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Abstract: The utilization of graphene-based nanomaterials combined with magnetic nanopar-

ticles offers key benefits in the modern biomedicine. In this minireview, we focus on the most 

recent advances in hybrids of magnetic graphene derivatives for biomedical applications. We 

initially analyze the several methodologies employed for the preparation of graphene-based 

composites with magnetic nanoparticles, more specifically the kind of linkage between the 

two components. In the last section, we focus on the biomedical applications where these 

magnetic-graphene hybrids are essential and pay special attention on how the addition of gra-

phene improves the resulting devices in magnetic resonance imaging, controlled drug deliv-

ery, magnetic photothermal therapy and cellular separation and isolation. Finally, we high-

light the use of these magnetic hybrids as multifunctional material that will lead to a next gen-

eration of theranostics. 

Keywords: Graphene, graphene derivatives, magnetic nanoparticles, biomedical application, magnetic resonance 

imaging, drug delivery, photothermal therapy, cellular separation. 

1. INTRODUCTION 

The recent discovery of grapheme [1] has produced 

broad research attention to explore the possibilities of 

this new material in biomedical applications, mainly 

due to the characteristic structure and the extraordinary 

set of physicochemical properties [2]. Graphene is a 

single atomic layer of sp
2
 carbon atoms arranged in a 

honeycomb lattice of nanometer dimensions. Besides, 

various derivatives of graphene can also be defined, in 

relation to the number of layers, layer dimensions and 

amount of oxygen present in the graphene structure [3]. 

In this way, in addition to graphene, other graphene-

based materials (GBMs) of high importance in bio-

medical applications appear: graphene oxide (GO), re-

duced graphene oxide (rGO) and graphene quantum 

dots (GQDs). GO material is considered a graphene 

derivative with large amount of oxygen-containing 

groups, mainly epoxy, carbonyl and hydroxyl groups,  
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while rGO is the reduced form of GO [4]. On the other 

hand, GQDs consist of quasi-spherical graphene 

nanoparticles with layer dimensions of less than 10 

nanometers and showing a graphene quantum effect 

[5]. 

Magnetic nanoparticles (MNPs) have been used in 

biomedical applications such as biosensing, drug deliv-

ery, hyperthermia, magnetic resonance imaging (MRI) 

and cellular capture [6]. Iron oxide nanoparticles 

(IONPs) are among the most used nanoparticles for 

magnetic applications [7]. Depending on their size, 

IONPs can be divided in: i) superparamagnetic 

(SPION), when sizes are larger than 50nm; ii) ultras-

mall (USPION), with sizes below 50 nm; and iii) mi-

cron-sized (MPION), which are almost macroscopic 

with sizes above 1 μm. However, MNPs present sev-

eral limitations: for instance, they tend to aggregate and 

precipitate inside the biological vessels, thus reducing 

their stability, biocompatibility and efficiency. The 

combination of MNPs with carbon-based nanostruc-

tures has recently attracted huge interest in biomedicine 

because the resulting hybrids allow to overcome the 
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MNP limitations and take advantage of the intrinsic 

properties of both materials [8]. The controlled growth 

of these IONPs on any of the forms of graphene sur-

faces (G, GO, rGO and GQD) opens the door to a new 

set of materials with enhanced efficiency in the com-

mon bioapplications of MNPs, mainly in the area of 

diagnosis and the treatment of cancer cells. The large 

surface area of graphene makes these nanoparticles 

effective drug carriers [9], while the magnetic proper-

ties from the IONPs convert them as contrast agents for 

MRI [10]. Graphene-based hybrids with MNPs are a 

research trend that has been increasing in the last few 

years (Fig. 1). 

 

Fig. (1). Number of articles published since 2007 to mid-

2016 based on “graphene” and “magnetic nanoparticles”, 

according to Web of Knowledge database. 

Several reviews have been published, collecting the 

application of the different carbon nanomaterials with 

MNPs in biomedicine [11]. Accordingly, this minire-

view will focus only on the latest developments in 

biomedical applications using hybrids based on MNPs 

with “young” carbon nanoforms, such as GBMs. Par-

ticularly, we will highlight the application of GBM-

MNP hybrids in MRI, drug delivery, photothermal 

therapy (PTT) and cellular uptake and isolation. Fur-

thermore, we will pay special attention to multifunc-

tional GBM-MNP hybrids within the above-mentioned 

applications. 

2. PREPARATION OF GBM-MNP HYBRIDS 

The preparation of GBM-MNP hybrids involves the 

modification of graphene materials. There are two main 

strategies to derivatize GBMs: the covalent and the 

non-covalent approach [2c,4,12]. In particular, covalent 

functionalization is the most frequently employed route 

to modify carbon materials, as this methodology yields 

products of high stability over time. It is carried out by 

several methods: the formation of covalent bonds by 

radical and cycloaddition reactions at sp2
 carbon bonds 

and the formation of covalent attachment through 

modification of oxygenated functional groups. On the 

other hand, non-covalent modifications mainly include 

hydrophobic and Van der Waals forces, electrostatic 

interaction, hydrogen bonding, and π -π stacking inter-

action. 

The synthesis of GBM-MNP hybrids can be catego-

rized under two main approaches: ex situ and in situ 

methods [11d, 11e]. The former involves a previous 

synthesis of MNPs and their subsequent attachment on 

graphene surfaces by either covalent or non covalent 

modification. This approach may also imply a previous 

chemical functionalization of both materials [13]. 

However, the most employed methodology is the in 
situ deposition of MNPs on graphene material. The 

commonly used MNP precursors are inorganic salts 

[14] and mineral sources, such as magnetite [15]. Re-

lated to the carbon component of hybrids, oxidized 

graphene materials are excellent platforms for this pur-

pose, as the presence of defects and oxygenated groups 

favors the growth and attachment of MNPs. 

3. BIOMEDICAL APPLICATION OF THE MAG-

NETIC GRAPHENE 

It is well known that any kind of nanoparticles can 

be delivered to tumoral tissue in two modes: (i) via ac-

tive targeting, where the NPs are functionalized with 

antibodies and peptides with high affinity to the spe-

cific tumor cells receptors; (ii) through passive target-

ing, according to which positively charged NPs accu-

mulate at tumor sites due to the leaky vasculature and 

low functional immune system of the area [9]. In any 

case, the accumulation depends on the nanometer size, 

the pore diameters of the tumor surfaces, the blood cir-

culation half-life and the degree of tumor vasculariza-

tion. 

3.1. Magnetic Resonance Imaging 

The inherent magnetic properties of IONPs make 

them excellent contrast agents for MRI. However, 

these nanoparticles tend to aggregate and precipitate 

inside the body vessels, thus reducing the circulation 

time in blood and the efficiency as contrast agents for 

long period imaging. As a solution, graphene-based 

materials have been employed as a support material to 

anchor IONPs and enhance the physiological stability 

of the contrast agent [13a,15a]. Indeed, it was observed 

that the aggregation of IONPs on GO surface improved 
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significantly the T2 relaxivity of the system in compari-

son to the IONPs alone (Fig. 2).  

The first cellular imaging test using aminodextran-

coated IONPs on GO sheets was reported in 2011 by 

Chen et al (Fig. 2) [16]. However, further enhancement 

of the T2 relaxivities was desired, in order to apply such 

hybrids into MRI cellular labeling in vivo. In this line, 

Venkatesha and co-workers demonstrated the impor-

tance of the arrangement of the IONPs on the GO sur-

face in GO-IONP hybrids in order to control the trans-

verse proton relaxivity [17]. The authors observed that 

high amounts of carboxyl groups and a large number of 

IONPs enhanced the relaxivity value, and concluded 

that such tendency is due to a synergistic effect be-

tween the reduction of GO and the arrangement of 

IONPs. Chen and co-workers developed a new method 

to assemble nanoparticles in several morphologies and 

composition onto GO sheets [18]. They demonstrated 

that the in situ growth of β-FeOOH nanorods onto 

PEG-GO sheets enhance the transverse relaxivity up to 

60 times in comparison to the β-FeOOH-based contrast 

agents alone. Further studies demonstrated that even at 

low iron concentrations in the IONPs-PEG-GO nano-

composites, the cellular MRI is always improved [13a]. 

In summary, there are plenty of studies demonstrat-

ing that the presence of graphene-based nanomaterials 

as contrast agents always enhance the MRI signal, 

which can be tuned by controlling the aggregation of 

the MNPs on the graphene framework.  

3.2. Controlled-release Drug Delivery Nanocarriers 

In the recent years, graphene-IO hybrids have been 

extensively used for drug release in tumor cells and 

tissues. The functional groups of GO and RGO have 

been confirmed to allow higher loadings, since their  

 

large surface area allows supporting large amounts of 

drug [11a, 11d]. However, not only achieving a high 

drug loading is important for a successful therapeutic 

effect, but also delivering it to the desired cell or tissue. 

The superparamagnetic properties of IO are useful here 

to provide guiding and targeting of the delivery using 

an external magnetic field and MRI. In summary, gra-

phene-IO hybrids benefit the drug delivery in terms of 

higher loading and controlled deliveries over graphene 

or IONPs alone, thus improving the efficiency of the 

final system.  

Doxorubin (DOX) has been regularly used as a 

chemotherapeutic agent due to its strong cell-killing 

ability. However, DOX use for cancer treatment is lim-

ited, due to its toxic effects. In order to increase the 

efficacy of this kind of antitumor drugs and reduce its 

toxicity, it is mandatory to deliver the drugs directly to 

its target and maintain its concentration during the 

therapeutic time [19]. Controlled-release nanosystems 

for drug delivery have become the most promising 

nanocarriers for therapeutics. Such control is a key fea-

ture that can be achieved using switchable gates around 

the nanocomposite that can be sequentially opened and 

closed by specific stimuli, such as temperature, pH or 

light. In this line, Yang and co-workers prepared the 

first superparamagnetic GO-IONP hybrid with pH-

triggered control for controlled targeted drug delivery 

[20]. In this work, the authors loaded the hybrid system 

with DOX anticancer agent through physical absorp-

tion on the GO surface to test their binding and deliv-

ery properties. In addition, due to the inherent optical 

absorbance of GO in the NIR region, the hybrid was 

also proposed for photothermal therapy (PTT). In 2013, 

Balcioglu et al. further developed this hybrid by adding 

AuNPs, resulting in an improvement of the DOX en-

capsulation [21]. 

Fig. (2). T2 weighted MR images: HeLa cells incubated with the IONPs-GO hybrids at different concentrations (A) and at dif-

ferent cell densities (B) for 24h. Reprinted from Ref. [16], Copyright 2011 American Chemical Society. 
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Wang et al. incorporated chitosan onto rGO-

SPIONs nanosheets to improve their stability, solubil-

ity and biocompatibility for cancer chemotherapy and 

gene therapy [22]. The resulting nanocarrier demon-

strated an efficient drug loading capacity, pH-

dependent release and good cytotoxicity. DOX was 

then absorbed on the surface and the resultant compos-

ite was encapsulated with a reporter DNA sequence 

and a green fluorescent protein (GFP) through their 

interaction with the positively charged chitosan. The 

delivery of both DOX and DNA was studied in vitro 

and in tumor bearing mice and followed through MRI, 

and the results demonstrated that the final composite 

DOX-(chitosan magnetic-G)-GFP-DNA was highly 

distributed along the tumor site. Furthermore, toxicity 

studies confirmed that there was no body weight loss of 

the treated mice. 

As well, a carbon nanotube (CNT)-graphene 

nanosheet (GN)-IONPs hybrid was prepared by loading 

5-fluorouracil (5-FU) anticancer drug via a green ap-

proach and tested as an excellent pH-sensitive thera-

peutic nanocarrier for anti-cancer drug delivery [23]. 

The authors observed that the incorporation of the CNT 

enhanced the transportation of the composite across the 

cell membrane, as shown by TEM microscopy. Fur-

thermore, they also realized that drug release was 

higher in the acid environment of the typical cancer 

cells. 

In a recent study, drug nanocarriers based on 

mesoporous silica-coated magnetic GO were synthe-

sized for anti-cancer drug delivery of DOX [24]. The 

addition of mesoporous silica increases the surface 

area, thus drug loading, as well as the cellular uptake. 

Such carriers were designed with a dendrimer-like 

structure based on supramolecular poly-pseudoro-

taxane; such structures are commonly used in targeted 

drug delivery and act as molecular gates storing the 

drugs that can be opened by an external stimulus, in 

this case, a pH change. The resulting system, a part 

from the pH-sensitivity, has high colloidal stability and 

positive charge surface, what favors the cellular uptake.  

3.3. Magnetic-photothermal Therapy (mPTT) 

Although body temperatures above 37ºC are com-

monly defined fever and associated to an illness, a 

temperature increase in specific targeted tissues has 

been observed to have multiple therapeutic benefits in 

patients with cancer [25]. It has been reported that hy-

perthermia, a controlled increase of temperatures be-

tween 41ºC and 48ºC in localized areas, is clinically 

relevant for thermal treatments and causes minimal 

side effects to healthy organs, compared to radiother-

apy and chemotherapy [26]. Among the novel tools and 

techniques, the focus has mainly been addressed to 

photothermal therapy (PTT), due to its high selectivity 

and minimal invasiveness. This therapy is based on 

nanoparticles with photoabsorbing capability to gener-

ate heat under NIR irradiation, thus causing thermal 

ablation of cancer cells. These nanoparticles are nor-

mally delivered to tumors before the treatment. Gra-

phene-based structures have become potential agents 

for PTT due to their high absorbance in the NIR range. 

Moreover, depositions of IONP on GO produce hybrid 

nanoparticles that can be magnetically guided to the 

tumor target and enhance therapy selectivity, as well as 

improving the light-to-heat conversion [11a]. However, 

the limited penetration depth of NIR irradiation inside 

tissues may cause incomplete ablation of large or deep 

tumors and the use of a high power may damage the 

neighbor healthy tissues. One solution might be the 

magnetic localized hyperthermia, which utilizes mag-

netic nanoparticles directly injected or guided to the 

tumor area of the patients to induce heat through an 

external alternating current magnetic field (ACMF). 

Heat is generated due to hysteresis loss, and induces 

the apoptosis of tumor cells without damaging nearby 

healthy tissue [27]. The magnetic properties of these 

NPs not only permit the magneto-photothermal ther-

apy, but also provide the tool to image and monitor the 

tumor response to the therapy.  

Yang et al. developed rGO-IONP-PEG nanocompo-

sites in 2012 and applied them for the first time as 

agents for magnetic PTT and magnetic guiding in vivo 
[28]. Using the same system, Fu and co-workers treated 

tumor models through PTT and monitored its response 

via MRI and analyzed the tumor apparent diffusion 

coefficient (ADC), concluding that photothermal 

agents, magnetic guidance and drug-light intervals can 

all affect the PTT efficiency (Fig. 3) [29]. Also rGO 

was combined with superparamagnetic zinc ferrite 

spinel (ZnFe2O4) and showed high efficiency as a mag-

neto-PTT agent in low concentrations and minimal cy-

totoxicity [30]. 

Hydrogels have been extensively applied in bio-

medicine due to its hydrated environment and tunable 

properties similar to the native extracellular matrix. 

Zhu and co-workers designed a magnetic thermo-

sensitive hydrogel based on GO, IONP and polyethyle-

neimine carrying DOX [31]. The authors demonstrated 

not only the successful delivery of DOX, but also an 

improvement of the therapeutic effect in presence of an 

ACMF and a reduction of its toxicity.  
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3.4. Cellular Capture and Isolation 

All untreated biological materials, such as the circu-

lating tumor cells (CTCs) and other rare cells, are dia-

magnetic by nature, thus there exist a chance of sepa-

rating them selectively from the whole blood using 

magnetic nanoplatforms and external magnetic cur-

rents. In this line, plasmonic-magnetic GO, formed by 

the attachment of iron and gold nanoparticles, was 

loaded with anti-GD2 antibody to detect malignant 

melanoma UACC903 at extremely low concentrations 

(up to 10 cells per mL) and separate them from whole 

blood sample using a magnetic bar [32]. In addition, 

the gold shell allowed the SERS plasmon enhancement, 

thus improving the detection of the captured cells.  

Shi and co-workers have recently developed a novel 

GOQDs-IONPs hybrid charged with anti-Glypican-3 

(GOC3) antibody to capture selectively low-

concentrated hepatocellular carcinoma (HCC) tumor 

cells in an infected blood sample (Fig. 4). This ap-

proach was shown as a very potentially non-invasive 

tool to detect early stages of liver cancer, with capture 

efficiencies of about 91% [33]. Furthermore, an aligned 

Ni-micropillar device decorated with GO and IONPs 

was developed to control both the capture and the re-

lease of cancer cells upon application or removal of a 

magnetic field [34]. 

3.5. Multifuctional Applications 

Adding IONPs, thus adding magnetic properties, to 

graphene-based materials, generates new theranostic 

functionalities to these novel hybrids: not only gra-

phene-IONPs drug nanocarriers can be imaged through 

MRI, but also, once deposited on tumor sites, can be 

used as photothermal therapy agents and kill cancer 

cells very efficiently [35]. Both drug release and PTT 

are activated through an external stimulus, which is 

commonly AMF or NIR; however, they have some 

limitations: NIR has a low penetration inside tissues 

but a high efficiency in eradicating cancer cells, while 

AMF has a deeper penetration but narrower efficiency 

in ablation. Therefore, the combination of both meth-

odologies may provide an outstanding material for drug 

delivery as well as hyperthermia treatment (Fig. 5) 

[36]. 

In order to exploit the intrinsic properties of gra-

phene-based MNPs, the combination of multifunctional 

theranostics has gained huge attention in the recent 

years [13a, 37]. Among the most promising publica-

tions, Deng et al. synthesized an innovative hybrid 

“micro-matryoshka” platform comprising GO, IONP 

and polysaccharides (alginine, chitosan and hyaluronic 

acid able to bind cancer cells and load drugs through 

pH control, while dual magnetic and NIR PTT induces 

 

Fig. (3). Preparation of IONP hybrids with PEGylated GO and representation of their PTT application. Reprinted from Ref. 

[29], Copyright 2016 American Chemical Society. 
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Fig. (4). Schematic representation of the synthesis of GOQDs- IONPs loaded with the antibody GOC3 and their application in 

the selective Separation of Tumor Cells. Reprinted from Ref. [33], Copyright 2015 American Chemical Society. 

 

 

Fig. (5). Schematic illustration of preparation and action mechanism of hybrid capsules synthesized layer-by-layer assembly. 

Reprinted from Ref. [36], Copyright 2016 American Chemical Society. 

hyperthermia ablation of the tumor. The authors per-

formed their successful assays both in vitro and in vivo 
and claimed that the whole process was highly control-

lable [36]. Even more, GO-IONPs hybrids were tested 

to co-deliver simultaneously several anticancer drugs 

and, in combination with NIR-induced hyperthermia, 

were demonstrated to achieve in vivo a tumor inhibi-

tory rate of 73.9% [38].  

Also iron-cobalt (FeCo) MNPs have been deposited 

on graphene aiming to saturate the magnetization as an 

MRI contrast agent. The system was also confirmed to 

be an excellent DOX delivery system and an excep-

tional PTT agent [39]. 

CONCLUSION 

The combination of GBMs, carrying remarkable 

structural and physicochemical properties, with MNP is 

producing outstanding magnetic hybrids with improved 

functionalities for nanobiotechnology and biomedicine 

applications. This fact is clearly reflected in the expo-

nential growth of their publication numbers in the past 

several years. Although GBM-MNP hybrids are in its 

“infancy”, the preliminary results are encouraging. 

However, the field is still far from clinical applications, 

which require addressing some of the remaining chal-

lenges. GBMs obviously display many advantages 

compared with other systems, with the ability to pro-

vide efficient MNP loading capacity using very simple 

preparation procedures. Besides, their intrinsic charac-

teristic allows designing complex multifunctional sys-

tems as new direction to produce theranostic agents. 

In summary, we have selectively reviewed the ulti-

mate and promising advances in the biomedical appli-

cations of GBM-MNP hybrids with special attention in 
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MRI, drug delivery, PTT and cellular capture and isola-

tion. We believe that such applications will be rapidly 

enhanced in the forthcoming years. 
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