(19:1‑16:0‑16:0), 
distinct lipids for group classifications based on carbon chain 
length and the number of double bonds. ii) PC: PC(36:5)+H, 
important for distinguishing between HR+ HER2‑pos and HR+ 
HER2‑0 groups. iii) SM: SM (d34:1)+H, prominent lipid feature 
in HR+ HER2‑0 group. iv) DG: DG(16:0‑20:4)+H, significant for 
distinguishing between the HR+ HER2‑pos and HR+ HER2‑0 
groups; DG(34:5e), DG(18:3‑18:2) and DG(16:0‑18:3), most 
distinct DGs for group classifications. v) PIP: PIP3(21:2)+NH4, 
crucial lipid feature for sample grouping accuracy.

In conclusion, the comprehensive analysis of lipidomic 
variations across different breast cancer subtypes offers 
valuable insights into the metabolic alterations associated with 
cancer progression and phenotype. Therefore, the findings of 
the present study may improve the development of tailored 
therapeutic strategies that target specific metabolic pathways 
in breast cancer.
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