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Abstract
Purpose The study aims to evaluate the mid-term effects of carotid endarterectomy (CEA) on cognition and resting-state 
functional magnetic resonance imaging (rs-fMRI) using the Amplitude of Low Frequency Fluctuations (ALFF) technique.
Methods In this observational study, patients eligible for CEA were prospectively included. On the same day, within 1 week 
of the CEA procedure performed and 12 months after the CEA procedure, all patients underwent (i) an MRI examination 
for rs-fMRI analysis and (ii) a cognitive evaluation using the Italian version of the Mini-Mental State Examination (MMSE) 
corrected for age and schooling. Pre-CEA and post-CEA MMSE scores were evaluated using paired sample t-tests, adopt-
ing a p-value < 0.05 as statistical threshold. The ALFF technique was used for analyzing the differences between pre-CEA 
and post-CEA rs-fMRI scans in terms of regional neural activation. This was accomplished by applying non-parametric 
statistics based on randomization/permutation for cluster-level inferences, adopting a cluster-mass p-value corrected for false 
discovery < 0.05 for cluster threshold, and a p-uncorrected < 0.01 for the voxel threshold.
Results Twenty asymptomatic patients were enrolled. The mean MMSE score resulted improved following CEA procedure 
(p-value = 0.001). The ALFF analysis identified a single cluster of 6260 voxels of increased regional neural activity following 
CEA, and no cluster of reduced activity. The majority of voxels covered the right precentral gyrus, the right middle frontal 
gyrus, and the anterior division of the cingulate gyrus.
Conclusion Mid-term cognitive improvements observed after CEA are associated to increased regional neural activity of 
several cerebral regions.
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p-FDR  p-Value corrected for false discovery rate
p-FWE  Family wise corrected p-value
p-unc  Uncorrected p-value
PCC  Posterior cingulate cortex
rs-fMRI  Resting-state functional magnetic resonance 

imaging
TFE  Turbo Field Echo
TIA  Transient ischemic attack

Introduction

Ischemic stroke represents one of the main causes of mor-
bidity and mortality worldwide. Approximately 800,000 
strokes occur each year in the United States, and 87% of the 
cases are due to ischemic pathogenesis [1, 2]. Extracranial 
carotid artery stenosis is considered an important risk factor 
for ischemic stroke and transient ischemic attacks (TIAs) [3]. 
In particular, according to the European Society of Cardiol-
ogy (ESC) guidelines on peripheral artery disease, 10–15% 
of all strokes are caused by thromboembolism from patients 
with internal carotid artery (ICA) stenosis ranging from 50 
to 99% [4]. Further, several neuropsychological studies also 
evidenced that ICA stenosis is associated with impairment 
in neurocognitive functions [5, 6].

According to the current ESC guidelines [4], carotid 
revascularization by carotid endarterectomy (CEA) and 
carotid artery stenting (CAS) represents the treatment 
of choice for preventing stroke in patients with asympto-
matic patients with ICA stenosis 60–99% and symptomatic 
patients with 50–99% stenosis. Even if it has been and still 
it remains a matter of debate whether carotid revasculariza-
tion is associated or not with improvement of neurocogni-
tive deficits [7], recent studies such as the one by Carta MG 
et al. [8] and by Whooley JL et al. [9] suggest that non-
complicated CAS and CEA are associated with improve-
ments in neurocognitive function, in particular in younger 
patients with worse neuropsychological performances [10]. 
Although various hypotheses have been formulated, the bio-
logical mechanisms underlying these changes still remain 
largely unknown.

Rs-fMRI represent a useful tool for the analysis of neural 
activity and brain networking [11]. Using this technique, 
it has been possible to better understand the cerebral net-
working impairments underlying the cognitive deficits 
observed in patients with ICA stenosis [12]. From a clini-
cal point of view, this method of analysis could also give 
useful information for understanding the effects of carotid 
revascularization on the cerebral mechanisms underlying 
the changes observed on the higher neurological functions. 
For example, a recent study by Wang T et al. [13] showed 
that CAS is associated with improvements in cognition and 
memory, observing changes of the regional neural activity 

in rs-fMRI through the Amplitude of Low Frequency Fluc-
tuations (ALFF) technique. ALFF is a rs-fMRI technique 
widely used in research for the analysis of regional neural 
activity, and it measures the total power of the blood oxygen 
level dependent (BOLD) signal in the low-frequency range 
[11, 14], and it is characterized by high temporal stability 
and test–retest reliability [11, 15, 16].

Based on these previous studies, we hypothesized that the 
cognitive improvements observed following CEA procedure 
are accompanied by changes of neural activity in analogy to 
what observed for CAS. We tested this hypothesis by design-
ing an observational prospective study in which we analyzed 
the mid-term (12 months) effects of CEA on cognitive per-
formances and on neural activity through the ALFF tech-
nique in a cohort of asymptomatic patients eligible for CEA.

Institutional review board approval

Institutional review board approval was approved by local 
ethical committee.

Materials and methods

Study population

The institutional review board approved the study, in accord-
ance with the ethical standards as laid down in the 1964 Dec-
laration of Helsinki and its later amendments or comparable 
ethical standards. Consecutive patients with asymptomatic 
mono-lateral ICA stenosis eligible for CEA according to the 
European Society of Cardiology (ESC) guidelines [4] were 
enrolled at our university hospital in the period between 
September 2018 and December 2019; in particular, all the 
patients suffered of a unilateral stenosis ≥ 70% according to 
the North American Symptomatic Carotid Endarterectomy 
Trial (NASCET) index [17]. In analogy to previous studies 
[18, 19], patients with at least one of the following exclusion 
criteria were excluded from the recruitment: (a) not right-
handed dominant patients; (b) patients with medical history 
of severe systemic inherited or acquired disease (in particu-
lar symptomatic patients, i.e., patients with clinical history 
of amaurosis fugax, TIA and major stroke ipsilateral to the 
lesion [20], and patients with other severe psychiatric/neu-
rological diseases), except cognitive dysfunction; (c) con-
traindications for MRI examinations, such as the presence of 
non-compatible metallic devices; (d) presence of functional 
disability (values ≥ 2 according to modified Rankin scale 
[21]); and (e) patients with significant incidental patholo-
gies identified during the execution of the MRI scan.

All the patients gave their written informed consent 
before enrollment.

532 Neuroradiology (2022) 64:531–541



1 3

Cognitive assessment and MRI examination

The week before the CEA procedure, in the same day, all the 
patients performed the Italian version of the Mini-Mental 
State Examination (MMSE) corrected for age and schooling 
[22, 23] in order to evaluate the cognitive performances, and 
an MRI scan.

In analogy to previous studies [18, 19], a baseline 
(pre-CEA) MRI scan was performed with a 1.5-T Philips 
“Achieva dStream” scanner (Philips, Best, Netherlands), 
with a 16-channel head coil. The dedicated MRI scan proto-
col for resting state MR analysis included the following two 
sequences: (a) structural isotropic 3D T1-weighted Turbo 
Field Echo (TFE) sequence (TE = 3.43 ms, TR = 7.5 ms, 
flip angle = 8°, slice thickness = 1 mm, spacing between 
slices = 1 mm) and (b) resting state functional T2-weighted 
Echo-Planar Imaging (EPI) sequence (TE = 50  ms, 
TR = 3000 ms, flip angle = 90°, slice thickness = 5 mm, 
matrix: 80 × 80, volumes acquired: 326). Prior to the 
examination, all the patients were carefully instructed by 
the radiologist to follow technologist’s instructions dur-
ing MR examination; in particular it was recommended to 
keep the eyes closed without thinking of anything while in 
a fully relaxed state during the execution of the functional 
T2-weighted EPI sequence. The order of the sequences of 
the MRI protocol was the same for all the patients.

The follow-up (post-CEA) cognitive assessment and MRI 
examination, with the same MRI scanner and with the same 
modalities, were performed on the same day 12 months after 
CEA procedure.

MMSE scores analysis

A Kolmogorov–Smirnov normality test (with Lilliefors cor-
rection) was performed for verifying the normal distribu-
tion of pre-CEA and post-CEA MMSE scores, assuming a 
p-value = 0.2 as lower bound of the true significance. Once 
the normal distribution was verified, the pre-CEA and post-
CEA MMSE scores were compared with a paired sample 
t-test, adopting a p-value < 0.05 as statistical significance 
threshold. Both the Kolmogorov–Smirnov test and the 
paired sample t-test were calculated by using the SPSS 24 
statistical package (SPSS Inc., Chicago, IL).

fMRI analysis

The fMRI analysis was made on the Matlab platform 
vR2020b (Mathworks, Inc., CA, USA) with the CONN-
fMRI fc toolbox v20b [24] based on the SPM 12 package 
(Wellcome Department of Imaging Neuroscience, London, 
UK; http:// www. fil. ion. ucl. ac. uk/ spm/).

Similarly to previous studies [18, 19], structural 3D 
T1-weighted TFE and functional T2-weighted EPI sequences 

were pre-processed according to the CONN’s default pipe-
line for volume-based analysis with the following steps: (a) 
functional realignment and unwarping, followed by slice-
timing correction; (b) functional outlier detection with 
intermediate settings (97th percentile in normative sample 
in functional outlier detection system: global-signal z-value 
threshold = 5 standard deviations; subject-motion thresh-
old = 0.9 mm);(c) functional and structural direct segmen-
tation of grey matter, white matter and cerebrospinal fluid, 
and subsequent normalization to Montreal Neurological 
Institute (MNI) exploiting the default tissue probability 
maps (structural target resolution = 1 mm; functional target 
resolution = 2 mm), and (d) functional smoothing with 8-mm 
full width half maximum Gaussian kernel filter.

The first 5 volumes of T2-weighted EPI sequence were 
excluded from analysis in order to limit the potential bias 
derived by the attainment of the steady state magnetiza-
tion [25]. Subsequently, the following denoising steps were 
applied in order to minimize the residual non-neural vari-
ability of functional data: (a) linear regression of potential 
confounding effects, including BOLD signals recorded in 
cerebrospinal fluid and white matter [18, 19, 26], estimated 
subject-motion specifications, and identified outlier scans for 
the “scrubbing” procedure [27] and (b) temporal band-pass 
filtering (0.008 to 0.09 Hz) for decreasing noise effects and 
low-frequency drift [18, 19].

ALFF maps were created by computing for each indi-
vidual voxel the root mean square of BOLD signal in the low 
frequency range (0.008 to 0.09 Hz) [14, 28]. The General 
Linear Model (GLM) was applied in the second-level group 
analysis for identifying statistically significant changes of 
BOLD signal following CEA by exploiting a paired t-test, 
using pre-CEA and post-CEA scans for between-condition 
contrast. Non-parametric statistics based on randomization/
permutation was used for cluster-level inferences using 1000 
permutation iterations of the original data, adopting a clus-
ter-mass p-value corrected for false discovery (cluster-mass 
p-FDR) < 0.05 for cluster threshold and a p-uncorrected 
(p-unc) < 0.01 for voxel threshold [28–31].

The mapping of brain regions was made by using the 
CONN’s default atlas; in particular the Harvard–Oxford 
atlas [32] was adopted for cortical and subcortical regions, 
and the Automated Anatomical Labeling (AAL) atlas [33] 
for the cerebellar regions (Supplementary table 1).

Results

Study population

The final study population consisted of 20 asympto-
matic patients, 14 males and 6 females (overall mean 
age = 75.09; mean age female group = 73.33; mean age 
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male group = 74.45). CEA procedures were performed in 
the right side in 11 patients, whereas on the left side in 9 
cases. None of the patients met the exclusion criteria above 
mentioned; in particular no incidental pathologic findings 
were detected during the execution of the baseline MRI scan. 
No procedural or peri-procedural complications following 
CEA, and the clinical course between the baseline and the 
follow-up assessment was uneventful. The demographic data 
are reported in Table 1.

Cognitive assessment

Kolmogorov–Smirnov normality test (with Lilliefors cor-
rection) confirmed the normal distribution of both pre-
CEA and post-CEA MMSE scores (p-value for pre-CEA 
MMSE scores = 0.111; p-value for post-CEA MMSE 
scores = 0.109). The paired sample t-test revealed statisti-
cally significant differences between the pre-CEA and the 
post-CEA MMSE scores (p-value = 0.001): in particular, 
the mean pre-CEA MMSE score was 19.62 (minimum 
value = 12.7; maximum value = 27.7) and the mean post-
CEA MMSE score was 24.17 (minimum value = 20.4; maxi-
mum value = 28.4). The full statistics of the paired sample 
t-test are reported in Tables 2 and 3 and in Fig. 1.

fMRI analysis

The quality control data of the study population follow-
ing rs-fMRI preprocessing are reported in Supplementary 

table 2. The ALFF analysis evidenced the presence of a sin-
gle cluster of voxels of increased regional neural activity 
following CEA procedure and no cluster of reduced activity. 
In particular, the cluster of increased activity consisted of 
6260 voxels (cluster mass p-FDR = 0.004704). The majority 
of voxels identified in the analysis covered the right precen-
tral gyrus (574 voxels, i.e., the 9% of the total amount), the 
middle frontal gyrus (457 voxels, i.e., the 7% of the total 
amount), and the anterior division of the cingulate gyrus 
(299 voxels, i.e., the 5% of the total amount). The complete 
statistics are reported in Table 4 and a visual representation 
is reported in Figs. 2 and 3.

Discussion

The role of CEA in stroke prevention has been extensively 
studied in literature [4], but less is known about the effects 
of this procedure on the higher neurological functions brain 
activity. The comprehension of the neural adaptive mecha-
nisms following the CEA procedure could be of interest for 
understanding the possible role of this procedure not only in 
prevention of stroke, but also as a therapy for neurocognitive 
impairment in selected patients with ICA stenosis.

According to this idea, we explored in this study the 
impact of CEA on mid-term (12 months) cognitive perfor-
mances and on regional neural activity changes with the 
ALFF method. Regarding the cognitive performances, we 
demonstrated that CEA was associated with statistically 
significant improvements in MMSE score, and the ALFF 
analysis evidenced increased ALFF signal in several areas 
of the brain, in particular in the right precentral gyrus, 
right middle frontal gyrus, and the anterior cingulate cor-
tex (ACC). To the best of our knowledge, this is the first 
longitudinal study that used ALFF to investigate the mid-
term arrangements in regional neural activity after CEA 
treatment. The ALFF technique is a functional segregation 
method of analysis of rs-fMRI data that allows to evaluate 

Table 1  Population study - Demographic data

Population study - Demographic data

Number of patients Males 14
Females 6
Overall 20

Mean age Males 74.45
Females 73.33
Overall 75.09

Side of ICA stenosis treated with 
CEA

Right 11
Left 9

Table 2  Paired sample t-test — statistics of pre-CEA and post-CEA 
MMSE scores

Paired Sample t test — statistics

Pre-CEA Post-CEA

Mean score 19.62 24.17
Number of samples 20 20
Standard deviation 4.4027 2.59982
Standard error of mean 0.98447 0.58134

Table 3  Paired sample t-test — pair differences between pre-CEA 
and post-CEA MMSE scores

Paired sample t-test — pair differences between pre-CEA and post-
CEA MMSE scores

Mean score improvement 4.55
Standard deviation 3.27711
Standard error of mean 0.73278
95% confidence interval of the 

difference
Lower bound 6.08374
Upper bound 3.01626

t-value 6.209
Degrees of freedom 19
p-value  < 0.001
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the regional neural activity, and this technique of analy-
sis was considered fit for the aim of prospective research 
because of its high temporal stability and test–retest reli-
ability [11, 15, 16], as we have already underlined in the 
introduction.

For better understanding these findings, it is useful to 
resume the principal scientific evidences derived from lit-
erature regarding the association between extracranial ICA 
stenosis, cognitive impairment, and anatomical and func-
tional rearrangements of the brain, as well as the effects 
of CEA on cognition and brain activity evaluated by using 
the rs-fMRI technique.

Regarding the first point, the literature tends to confirm 
that extracranial ICA stenosis is associated with cognitive 
impairment [12]. The cognitive deficit observed in these 
patients could be attributed, at least partly, to the dysfunction 
of brain networking following a complex series of vascular 
rearrangements and structural changes of the brain [12]. In 
their research, Cheng HL et al. [34] compared a group of 17 
patients with ≥ 70% asymptomatic unilateral ICA stenosis 
with 26 healthy controls utilizing a comprehensive neu-
ropsychological battery and multimodality neuroimaging 
including diffusion tensor imaging (DTI) and rs-fMRI. The 
authors found for the first-time distinct patterns of network 
disruption that correlate with cognitive fragility in patients 
with asymptomatic ICA stenosis. In particular, the subjects 

with ICA stenosis showed reduced whole-brain fractional 
anisotropy at the DTI analysis, indicative of generalized 
white matter degeneration; further, at the rs-fMRI analy-
sis they showed also regional specific disruption of default 
mode network (DMN), involved in memory and in recol-
lection of prior experiences [35], and in the fronto-parietal 
network, a flexible hub for cognitive control, correlated with 
fluid intelligence [36]. In addition, a study conducted by 
Lin CJ et al. [37] supports the idea that cognitive decline in 
stroke-free individuals with severe ICA stenosis may arise 
from nonselective widespread disconnections of long-range, 
predominantly interhemispheric non-hippocampal pathways. 
Furthermore, connectivity measures may serve as both pre-
dictors for cases at risk and therapeutic targets for mitigat-
ing vascular cognitive impairment [37]. In this sense, it is 
noteworthy to mention the recent study by Wang T et al. 
[20], which postulated that asymptomatic patients with ICA 
stenosis had cognitive impairment in tests of executive func-
tion, psychomotor speed, and memory. This suggests that, 
although patients with carotid stenosis could be “asymp-
tomatic” because of the absence of history of neurologi-
cal deficits such as amaurosis fugax, TIA, or major stroke 
ipsilateral to the side of ICA stenosis [20], they may not be 
truly asymptomatic from a neurocognitive point of view. 
In particular, the prolonged cerebral hypoperfusion due to 
the presence of ICA stenosis could induce abnormalities in 

Fig. 1  Box plots evidencing the 
differences between pre-CEA 
and post-CEA MMSE scores
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neuron electron activity and protein synthesis leading to cog-
nitive impairment [12, 37]. These observations are sustained 
by the results of their study, in which asymptomatic patients 
with ICA stenosis and cognitive impairments, when com-
pared to healthy controls, showed reduced cerebral blood 
flow in the left inferior frontal gyrus. This was measured 
with the pulsed arterial spin labeling technique, altered 
N-acetil-aspartate/creatinine ratio in the left hippocampus 
at the proton MRI spectroscopy, and reduced regional neural 
activity measured with the ALFF technique in the left and 
right supra medial frontal lobes associated with decreased 
connectivity to the posterior division of the cingulate cortex 
(PCC) in the anterior part of DMN [37].

Regarding the second point, both the carotid revasculari-
zation treatments, CEA and the CAS, are linked to long-term 
cognitive improvements [38]. Some studies tried to verify if 
there are differences between CEA and CAS effect on cogni-
tion; although carotid revascularization results in an overall 
improvement in cognitive function, there are no differences 
in the composite scores of five major cognitive domains 
between CEA and CAS [39]. Further, these evidences have 
been confirmed by a more recent study published in 2020 
by Huang P et al. [40], which support the idea that CAS and 

CEA are effective in improving the cognitive function of 
patients with carotid stenosis, with no significant difference 
between them. From a functional point of view, it has been 
also demonstrated in previous studies that both CAS and 
CEA are associated to short-term changes in brain activ-
ity identifiable with the rs-fMRI technique [18, 41]. For 
example, Wang T et al. [14] demonstrated that 3 months 
after CAS patients showed increased regional neural activ-
ity of the right precentral gyrus measured with ALFF and 
increased connectivity of the PCC in the right suprafrontal 
gyrus. Porcu M et al. [18] detected a reorganization of the 
brain networks following CEA procedure (3–6 months after 
the procedure), mostly expressed in terms of increased con-
nectivity between several areas of the brain. This included 
the medial prefrontal cortex, a pivotal area of the DMN. 
These rearrangements of the brain activity could also be 
partly explained by improved myelination of the white mat-
ter fibers, as evidenced by Sato Y et al. [41]. The authors 
further observed using DTI an improvement of the mean 
values of fractional anisotropy of the white matter located in 
the hemisphere ipsilateral to surgery and in the contralateral 
anterior cerebral artery territory. A subsequent connectom-
etry study by Porcu M et al. [42] showed that the short-term 

Table.4  Results of ALFF analysis based on randomization/permutation method [29] p-FWE family wise error corrected p-value, p-FDR p-value 
corrected for false discovery rate, p-unc p-value uncorrected.

ALFF analysis

Cluster
(x,y,z)

Cluster size 
(voxels)

Cluster size 
p-FWE

Cluster size 
p-FDR

Cluster size 
p-unc

Cluster mass Cluster mass 
p-FWE

Cluster mass 
p-FDR

Cluster mass 
p-unc

 + 14, − 16, + 46 6260 0.005000 0.003776 0.000026 72978.20 0.006000 0.004704 0.000032
Voxels identified and relative brain areas
• 574 voxels (9%) covering 13% of atlas.PreCG r (precentral gyrus right)
• 457 voxels (7%) covering 17% of atlas.MidFG r (middle frontal gyrus right)
• 299 voxels (5%) covering 12% of atlas.AC (cingulate gyrus, anterior division)
• 280 voxels (4%) covering 9% of atlas.PostCG r (postcentral gyrus right)
• 273 voxels (4%) covering 7% of atlas.PostCG l (postcentral gyrus left)
• 203 voxels (3%) covering 32% of atlas.SMA L(juxtapositional lobule cortex — formerly supplementary motor cortex — left)
• 173 voxels (3%) covering 12% of atlas.SPL r (superior parietal lobule right)
• 161 voxels (3%) covering 23% of atlas.SMA r (juxtapositional lobule cortex — formerly supplementary motor cortex — right)
• 145 voxels (2%) covering 5% of atlas.SFG l (superior frontal gyrus left)
• 138 voxels (2%) covering 3% of atlas.PreCG l (precentral gyrus left)
• 132 voxels (2%) covering 10% of atlas.PaCiG l (paracingulate gyrus left)
• 118 voxels (2%) covering 5% of atlas.PC (cingulate gyrus, posterior division)
• 88 voxels (1%) covering 6% of atlas.SPL l (superior parietal lobule left)
• 76 voxels (1%) covering 6% of atlas.PaCiG r (paracingulate gyrus right)
• 59 voxels (1%) covering 2% of atlas.SFG r (superior frontal gyrus right)
• 28 voxels (0%) covering 1% of atlas.sLOC r (lateral occipital cortex, superior division right)
• 26 voxels (0%) covering 0% of atlas.FP r (frontal pole right)
• 26 voxels (0%) covering 3% of atlas.aSMG r (supramarginal gyrus, anterior division right)
• 21 voxels (0%) covering 3% of atlas.IFG oper r (inferior frontal gyrus, pars opercularis right)
• 16 voxels (0%) covering 3% of atlas.IFG tri r (inferior frontal gyrus, pars triangularis right)
• 8 voxels (0%) covering 3% of atlas.FO r (frontal operculum cortex right)
• 4 voxels (0%) covering 0% of atlas.Precuneous (precuneous cortex)
• 3 voxels (0%) covering 0% of atlas.AG r (angular gyrus right)
• 1 voxels (0%) covering 0% of atlas.pSMG r (supramarginal gyrus, posterior division right)
• 2951 voxels (47%) covering 1% of atlas.not-labeled
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changes in interhemispheric local connectivity in the corpus 
callosum and cerebellum following CEA tend to confirm 
this hypothesis.

In our research we observed that asymptomatic patients 
following CEA showed significant improvement of the 
cognitive performances measured by MMSE. The statisti-
cally significant improvement in MMSE scores in the mid-
term analysis (12 months) supports the hypothesis that the 
improvements in cerebral perfusion following the CEA 
procedure led to better cognitive performances and are in 
line with the findings from literature [7–10]. Regarding the 
rs-fMRI analysis, it is noteworthy that our findings are con-
cordant to those found by Wang T et al. [14]. In fact, despite 
the different number of subjects analyzed, the different scan 
acquisition modalities, and the different revascularization 
procedure (CAS versus CEA), our research showed that 
the right precentral gyrus showed increased regional neu-
ral activity following revascularization. Right precentral 
gyrus is the traditionally implicated in motor control, but 
according to the recent study of Tomasino B et al. [43], it is 
probable that this area, as well as the contralateral, is also 

implicated in higher cognitive tasks (motor imagery, work-
ing memory, emotion/empathy, and language), likely as a 
product of implicit mental simulation processing.

Among the other areas that showed to be more activated 
following CEA procedure, it is noteworthy to mention the 
right middle frontal gyrus, which has been proposed to have 
a role in reorienting attention, working as a circuit-breaker 
in order to interrupt ongoing endogenous attention processes 
[44], and both ACC, a pivotal component of the salience net-
work (SN) [45], and PCC, a pivotal component of the DMN 
[35]. The cingulate cortex is a highly connected and meta-
bolically active brain region [45]. Several studies have sug-
gested that this structure has an important role in cognitive 
function [45]. The region is typically discussed as having 
a unitary function because of a common pattern of relative 
deactivation observed during attentionally demanding tasks 
[45]. One influential hypothesis is that the PCC has a central 
role in supporting internally-directed cognition [46]. It has 
a key node in the DMN and shows increased activity when 
individuals retrieve autobiographical memories or when they 
plan future activities, as well as during unconstrained “rest” 

Fig. 2  Results of the ALFF analysis (neurological orientation). The orangish areas represent areas of increased regional activation following 
carotid endarterectomy. The complete composition of the cluster of increased regional neural activity is reported in Table 4
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when activity in the brain is “free-wheeling” [47]. Regarding 
ACC, several papers have sustained that this region plays a 
key role in mitigating the competition that arises from two 
simultaneously active signals [48]. Few papers have demon-
strated that ACC is necessary for behavioral flexibility, and 
they have shown that ACC acts by modulating downstream 
brain regions such as the dorsal medial striatum, a cerebral 
region that encode action plans necessary for task comple-
tion [49]. Finally, dorsal anterior cingulate cortex (dACC) is 
a core structure for the governing of cognitive control, and 
recent studies have shown that interindividual differences 
in dACC anatomy are associated with corresponding differ-
ences in the ability for cognitive control [50].

Understanding cingulate cortex function is likely to be 
of clinical importance, despite the fact that to the best of 
our knowledge few neuropsychological researches have ana-
lyzed the cognitive consequences of focal lesions on ACC 
and PCC; however, it has been demonstrated that strokes 
around the posteromedial cortex produce an amnestic syn-
drome, which may result in part from damage to both the 
retrosplenial cortex and PCC [51]. It is a matter of fact that 
an enormous number of papers described a decrease of func-
tion in PCC and ACC, especially in neurodegenerative and 
neurodevelopmental disease as Parkinson disease, demen-
tia, and autism [52–54]. In our paper instead, we have been 
able to demonstrate an activation of ACC and PCC linked 

to a statistically significant improvement of neurocognitive 
performances after CEA.

Although the partial knowledge of the mechanisms under-
lying neurocognition limits the interpretation of our results, 
it is reasonable to conclude that the cognitive improvements 
observed after CEA, in analogy to what seen for CAS [41], 
are partly determined by a reassessment of regional neu-
ral activity of several brain areas. These findings tend to 
confirm the trend observed in literature, in particular the 
hypothesis that the improved cerebral perfusion following 
revascularization procedures induces a series of rearrange-
ments of brain activity and networking that could explain 
the observed improvements in cognitive performances [18, 
40, 42].

Finally, we also speculate that CEA could influence not 
only cognition, but also other cerebral functions, such as 
motor and visual functions. For example, in 2019 Yan J 
et al. [55] produced a scientific paper about the connection 
between sight function and carotid revascularization; before 
this publication, specific changes in visual function before 
and after CEA were not well understood, but in this paper 
the authors were able to demonstrate that an improvement in 
carotid artery and ophthalmic artery blood flow after CEA 
does indeed enhance subjective and objective assessments 
of visual function in patients with carotid artery stenosis. 
Another example in this sense is the recent research by Sato 
S et al. [56], in which the authors demonstrated that the 

Fig. 3  Results of the ALFF 
analysis (three-dimensional 
reconstruction). The orang-
ish areas represent areas of 
increased regional activation 
following carotid endarterec-
tomy. The complete composi-
tion of the cluster of increased 
regional neural activity is 
reported in Table 4
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improvements in gait function observed after CEA are linked 
with postoperative recovery in perfusion and neurotransmit-
ter receptor function in the motor-related cerebral cortex.

In conclusion, these data could enlighten new opportu-
nity for patient affected by carotid stenosis and cognitive 
impairment, and might suggest new indication for surgical 
and endovascular treatment of carotid stenosis. Nonetheless, 
this was beyond the goal of our study, and future researches 
are needed to test this hypothesis.

We acknowledge significant limitations in our current 
study. The first one is the small cohort size; in particular, 
with this small number of cases we were not allowed to 
evaluate whether and how confounding factors such as the 
laterality of the CEA procedure or the variations in the con-
figuration of the circle of Willis influence the ALFF signal. 
However, our aim was to explore the potential role of ALFF 
evaluation technique in the study of brain responses after 
CEA in patient with severe ICA stenosis. The second limita-
tion is the use of MMSE as the only test for the evaluation of 
the patients’ cognitive function and impairment. However, 
similar to Grunald IQ et al. [57], even if MMSE is not the 
sole optimal test for cognitive analysis in patients with ICA 
stenosis, it was used as preferential test for its ease use in 
order to give general indications on the trend for neurocog-
nitive performance before and after the surgical procedure, 
according also to the exploratory nature of the study. Lastly, 
a potential technical limit could be represented also by the 
fact that the order of sequence acquisition was not rand-
omized to minimize confounds. Future studies with larger 
randomized populations, supported by the use of other tests 
for the analysis of the whole aspects of cognition, included 
for example the California’s verbal learning test for memory 
[58] and the trail making test [59] for executive functioning, 
will be necessary to further expand and enforce the model, 
and to evaluate the role of revascularization procedures not 
only for the prevention of stroke, but also for the treatment 
of neurocognitive deficits associated to ICA stenosis.

Conclusions

This prospective observational study analyzed the mid-term 
effects of CEA on neurocognitive status and regional neural 
activity on rs-fMRI using the ALFF technique in asympto-
matic patients with severe ICA stenosis. The results support 
the hypothesis that the cognitive improvement observed after 
CEA could be related to increased regional neural activity 
of several brain area. Our results could represent a starting 
point to re-think the role of carotid revascularization not 
only for stroke prevention, but also for treatment of cognitive 
deficits in selected patients.
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