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Bullous pemphigoid (BP) is by far the most common autoimmune blistering dermatosis 
that mainly occurs in the elderly. The BP180 is a transmembrane glycoprotein, which is 
highly immunodominant in BP. The structure and location of BP180 indicate that it is a 
significant autoantigen and plays a key role in blister formation. Autoantibodies from BP 
patients react with BP180, which leads to its degradation and this has been regarded 
as the central event in BP pathogenesis. The consequent blister formation involves the 
activation of complement-dependent or -independent signals, as well as inflammatory 
pathways induced by BP180/anti-BP180 autoantibody interaction. As a multi-epitope 
molecule, BP180 can cause dermal–epidermal separation via combining each epitope 
with specific immunoglobulin, which also facilitates blister formation. In addition, some 
inflammatory factors can directly deplete BP180, thereby leading to fragility of the 
dermal–epidermal junction and blister formation. This review summarizes recent inves-
tigations on the role of BP180 in BP pathogenesis to determine the potential targets for 
the treatment of patients with BP.
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iNTRODUCTiON

Bullous pemphigoid (BP), by far the most common autoimmune blistering disease, is induced by 
autoantibodies against the structural components of the dermal–epidermal junction (DEJ) (1). In 
most cases, the disease develops cryptically (2). The suggested causes of BP include silicosis (3), pso-
ralen and ultraviolet A therapy (4), infections (5), physical or chemical insults (6–8), certain fruits (9), 
and medications (10, 11). However, the validation of these factors in the pathogenesis of BP remains 
be established. BP mainly affects the older age group of both sexes, or those 70 years old and above, 
but it can also affect infants, children, and adolescents (1, 12). This disease mainly involves the skin but 
occasionally the eyes, mouth, and genitals (1, 2). The cutaneous manifestations of BP are polymorphic 
and can be classified into three groups, namely classical BP, non-bullous cutaneous pemphigoid, and 
various rare variants (13, 14). Classical BP is clinically characterized by large (1–3 cm), tense, serous, 
or hemorrhagic blisters that appear on erythematous, urticarial, or eczematous lesions and even on 
apparently normal skin (1, 13). The biopsied lesions exhibit subepidermal splitting or blisters, which 
is the hallmark of BP, with dense inflammatory infiltration of eosinophils, basophils, neutrophils, 
lymphocytes, and mast cells in the dermis (1). Immunofluorescence analysis is necessary for the 
diagnosis of BP (15). Direct immunofluorescence is the most sensitive method for BP diagnosis, in 
which the lesion shows linear deposition of immunoglobulin G (IgG), C3 complement, and even IgE 
at the DEJ (16–18). Indirect immunofluorescence using the patient’s sera and a substrate, especially 
salt-split skin, reveals a linear deposition of IgG along the roof of the artificial split (18).

One typical serologic characteristic of BP is the presence of circulating autoantibodies, which are 
mostly against BP180 (collagen XVII) and BP230 (15, 19, 20). BP180 is a 180 kDa transmembrane 
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glycoprotein with a 16th non-collagenous (NC16A) domain, 
which is the immunodominant part in BP (14). BP230 is an 
intracellular constituent of the hemidesmosomal plaque and 
belongs to the spectraplakin family (20, 21). The autoantibod-
ies reported in BP include IgG and IgE (1, 22). Usually, IgG 
autoantibodies to BP180 are the ones first to be detected, and 
then IgG autoantibodies to BP230 subsequently appear (23). 
IgE antibodies to BP230 can also be detected in the blood of BP 
patients (24). Given the existence of autoantibodies, there have 
been commercially available enzyme-linked immunosorbent 
assay (ELISA) kits that target BP180 and BP230 antibodies for 
BP auxiliary diagnosis (25, 26).

Due to the age group involved and the application of more 
sensitive and specific diagnostic assay systems, the reported 
BP morbidity has increased (14, 19, 27, 28). Moreover, for 
disease-specific factors, due to the concomitant occurrence 
of neurodegenerative disorders, use of higher doses of oral 
corticosteroids, and the propensity to malignancies and venous 
thromboembolism, BP mortality showed an increasing trend 
as well (19, 29–36). These findings suggested the contributory 
role of activation of blood coagulation in the pathogenesis of BP 
(35, 36). Presently, topical or systematic corticosteroids, with or 
without immunosuppressive agents, are still the mainstays for BP 
treatment (1, 14, 37, 38). Intravenous Ig has also been introduced 
as an alternative therapy for BP (39–41), however, its effectiveness 
is still questionable (42, 43). Therefore, it is of highly importance 
to discover new targets to reduce BP morbidity and mortality. 
Recently, increasing evidences show that autoimmune responses 
to BP180 are important in the initiation and evolution of BP (44). 
The binding of autoantibodies to BP180 is a central step for blister 
formation. Moreover, BP180 is associated with severe and exten-
sive lesions that require higher dose of steroids, which is a key 
risk factor for death (14, 28, 45). The serum level of anti-BP180 
NC16A autoantibody correlates with the more active and severe 
disease, as well as poorer prognosis (33, 46). We, thus, consider 
BP180 as the most important culprit in the pathogenesis of BP 
and focused this review on recently updated knowledge on BP180 
and its autoantibodies in BP.

THe BASiC STRUCTURe OF BP180

BP180 is a type II transmembrane protein with a cytosolic NH2 
terminal and an extracellular COOH domain (47). The N-terminal 
domain, transmembranous stretch, and extracellular C-terminus 
have 466, 23, and 1,008 amino acids (aa) in length, respectively 
(48). The ectodomain contains 15 collagenous subdomains 
(COL1–COL15) interspersed by 16 non-collagenous sequences 
(NC1–NC16). The NC16A domain, a juxtamembranous linker 
region, appears to be biologically important, as it serves as the 
nucleus for the formation of a collagen-like triple helix (49, 50). 
The extracellular domain contains coiled-coil structures, which 
are physiologically shed from the cell surface by a disintegrin 
metalloproteinase (ADAM) (50). The ectodomain forms a loop 
structure as it spans the lamina lucida, extends to lamina densa, 
and then kinks back into the lamina lucida (49). BP180 contains 
multiple binding sites for hemidesmosome proteins, includ-
ing the extracellular domains of integrin α6 and laminin-332 

(laminin-5) and the cytoplasmic domains of integrin β4, plectin, 
and BP230 (20). The structure and location of BP180 indicate that 
it acts as a core anchor protein that connects the intracellular and 
extracellular hemidesmosomal proteins and plays a key role in 
the pathogenesis of BP.

THe ePiTOPe PROFiLeS OF BP180

Previous studies mainly focused on extracellular NC16A domain 
(aa residues 490–562), which is the main target of BP autoanti-
bodies. The NC16A domain has seven antigenic sites, including 
NC16A1, NC16A1-3, NC16A1-5, NC16A2, NC16A2.5, NC16A3, 
and NC16A3-4 (51–53) (Figure 1). Among these sites, NC16A2 
and NC16A2.5 are the major antigenic sites, which can be tar-
geted by all IgG and IgE antibodies. However, recent studies have 
described additional autoantibody-binding domains of BP180, 
such as the intracellular domain (ICD) and ectodomain (44, 54). 
The ICD (aa 1–452) has five target sites, namely ICD A, ICD B, 
ICD C, ICD D, and ICD A-D, and a central region (aa 112–199) 
(Figure 1). A previously published study reported that out of 18 
sera of BP patients, 16 reacted with recombinant ICDs and that 
most of the antibodies bind to the central portion (55). A great 
number of sera combined with at least one of the ICD regions. 
With regard to ectodomain, it has been reported that 7.8–47% of 
BP sera recognized the C-terminal regions of the ectodomain (54, 
56). Further mapping identified the six regions outside of NC16A 
that were recognized by the sera of the patients: aa 809–1106, aa 
1080–1107, aa 1280–1315, aa 1331–1404, aa 1365–1413, and aa 
1048–1465 (11, 52, 54, 57). aa 809–1106 and aa 1080–1107 were 
at the midportion, whereas aa 1331–1404 and aa 1365–1413 were 
at the COOH-terminal (Figure  1). Other epitopes embracing 
more than one domain, such as aa 467–567, aa 490–812, and aa 
490–1497, were also reported (11, 52). It has been suggested that 
the pattern of epitope recognition may influence the course of the 
disease (23). Therefore, the recognition of target regions within 
BP180 is substantial in understanding the disease initiation and 
clinical characteristics of BP.

THe SOURCe OF AUTOANTiBODieS  
TO BP180

The etiology of BP is complex, but the presence of autoantibod-
ies was widely accepted as the sine qua non of the condition. 
Anti-BP180 autoantibodies also exist in healthy people, even 
though these antibodies are conformationally different from 
pathogenic ones; however, only those bound to skin basement 
membrane can induce BP—suggesting that autoantibodies in the 
healthy may not be pathological per se (58, 59). The autoantibod-
ies may assume function of surveillance and self-tolerance (60). 
In pathologic conditions, self-tolerance of the autoantibodies is 
dysfunctional, thus leading to the production of a higher-level of 
autoantibodies that bind to skin basement membrane and give 
rise to the occurrence of BP. The development of BP suggests 
that there is a threshold or checkpoint in terms of autoantibody 
generation (61). It remains unclear why immune tolerance to 
BP180 is dysfunctional in some individuals. Previous study 
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FigURe 1 | The target sites of the BP180 molecule. BP180 is a multi-epitope protein with three major domains-the intracellular domain (ICD), the NC16A domain 
and the ectodomain outside NC16A domain. The ICD include five target sites, including aa 1–452, aa 1–133, aa 103–266, aa 234–398, aa 36–452 and a central 
region aa 112–199. The NC6A domain contain seven targeted sites, that is, NC16A1-5, 1-3, 1, 2, 2.5, 3, 3-4. The ectodomain domain also have eight functional 
sites, namely aa 567–1497, aa 809–1106, aa 1080–1107, aa 1280–1315, aa 1331–1404, aa 1352–1465, aa 1365–1413, and aa 1048–1465. Additionally, there are 
also target sites crossing more than one domain, such as aa 46–567, aa 490–812, and aa 490–1497.
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suggests that CD4+ CD25+ Foxp3+ regulatory T (Treg) cells 
play an indispensable role in maintaining self-tolerance and in 
suppressing excessive production of autoantibodies deleterious 
to the host (62–65).

The reduction of CD4+ CD25+ Foxp3+ Treg cells in BP, as 
induced by triggers that are variants of pre-existing genetic fac-
tors, such as HLA-BQB1*0301, CYP2D6, MT-ATP8, and so on, 
leads to the breakage of self-tolerance, followed by the increase 
in autoreactive Th2, Th1, and B cells that can recognize different 
domains of BP180 mediated by epitope spreading to produce 
different autoantibodies (14, 44, 59, 65–69). The pathogens 
can exacerbate the process by sensitizing B cells via binding to 
toll-like receptors. The autoreactive T  cells can interact with 
autoreactive B  cells via combinations of CD40L–CD40, B-cell 
activating factor–transmembrane activator and CAML interac-
tor (TACI)/B-cell maturation antigen, and proliferation-inducing 
ligand–TACI to further break peripheral tolerance and induce Ig 
production and class switching (70–74) (Figure 2). Moreover, the 
reactivity of T and B cells that target the NH2-terminal portion of 
the BP180 ectodomain is associated with severe BP, whereas the 
crosstalk of T and B cells targeting the central portion of BP180 
is more frequently recognized in limited BP (75). The exploration 
in gene therapy might provide clues to retrieve Treg-mediated 

tolerance and to hinder the production of autoantibodies in skin-
grafted animals (76).

AUTOANTiBODieS TARgeTiNg  
NC16A OF BP180

Previously, most studies pointed out that the NC16A might be 
the major pathogenic epitope in BP (47, 74). ELISA analysis using 
recombinant BP180 NC16A demonstrated that 22–100% of BP 
sera reacted to BP180 NC16A peptides and that autoantibodies 
targeting NC16A domain are associated with tense blisters, severe 
urticarial erythema, extensive lesions, and elevated eosinophils 
(45, 77). Therefore, there is a variety of autoantibody types that 
act on this domain and mediate various pathogenesis.

Anti-NC16A igg
Anti-NC16A IgG is associated with BP-affected areas and with 
the occurrence of erosions and blisters in BP (46). High titers of 
anti-BP180 NC16A IgG at the time of therapy cessation repre-
sented the main factor in the prediction of risk of relapse in BP 
(78). Passive transfer of rabbit antimurine IgG antibodies against 
BP180 can lead to the development of BP-like skin phenotype, in 
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FigURe 2 | A possible mechanism for the generation of anti-BP180 autoantibodies. Antibodies are generated for the breakage of self-tolerance which is caused by 
drugs, psoralen, and ultraviolet A therapy, infections, physical, or chemical insults. Autoactivated Th1 and Th2 and B cell can target different domains of BP180, 
leading to the generation of anti-BP180 autoantibodies via epitope spreading and Ig class-switch. Such autoantibodies could be present in the serum for a long time 
before occurrence of clinical features. Attacked BP180 can be a source of new antigens to initiate the further expansion of autoantibodies and acceleration of 
disease.
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which the mechanisms involved are complement activation, mast 
cell degradation, neutrophil infiltration, production of reactive 
oxygen species and proteases, and BP180 degradation (14, 79); 
and these mechanisms suggest a complement-dependent inflam-
matory pathway in BP development. The pathways induced by 
antimurine BP180 NC16A domain is further verified in studies 
using mast cell-deficient (80), C5-null (16), C4-null, alternative 
pathway component factor B-deficient (28, 81), membrane CD46 
upregulated (82), Fab-IgG-deficient (83), and FcγR-deficient (84) 
mice. All these studies were able to identify the complement-
dependent inflammatory pathway of anti-BP180 NC16A IgG 
(Figure 3A).

There are complement-independent mechanisms that account 
for the induction of BP by anti-NC16A IgG. Nearly one-fifth of BP 
cases may develop blisters in a complement-independent manner 
mainly through BP internalization (16) Immunofluorescence 
microscopy revealed that BP180 content in BP lesions is reduced 
by approximately 40% (85). As demonstrated by vibration 
assay in  vitro, keratinocytes stimulated with anti-NC16A IgG 
demonstrated BP180 internalization and significant decrease 
in cell-plate adhesion (86). Further supporting data stem from 
an in vivo study using neonatal C3-deficient BP180-humanized 
mice without complement activation (87). The effects are attrib-
uted to the internalization of BP180/anti-BP180 complex via a 
macropinocytic pathway, which involves ICD phosphorylation 
by protein kinase C and potential degradation of BP180 through 
a ubiquitin/proteasome pathway (85, 88, 89). As BP-IgG-induced 
BP180 internalization is insufficient to induce blister formation, 
various inflammatory responses mediated by FcγR-independent 
and FcγR-dependent pathways must be involved, which further 
lead to a BP-specific split (85). At least interleukin (IL)-6 and IL-8, 

which are induced by autoantibodies, participate in the inflamma-
tory responses (28, 90) In addition, neutrophils partly recruited 
by IL-8 are also essential for blister formation (91) (Figure 3B). 
These studies emphasized the complement-independent inflam-
matory pathway of anti-BP180 NC16A IgG.

However, the role of complements in BP pathogenesis, as 
mediated by anti-BP180 NC16A IgG autoantibodies, is still 
controversial. Negative C3 deposition along the epidermal base-
ment membrane zone was found in 16.9% of BP lesions (16). 
Antihuman BP180 NC16A IgG4, which has low ability to bind 
to the Fc receptor and fixing complement, can induce dermal–
epidermal separation in in  vitro cryosection assays and blister 
formation in patients (89, 92). IgG4 autoantibodies are also the 
major IgG subclasses of autoantibodies found in more than 54.4% 
of BP patients, and it is parallel with the disease severity (93). 
An in vitro study found that anti-NC16A IgG4 might prevent the 
induction of BP blistering by competitively inhibiting the binding 
of IgG1 and IgG3 autoantibodies to the NC16A region and by 
blocking IgG1- and IgG3-induced complement fixation and neu-
trophil infiltration (94). Another study reported that anti-NC16A 
IgG4 has a protective role in BP (94). However, the provided C5a 
complement could successfully induce BP through anti-NC16A 
IgG4 (94). The revealed discrepancies may be explained by the 
different research methods used in the studies, as well as the 
complexity of BP, or by the possibility that the protective role of 
IgG4 autoantibodies in BP is due to the competitive blockade of 
IgG1 and IgG3 autoantibodies, which in turn gives rise to the sup-
pression of complement-dependent blister formation. However, 
the “IgG4-dominant complement-independent BP” cannot be 
excluded. When the abovementioned studies are summarized, 
as well as the findings of complement fixation at basement 
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FigURe 3 | The possible pathogenic mechanism of the anti-BP180 NC16A autoantibodies. (A) The IgG1, IgG3, IgE, or IgA anti-BP180 NC16A autoantibodies-
mediated pathways for blister formation in bullous pemphigoid (BP). The binding of IgG1, IgG3 with NC16A activates complements via FcγR followed by mast cell 
degradation and neutrophilic, eosinophilic, basophilic, and macrophage infiltration, which lead to the degradation of BP180 by releasing inflammatory factors and 
proteases. While the IgE anti-BP180 NC16A autoantibodies activate infiltration of mast cell, eosinophils, and basophils via FcεRI. (B) The immunoglobulin G (IgG) or 
IgE-mediated pathways for blister formation in BP. On the one hand, the binding of IgG or IgE with NC16A domain activates the protein kinase C followed by BP180 
phosphorylation and degradation, which leads to the reduced adhesion. The binding, on the other hand, causes the release of interleukin (IL)-6 and IL-8 by 
keratinocytes, which prompts recruitment of neutrophils, release of inflammatory factors and neutrophil elastase (NE), and blister formation.
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membrane in BP patients, we can conclude that complement 
amplifies blister formation by inducing inflammation (16, 51, 95).

Anti-NC16A ige
In addition to the IgG autoantibodies, 22–100% BP patients 
also produce IgE autoantibodies against BP180 NC16A (24, 46,  
96, 97). The level of anti-NC16A IgE is correlated with dis-
ease activity (24, 46), occurrence of urticarial lesions and 
erythema (46, 98, 99), higher prednisolone dosage, longer 
duration before remission, and more intensive therapies 

(100). Immunofluorescence revealed the deposition of IgE 
autoantibodies along the DEJ in up to 41% of BP patients (101). 
Moreover, the early pathological changes in BP, including urti-
caria, eosinophil infiltration, and spontaneous blistering, can 
only be observed in models that utilized IgE autoantibodies 
from patient sera or recombinant monoclonal IgE antibodies 
specific for BP180 (102). These observations indicate that 
IgE autoantibodies may also be involved in the pathogen-
esis of BP and correlate with certain distinct clinical features. 
Furthermore, epitope mapping studies have demonstrated that 
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FigURe 4 | The potential pathogenesis of the anti-BP180 autoantibodies 
targeting the intracellular domain (ICD) or the ectodomain outside the 
NC16A. There are three possible mechanism associated the autoantibodies 
with ICD or ectodomain. (1) The autoantibodies penetrate cells, reach the 
ICD, and inhibit the interaction of BP180 with plectin, BP230, or β4. (2) The 
binding of autoantibodies with ectodomain interferes the interplay of BP180, 
α6, β4, and laminin-332. (3) The interaction between autoantibodies and 
ectodomain induces inflammatory and immune responses, which lead to the 
exposure of the ICD, initiating the effect of autoantibodies on ICD.
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these IgE autoantibodies preferably target the NC16A domain 
of the BP180 protein as IgG (46, 53, 103).

Injecting purified anti-BP180 NC16A IgE autoantibodies into 
human skin grafted on nu/nu mice can induce histologic der-
mal–epidermal separation, as well as erythematous and urticarial 
plaques; and the mechanisms of these processes include mast cell 
infiltration and degranulation and influx of eosinophils, lympho-
cytes, and neutrophils (104). An in  vitro investigation showed 
that the injection of IgE into the dermis of a human cryosection 
model led to histologic separation at the DEJ through the binding 
of FcεRI on mast cell surface, which triggered mast cell degranu-
lation, subsequent eosinophil infiltration, and direct activation of 
eosinophils and basophils mediated by high-affinity FcεRI (95, 
105, 106). Interestingly, the amount of circulating eosinophils is 
correlated with the levels of both NC16A-specific IgG and IgE 
in BP sera (106). These results provide indirect evidence that 
anti-BP180 NC16A IgE autoantibodies contribute to BP-like 
damage and to certain distinct clinical features by triggering 
mast cell degranulation and basophil histamine release that is 
FcεRI dependent (106, 107) (Figure 3A). The successful use of 
omalizumab in preventing the interaction of IgE with FcεRI in 
BP patients further verifies the FcεRI-dependent pathways (108, 
109). However, recent studies also revealed that IgE autoantibod-
ies from BP patients could be internalized into cultured human 
keratinocytes or skin tissues where they stimulate production of 
IL-6 and IL-8 and lead to the depletion of hemidesmosomes, as 
observed through BP IgG autoantibodies and as the effect of anti-
NC16A IgG on keratinocytes in vitro (110–112) (Figure 3B). These 
studies suggest that the direct function of anti-BP180 NC16A IgE 
autoantibodies is to promote inflammation and fragility of the 
DEJ in BP. Further studies utilizing IgE monoclonal antibody are 
necessary to explore the mechanisms underlying NC16A-specific 
IgE autoantibody-mediated tissue damage in BP (113).

Anti-NC16A igA
An increasing number of studies reported the potential role 
of anti-BP180 IgA, aside from anti-NC16A IgG and IgE, in BP 
pathogenesis (52, 107, 114, 115). Comparable to IgG and IgE, 
IgA autoantibodies mainly target the NC16A domain (106). 
Anti-BP180 NC16A IgA can be found in sera of 20–65% of BP 
patients (51, 113); and it can also be detected in the saliva of 36%, 
parotid gland of 44%, and in sera of 28% of mucous membrane 
pemphigoid patients (114). Moreover, IgA basement membrane 
zone deposition has been reported in 13% of BP patients  
(17, 116). However, investigation that mechanistically elucidates 
the functions of IgA autoantibodies in BP are still lacking. Epitope 
spreading or antibody class switching are likely to be involved in 
the pathogenesis of BP, as there is a determined clinical associa-
tion between BP and linear IgA bullous disease (LAD) (114, 117). 
Recent studies reported that there is a linear IgA deposition in 
basement membrane zone, which is dapsone-responsive and 
characterized by a flexural distribution of intensely pruritic 
subepidermal bullae, thus suggesting that IgA might be 
associated with specific clinical features of BP or that BP may 
have comparable or overlapping pathomechanisms with LAD  
(118, 119). Like LAD, the anti-BP180 IgA autoantibodies directly 
act on NC16A domain, leading to the release of inflammatory 

factors and neutrophils, degranulation of neutrophils and mast 
cells, and release of proteolytic enzymes—all of which are similar 
to the effects of IgG and IgE (118) (Figure  3A). In fact, most 
serum samples from LAD and BP patients contain both IgA 
and IgG antibodies against BP180 (114, 120, 121). Thus, the 
two diseases could be regarded as different ends of a continuous 
spectrum of autoimmune responses to BP180 in subepidermal 
blistering diseases (119). Further studies using cell and animal 
models are needed to comprehensively unveil the pathogenic role 
of anti-BP180 NC16A IgA autoantibodies.

AUTOANTiBODieS TARgeTiNg iCD  
AND eCTODOMAiN OF BP180

Recent studies reported that 59–82% of BP sera can recognize 
the ICD of BP180, while 7.8–49% of BP sera are reactive against 
the ectodomain of BP180 (54, 77, 122, 123). All autoantibodies, 
including IgG, IgE, and IgA, can target ICD; however, these 
autoantibodies bind to different sites (55, 114, 122, 123). The 
autoantibodies can penetrate live cells, reach their intracellular 
targets, and alter cellular functions (124) (Figure 4). The central 
region of BP180 ICD harbors binding sites that are critical for the 
interaction of BP180 with β4 subunit of the α6β4 integrin, which 
is vital for the incorporation of the protein into the hemidesmo-
some (49). Thus, it implicates that autoantibodies against BP180 
ICD impair the interaction of BP180 with other molecular con-
stituents of the hemidesmosome. Otherwise, the damaged basal 
keratinocyte induced by the binding of autoantibodies to BP180 
ectodomain leads to the exposure of the ICD to the immune sys-
tem, which is referred to as “epitope spreading” (125) (Figure 4).
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In addition, the COOH-terminal region of the BP180 ecto-
domain is shown to be recognized by 47% of BP sera (56). IgG, 
IgE, and IgA autoantibodies can all bind to the terminal region 
(52, 54, 103, 122). The presence of autoantibodies against N- or 
C-terminal portions of the BP180 ectodomain is associated with 
the mucosal lesions in BP patients (56, 126). In addition, there 
are existing autoantibodies against the midportion of BP180; 
and these are associated with the occurrence of hemiplegia, 
clinical presentation of lack of erythema around the bullae, 
and histopathologic eosinophil infiltration inside and around 
subepidermal bullae (57). Other studies revealed that high levels 
of autoantibodies against C-terminal portions are associated with 
older age, administration of dipeptidyl peptidase-4 inhibitors 
before BP onset, and a positive response to moderate doses of 
oral prednisolone (11, 123). However, there is also a report refut-
ing the association of autoantibodies with dipeptidyl peptidase-4 
inhibitors (127). As BP180 extends from the cytoplasm of the 
basal keratinocyte to the lamina densa, it is presumed that the 
autoantibodies against this region might be responsible for the 
scarring phenotype observed in cicatricial pemphigoid patients 
(56) (Figure 4). The development of novel ELISA kits to detect the 
autoantibodies against the ectodomain, or even ICD, is beneficial 
in diagnosing BP without NC16A domain (56, 128).

More novel animal models have been recently constructed, 
thus making it possible to determine the role of different 
domains. One of the animal models is the ΔNC14A mice, which 
have BP180 NC14A replaced with the homologous human 
BP180 NC16A epitope cluster region (129). BP lesion develops 
in these ΔNC14A mice after passive transfer of BP IgG (129). 
The NC14A region can also be genetically deleted in C57BL/6 
mice, which then have less amount of BP180 in skin but have 
normal ectodomain shedding (130). They spontaneously produce 
IgG and IgA autoantibodies against BP180 and present eosino-
philic infiltrations, as well as the clinical features of pruritus and 
crusted erosions (130). Hence, the ΔNC14A mice may be an ideal 
experimental model for investigating the early clinical changes in 
BP. However, in the absence of NC16A domain, it is impossible 
to explore the detailed functions of anti-NC16A autoantibodies. 
It is also presumed that the pruritus and eosinophils are associ-
ated with the ectodomain. Therefore, the ΔNC14A mice may be 
utilized as a model for the exploration of autoantibodies acting 
on the ICD or on the ectodomain. However, the mechanisms 
involved remain to be confirmed. Another animal model is the 
COL17-humanized mice, which can express human BP180, and 
it is suitable for the analysis of the pathogenesis of BP in humans 
(131). The spontaneous production of high titers of anti-BP180 
antibodies in blisters and erosions on erythematous skin lesions 
makes the observation of dynamic immune reactions possible. 
The pathogenicity of autoantibodies against ICD and ectodomain 
of BP180 remains unclear, and further studies are warranted. The 
development of novel ELISA system to detect such autoantibod-
ies is necessary (77).

igM AUTOANTiBODieS iN BP

An IgM-mediated BP has been recently reported (132, 133). Direct 
immunofluorescence microscopy showed that linear deposition  

of IgM can be found at the DEJ of 6–22% of BP patients  
(17, 134, 135). However, the target of IgM autoantibodies is 
unknown, and immunoblotting with recombinant protein of 
BP180 C-terminal domain showed multiple non-specific bands 
(136). IgM is mainly associated with BP caused by lupus ery-
thematosus (132); however, it is rarely associated with BP due 
to infections (137), macroglobulinemia (136, 138), and surgical 
factors (139). The presence of IgM autoantibodies seems to not 
influence the course or outcome of the disease; and the role of 
IgM autoantibodies in the pathophysiology of BP remains elusive.

THe CLeAvAge AND DePLeTiON OF 
BP180

Followed by various autoantibody-mediated inflammatory 
responses, the BP180 cleavage and depletion have been proposed 
as the terminal effect that causes reduced adhesion and blister for-
mation. In vitro, the cleavage and shedding of BP180 ectodomain 
is an event related to detachment, migration, proliferation, dif-
ferentiation, and wound healing of keratinocytes (50, 140–144). 
Generally, the cleaved ectodomain does not generate pathogenic 
epitopes. However, excessive cleavage, shedding, or depletion can 
lead to reduced adhesion and blister formation.

Bullous pemphigoid autoantibody-induced infiltration of mast 
cells, eosinophils, and neutrophils can lead to the production of 
various inflammatory factors and proteases that contribute to the 
induction of blister formation. Increased levels of IL-1β, IL-2, 
IL-4, IL-5, IL-6, IL-8, IL-10, IL-13, IL-17, IL-22, IL-23, IL-31, 
IL-36, interferon-γ, tumor necrosis factor (TNF)-α, transform-
ing growth factor-β, RANTES (regulated on activation, normal 
T  cell expressed and secreted), monocyte chemotactic protein 
1, interferon gamma-induced protein 10, and C-C chemokine 
ligand (CCL) 17 have been detected in skin lesions, serum, or 
blister fluid of BP patients (14, 19, 97, 145–150). In addition, C-C 
chemokine receptor 3 ligands, such as CCL 11, CCL13, CCL18, 
CCL26, and CCL28, have been shown to be increased in skin 
and/or sera of BP patients (43, 146, 151, 152). Increased levels 
of CCL1, CCL2, and chemokine C-X-C motif ligand-10 were 
detected in sera of BP patients (153, 154). Moreover, increasing 
data revealed their functional involvements in BP (97, 149, 151, 
153, 155–158) (Figure 5A). The proteases produced by inflamma-
tory cells are functionally involved as well (79, 159) (Figure 5B). 
The inflammatory cells can release mast cell protease (MCP)-4, 
matrix metalloproteinase (MMP)-9, neutrophil elastase (NE), 
plasmin, and eosinophil cationic protein (ECP), which cleave 
and degrade BP180, thus leading to dermal–epidermal separa-
tion and blister formation (20, 149, 157, 160–164) Pathogenic 
anti-BP180 IgG failed to induce subepidermal blistering in 
mice that were deficient in either NE or MMP-9 (89). MMP-9 
can regulate NE activity by inactivating α1-proteinase inhibitor 
(α1-PI) (159). Furthermore, α1-PI serves as a chemoattractant 
for neutrophils once it is cleaved and exacerbates tissue damage 
(165). MMP-9 can also cleave BP180 into small tripeptides Pro-
Gly-Pro, which significantly enhance neutrophil chemotaxis and 
NE release (149). These infiltrated cells also release IL-17, which 
significantly upregulates the production of MMP-9 and elastase in 
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FigURe 5 | The crosstalk networks of the inflammatory cells and the 
proteases. (A) The autoactive Th2 cells secrete type II cytokines, which act 
on macrophages, keratinocytes, and fibroblasts and induce the chemotaxis 
of mast cells. The mast cells produce various cytokines and chemokines, 
which act on the regulatory T (Treg) cells, neutrophils, Th2, eosinophils, and 
macrophages. All these inflammatory cells can release interleukin (IL)-17, 
which not only act on neutrophils and Th2 but also prompt inflammatory 
response and proteases release. (B) The keratinocytes synthesize tissue 
plasmogen activator (tPA), which activates plasmin followed by the activation 
of matrix metalloproteinase (MMP)-9. The eosinophil cationic protein (ECP) 
and mast cell protease (MCP)-4 can also activate MMP-9. MMP-9 inhibits 
production of α1-proteinase inhibitor (α1-PI) while promote generation of 
neutrophil elastase (NE). All these proteases act on BP180 and dermal–
epidermal junction (DEJ). The cleaved BP180 can release pro-gly-pro 
tripeptides and attract neutrophils.
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neutrophils (149, 166). The released IL-17 could, in turn, stimulate 
neutrophils to produce more IL-17 and form an amplified loop 
(167) (Figure 5A). Therefore, inflammatory factors and proteases 
induced by inflammatory cells play key roles in the cleavage and 
depletion of BP180, and targeting these inflammatory networks 
may be a promising therapeutic strategy in the treatment of BP.

However, BP180 cleavage may also occur in the absence of 
anti-BP180 autoantibodies (140). Such physiological cleavage is 
mediated by ADAMs (140). Our study further reveals that TNF-
like weak inducer of apoptosis (TWEAK), which is a multifaceted 
cytokine that participates in various skin inflammatory responses, 
can exacerbate the BP180 reduction and keratinocyte adhesion 
(19). Moreover, the effect of TWEAK on BP180 cleavage involves 
the activation of extracellular signal-regulated kinase and nuclear 
factor-κB pathways as well as the downstream ADAMs, in which 
ADAM 8, 9, 10, 15, and 17 have been suggested to participate in 
BP180 cleavage or BP development (19, 168, 169). We also found 
high expression of MMP-9, ADAM9, ADAM10, and ADAM17 
in BP lesions and in keratinocytes upon TWEAK/Fn14 activation 
(19). The upregulation of MMP-9 and ADAM10 is responsible for 
the shedding of membrane CD46, which further enhances BP180 
NC16A IgG-mediated complement activation and blister forma-
tion (82). Therefore, the role of TWEAK in BP development can 
be mainly ascribed to the abnormally high expression of ADAMs 
and other proteases. By considering the absence or insignificant 
expression of TWEAK in noninvolved skin, we conclude that 
TWEAK likely plays a secondary inflammatory role rather than 
being a primary participant (19, 170). Further investigations are 
required to establish the clear-cut function of TWEAK in BP.

POTeNTiAL THeRAPeUTiC TARgeTS

Considerable progress made by recent studies updated our 
understanding of BP pathogenesis. The availability of novel BP 
animal models provides important tools to further gain insights 
on the pathophysiology of the autoimmune disease. However, 
there is a limited progress regarding BP therapy. As BP180 is a 
molecule with multiple epitopes, a better insight on the mecha-
nisms of immune responses induced by binding of autoantibodies 
to BP180 on different epitopes is crucial for the design of novel 
and more specific therapeutic strategies for this life-threatening 
autoimmune disorder (Table 1).

The Recovery of immune Tolerance
Targeting immune tolerance is a coveted approach for the treat-
ment of various autoimmune diseases, as current treatment 
options often involve non-specific immunosuppression. BP is 
closely associated with the disturbance of self-tolerance, in which 
the reduction in Treg cells plays a key role. Therefore, the increase 
in Treg cells will help to recover immune tolerance and prevent 
BP development. Previously, recombinant IL-10 has been used to 
increase circulating Treg cells and to lower CD4+ T cells (171). 
The use of low-dose recombinant IL-2 could also induce sig-
nificant expansion of Treg cells in vivo and preferentially restore 
Treg cells (172). Low-dose IL-2-induced Treg cell proliferation 
is subsequently followed by increased programmed cell death 1 
(PD-1) expression (173). PD-1 inhibitor causes BP eruptions, thus 
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TABLe 1 | Potential treatment targets for bullous pemphigoid (BP).

Categories Targets Drugs or methods Potential effects Reference

Immune 
tolerance

Regulatory T 
(Treg) cells

Interleukin (IL)-10 Increasing Treg cells (171)

Low-dose IL-2 Inducing significant Treg cells expansion (172, 173)

Oxymatrine Upregulating FOXP3 Treg cells and reducing the production of tumor necrosis factor-α 
and IL-17A

(174)

BP180 NC16A Gene gun delivery of NC16a-
encoding DNA

Inducting tolerance of BP180 (175)

BP180 Lactic-co-glycolic acid 
nanoparticles

Inducing antigen-specific T cell tolerance (176)

B cells CD20 Rituximab Reducing all subclasses of immunoglobulin G (IgG) anti-BP180 autoantibodies (102, 177)

Rituximab and intravenous 
immunoglobulin

Producing a prolonged and sustained remission in patients with active and recalcitrant 
BP

(39, 178)

Calcineurin inhibitors Suppressing naive B cells (179)

T cells CD25 Anti-CD25 antibodies Targeting IL-2 receptor on activated T cells (180)
Calcineurin Calcineurin inhibitors Inhibiting nuclear factor of activated T cells and blocking T-cell-dependent production 

of IgG
(181)

CD4+ T cells IL-10 Lowering the number of circulating CD4+ T cells (171)

Co-stimulators BAFF–APRIL Tabaluma (anti-BAFF) Neutralizing autoreactive and memory B cells (182)

Anti-APRIL Anti-proliferation and reducing autoantibodies production (183, 184)

CD40–CD40L Anti-CD40 Regulating both innate and adaptive immunity and the activation of antigen-specific 
T cells

(185)

Autoantibodies IgG SM101 A soluble FcγR that competes with the interaction of IgG with membrane FcγRs (186)

IgE Omalizumab Inhibiting IgE binding to FcεRI (108)

Autoantibodies Immunoadsorption Declining the serum autoantibody levels (187, 188)

APRIL, a proliferation-inducing ligand; BAFF, B-cell activating factor.
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suggesting the value of targeting PD-1 upregulation in BP treat-
ment (102, 189). Oxymatrine, a monosomic alkaloid extracted 
from the Chinese herb Sophora flavescens Ait, can upregulate 
FOXP3+ Treg cells and reduce the production of TNF-α and 
IL-17A, thus aiding in the recovery of immune tolerance (174). 
Previously, nanotechnology is therapeutically used to inhibit the 
detrimental immune responses in autoimmunity through its 
direct immunosuppressive effect on antigen-presenting cells B 
and T cells, or indirectly by delivering compounds that result in 
immunotolerance (190). Gene gun delivery of NC16A-encoding 
DNA on gold particles results in Treg cell-mediated tolerance to 
BP180 (175). Antigen-coupled biodegradable poly (lactic-co-
glycolic acid) nanoparticles have been used to induce antigen-
specific T cell tolerance, which is a promising method that targets 
organ-specific BP (176). All aforementioned methods could 
improve immune tolerance and block the potential production 
of autoantibodies.

Therapeutic Prevention of excessive 
Antibody Production
Targeting the effector B and T  cells to prevent the production 
of “pathogenic” autoantibodies may be a promising method 
in BP treatment. Rituximab used for depleting CD20+ B  cells 
can reduce all subclasses of anti-BP180 IgG antibodies and has 
shown efficacy in case reports of patients with refractory BP 
(39, 177, 178). Autoreactive T cells are also associated with IgG 
autoantibodies production. Targeting autoreactive T cells using 

anti-CD25 antibodies and calcineurin inhibitors could modulate 
immune responses (181, 191). Anti-CD25 antibodies bind to 
high-affinity heterotrimeric IL-2 receptor on activated T  cells, 
block the IL-2/IL-2 receptor signaling, and inhibit the propaga-
tion of T  cell activation, thereby limiting the damaging effects 
of further T  cell recruitment in autoimmune diseases (180). 
Calcineurin can dephosphorylate and inhibit nuclear factors of 
activated T cells and regulate T-cell activation and differentiation 
(181). The inhibition of nuclear factors of activated T cells may 
directly suppress skin injuries by blocking T-cell-dependent pro-
duction of IgG, as IgG deposition is central to the development of 
bullae in BP. Additionally, the interaction between T and B cells 
needs co-stimulatory factors. Hence, targeting co-stimulatory 
molecules using special monoclonal antibodies could also dis-
rupt the interaction of T and B cells and block the synthesis of 
autoantibodies (182–185, 192). For pathogen-induced BP, the 
suppression of dendritic cell-mediated autoimmunity or toll-like 
receptor antagonist is also practicable (193, 194).

Neutralization of Pathogenic Antibodies
Immunoglobulin G autoantibodies are the main pathogenetic 
antibodies that act on FcγR to induce blister production. 
SM101, a soluble FcγR, competes with the interaction of IgG 
and membrane FcγRs and prevents the development of BP (186). 
Omalizumab, which targets IgE autoantibodies, can neutralize 
the activity of IgE in BP and control the disease activity (108). 
Furthermore, therapies targeting IgE–mast cells–eosinophils/
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basophils interaction may also demonstrate promising results 
in the treatment of BP (112). Moreover, immunoadsorption 
with high-affinity matrices that selectively bind to human IgG 
and IgE provides an alternative way of removing autoantibod-
ies (187, 195).

Prospective
Despite the complexity and diversity of the dermatosis, there is 
still hope for BP patients. Novel promising agents targeting dif-
ferent mechanisms of BP development are necessary. In addition, 
a multifactorial animal model for BP is warranted as well, and 
it should mimic not only the presence of specific pathogenic 
autoantibodies but also the additional triggers, such as environ-
mental factors, medications, comorbid conditions, and infec-
tions, in disease initiation. Furthermore, future investigations are 
required as there may be the presence of unidentified antigenic 
epitopes that are indispensable for disease development.

CONCLUSiON

Bullous pemphigoid has been regarded as a well-characterized, 
organ-specific, mainly anti-BP180 autoantibody-mediated 
blistering skin disorder. Both IgG and IgE play vital roles in 

BP development via complement-dependent or -independent 
inflammatory pathways. However, the roles of IgA and IgM are 
still uncertain, and further investigation is needed. Knowledge 
of the BP180 target sites and of the interaction between BP180 
and anti-BP180 autoantibodies is pivotal for the exploration of 
novel and more specific therapeutic methods so as to reduce 
BP morbidity and mortality. The translation of bench findings 
into bedside strategies for the treatment of this complex disease 
still remains to be a challenge. Although BP180-based therapy 
appears not to be close at hand yet, a better understanding of the 
role of BP180 would further approximate that to practice.
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