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Physico-chemical analysis of pneumococcal polysaccharide (PS)-protein conjugate vaccine components used for two
commercially licensed vaccines was performed to compare the serotype- and carrier protein-specific stabilities of these
vaccines. Nineteen different monovalent pneumococcal conjugates from commercial vaccines utilizing CRM197,
diphtheria toxoid (DT), Protein D (PD) or tetanus toxoid (TT) as carrier proteins were incubated at temperatures up to
56�C for up to eight weeks or were subjected to freeze-thawing (F/T). Structural stability was evaluated by monitoring
their size, integrity and carrier protein conformation. The molecular size of the vaccine components was well
maintained for Protein D, TT and DT conjugates at -20�C, 4�C and F/T, and for CRM197 conjugates at 4�C and F/T. It was
observed that four of the eight serotypes of Protein D conjugates tended to form high molecular weight complexes at
37�C or above. The other conjugated carrier proteins also appeared to form oligomers or ‘aggregates’ at elevated
temperatures, but rarely when frozen and thawed. There was evidence of degradation in some of the conjugates as
evidenced by the formation of lower molecular weight materials which correlated with measured free saccharide. In
conclusion, pneumococcal-Protein D/TT/DT and most CRM197 bulk conjugate vaccines were stable when stored at
2–8�C, the recommended temperature. In common between the conjugates produced by the two manufacturers,
serotypes 1, 5, and 19F were relatively less stable and 6B was the most stable, with types 7F and 23F also showing good
stability.

Introduction

Streptococcus pneumoniae is a major cause of morbidity and
mortality worldwide due to the invasive diseases it causes: bacter-
emia, meningitis and septicaemia. Plain capsular polysaccharides
vaccines of S. pneumoniae have been available for decades but
their inability to protect infants and toddlers younger than 2 y of
age has led to the development of conjugate vaccines.1 Following
the licensure of a 7-valent pneumococcal polysaccharide (PnPs)-
CRM197 conjugate vaccine in the European Union and the USA
in 2001, and demonstration of its efficacy against invasive pneu-
mococcal disease in young children,2,3 higher valency pneumo-
coccal conjugate vaccines covering additional serotypes have been
licensed. In addition to the serotypes covered in the 7-valent
PnPs-CRM197 conjugate vaccine, namely serotypes 4, 6B, 9V,

14, 18C, 19F and 23F, a 9-valent PnPs-CRM197 conjugate vac-
cine also contains serotypes 1 and 5, which are important causes
of invasive pneumococcal disease throughout the world.4 A
10-valent pneumococcal polysaccharide-protein conjugate vac-
cine containing either Protein D (PD), tetanus toxoid (TT), and
diphtheria toxoid (DT) as carrier proteins (PD/TT/DT) was
licensed in 2009.31 In addition to the aforementioned serotypes
the 10-valent vaccine contains serotype 7F. All PS in this vaccine
are conjugated to Protein D, a novel carrier protein, except for
type 18C which is conjugated to TT, and type 19F, conjugated
to DT.

The potency of conjugate vaccines relies on the effective con-
jugation of oligo- or polysaccharide to carrier protein(s) and the
integrity of the vaccine molecules throughout their shelf-life. Fac-
tors adversely affecting of the stability of conjugates may reduce
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vaccine potency through reducing the amount, accessibility and
solubility of conjugated saccharide and carrier protein epitopes,
potentially reducing their protective efficacy. Monitoring the sta-
bility-indicating markers of integrity and molecular size of conju-
gate vaccine molecules are key steps in assuring their quality, and
are useful in assessing the suitability of batch release methods
used to detect changes in the quality of vaccines that could poten-
tially affect their efficacy. Physico-chemical analysis methods are
widely used in the pre- and post- licensing quality control of
these vaccines to ensure compliance with manufacturing specifi-
cations and batch-to-batch consistency of the products.

Previous studies have shown that CRM197 conjugate vaccines
including MenC-CRM197 and Hib-CRM197 are conformation-
ally stable when stored at their recommended temperatures, but
evidence of less well-folded conformation of the carrier protein
with hydrolysis or depolymerisation of the oligosaccharide chains
was observed at elevated temperature.5,6 While tetanus toxoid
and its conjugated forms are more resistant to secondary and ter-
tiary conformational changes due to formaldehyde-induced intra-
molecular cross-linking, changes in its self-association have been
observed under some conditions.7,8

Studies reporting the stability of Protein D conjugates have
not been previously published. Protein D is a highly conserved
cell surface protein of H. influenzae with affinity for human
IgD.9 Although Protein D was developed as a novel carrier pro-
tein capable of providing immunoprotection against non-type-
able Hemophilus influenzae, in its own right, little has been
published on the structure and solution behavior of native Pro-
tein D or Protein D conjugate vaccines. This study was per-
formed to assess the thermo stability of the PnPs-Protein D bulk
conjugates, as well as a DT and a TT conjugate, present in the
current 10-valent vaccine using physico-chemical methods, and
to compare these with PnPs-CRM197 bulk conjugates. The rela-
tionship between the molecular size and conjugated carrier pro-
tein structure was also investigated for the monovalent PnPs-
Protein D/TT/DT/CRM197 bulk conjugates. Some patterns in
the stability of the conjugates could be attributed to specific sero-
type polysaccharides or carrier proteins.

Results

Thermostability of pneumococcal conjugate molecular size
To assess the size and integrity of the pneumococcal conjugate

samples under stability, HPLC-SEC was performed. Unlike
globular proteins, the conjugate molecules have long branches of
carbohydrate chains, often highly charged, attached to the carrier
protein, and their retention times are dependent on the hydrody-
namic size as well as molecular mass. Because charge interactions
can also affect elution, the polymeric TSK PWXL matrix was
used to reduce column interactions.

Half of the 8 monovalent bulk pneumococcal-Protein D con-
jugates stored at 4�C, from manufacturer A (types 1-PD, 4-PD,
7F-PD and 14-PD) had a characteristically similar elution pat-
tern, with a peak of high molecular weight (MW) material elut-
ing at the void volume (5.4 ml) followed by a main broad peak

(Fig. 1). This elution pattern was maintained in samples stored
at -20�C or subjected to repeated freeze-thawing for these sero-
types conjugates, and at 37�C for the type 14-PD conjugate. Fol-
lowing storage for 5 wk at 37�C and above, serotypes 1, 4, and
7F-PD conjugate, and at 56�C for 14-PD, samples were found
to contain an increasing amount of earlier-eluting high MW
materials.

The other 4 monovalent bulk Protein D conjugate vaccines
(5-PD, 6B-PD, 9V-PD and 23F-PD) were of higher average
MW, eluting with a more prominent peak at the void volume
with a second broad peak on its trailing edge. At 37�C and above,
types 5-PD, 9V-PD and 23F-PD bulk conjugates also tended to
form relatively higher MW forms, probably due to the associa-
tion of ‘main peak’ conjugated material, as judged from the dis-
appearance of this peak and appearance of the earlier-eluting
peak. There was, however, no obvious peak profile change of 6B-
PD bulk conjugate following storage at up to 37�C for 5 wk;
only a small increase in the low MW conjugate shoulder was
apparent at 56�C. Protein D, itself, eluted as a single broad peak,
which was affected by high temperature storage, and to a lesser
extent by freeze-thawing, which lead to an apparent increase in
MW (Fig. 1K).

The DT and TT conjugates eluted as expected for molecules
of larger molecular mass. Type 18C-TT showed stability to stor-
age at elevated temperatures, as well as to freeze-thawing
(Fig. 1H), as did tetanus toxoid, on its own (Fig. 1L). TT did,
however, show a pattern of aggregation after 37�C storage, and
loss at 56�C. Likewise, DT, maintained its quaternary structure
upon freeze-thawing, but was aggregated at elevated temperatures
(Fig. 1M). The high MW component of type 19F-DT bulk con-
jugate started to disappear following storage 37�C, with an
accompanying decrease in the main peak size indicating degrada-
tion; further degradation of this conjugates was observed at 56�C
(Fig. 1I).

The 9 monovalent pneumococcal-CRM197 conjugates eluted
between 5 and 9 ml with varying distributions, typical of hetero-
geneous conjugates with higher oligomers. There was no obvious
change in the molecular size of the CRM197 bulk conjugates
stored at -20�C except for serotype 5, which showed a slight
increase in high MW species. After incubation at 55�C for 8 wk,
types 1, 5, 9V, 14, 18C, and 19F-CRM197 conjugates lost high
MW material and there was the appearance of low MW peaks
eluting between 12 to 15 ml. There were no main peak profile
changes in chromatograms of types 4 or 6B-CRM197 conjugates
at 55�C but an increased amount of low MW materials were
detected within the elution volume range of 11.5 to 15 ml. Type
23F-CRM197 conjugate tended to form more ‘aggregates’ with
low MW materials at 55�C. The only bulk conjugate sample
which significantly degraded with a complete loss of all the high
MW eluting materials was 19F-CRM197 conjugate (Fig. 2, A
to I).

Saccharide stability of pneumococcal-Protein D, TT and DT
conjugate molecules

The % free, or unconjugated, saccharide of each pneumococ-
cal polysaccharide serotype determined for the 5 wk stability
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Figure 1. HPLC-SEC chromatograms of pneumococcal-PD/TT/DT bulk conjugates and carrier proteins stability samples. Serotypes 1, 4, 5, 6B, 7F, 9V, 14,
18C, 19F, 23F and PD, TT, DT (A to M) were stored at temperatures of -20, 4, 37, or 56�C for 5 wk, as labeled, or exposed to repeated freeze-thawing (F/T).
Samples were loaded onto a TSK5000 PWXL column and eluted in PBS, pH7.4 with a flow rate 0.3 ml/min.
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Figure 2. HPLC-SEC chromatograms of pneumococcal-CRM197 bulk conjugate stability samples. Serotypes 1, 4, 5, 6B, 9V, 14, 18C, 19F, and 23F (A to I)
were stored at temperatures of -20, 4, 37, or 56�C for for 8 wk or exposed to repeated freeze-thawing (F/T). Conditions were as for Figure 1.
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samples is shown in Figure 3. The % free saccharide values of all
serotypes were less than 10% at temperatures up to 37�C. Like-
wise, the freeze-thawed samples did not show a significant
increase in free saccharide with the exception of the type 5-PD
conjugate which contained 25% free saccharide. Most serotypes
of the bulk conjugates tended to release a higher amount of free
saccharide during storage at 56�C for 5 wk, and types 1-PD, 5-
PD, 18C-TT, and 19F-DT conjugates showed significantly
increased % free saccharide at 56�C, with 60%, 56%, 18%, and
55% respectively.

The pH stability of a conjugate vaccine sample can be criti-
cally important; changes in pH can trigger PS depolymerization,
and decreases in pH can occur following PS degradation, for
example, following the cleavage of phosphodiester bonds (present
in types 6B, 18C, 19F and 23F), or from de-O-acetylation,
potentially in types 1, 7F, 9V, and 18C. The pH of all 10 sero-
types of samples of pneumococcal-Protein D/TT/DT bulk con-
jugates stored in 150 mM NaCl, was stable at all temperatures
up to 37�C, with the range from 5.4 to 6.1 across serotypes
stored at 4�C (Fig. 4). A reduction in the pH was observed in all
samples stored at 56�C (of 0.03 to 0.33 pH units) compared
with samples stored at the recommended storage temperature, 2–
8�C. The most significant changes were in serotypes 1, 5, 9V,
18C and 19F. Freezing did not generally cause a significant
change in pH, although two freeze-thawed samples showed a sig-
nificant change in pH (type 1 and type 18C). Four of the 5 sero-
types showing increased acidity also had significantly enhanced
free saccharide: 1, 5, 18C and 19F.

Due to a paucity of material, it was not possible to perform
direct saccharide analysis on the CRM197-conjugate polysacchar-
ides. However, comparison of the 280 nm chromatograms
(detecting protein Trp and Tyr side-chain residue signals) with
the RI trace (detecting both protein and saccharide), did show
extensive degradation of the polysaccharides for types 1, 4, 5, 9V,
14, and 19F-CRM197 conjugates following storage at 55

�C for 8
wk, with the formation of late- eluting unique saccharide peaks,
or, in the case of 19F, a loss of distinguishable peaks before the
total volume of the column (Fig. S1). These can be compared
with 280 nm and RI traces of types 1 and 6B-Protein D conju-
gates (Fig. S2) shown as examples of relatively labile and stable
serotypes, respectively. The 214 nm detector signals were very
similar to the 280 nm signals, when normalized, and any absor-
bance contributions from uronic acids or acetamido sugars at this
wavelength would have been weak (not shown).

Carrier protein conformational stability of pneumococcal-
Protein D, TT and DT conjugates

Intrinsic fluorescence spectroscopy has been used previously to
detect changes in the protein conformation of CRM197 or TT
conjugates5-7 using an excitation wavelength of 280 nm to report
on the contribution of the side-chain of tryptophan and to a
lesser extent tyrosine.

Protein D, the carrier protein of 8 of the 10 serotypes of the
10-valent PnPs-Protein D/TT/DT conjugate vaccine, is a highly
conserved 40 kDa surface lipoprotein (Janson et al., 1991)21

found in all Hemophilus influenzae, including non-typeable H.
influenzae. It contains 6 tryptophan residues and 17 tyrosine resi-
dues22 giving the protein an absorption maximum at 280 nm.
The fluorescence emission maxima (Fmax) were 340 to 342 nm
for all 8 Protein D conjugates (1, 4, 5, 6B, 7F, 9V, 14, and 23F)
compared with 343 nm for Protein D on its own (Fig. 5). The
emission maxima of the stability samples (Protein D conjugates)
generally showed blue-shifts (up to 3 nm) of the emission max-
ima in samples stored at 37�C compared with 4�C. Significant
blue-shifts were observed in all Protein D conjugates stored at
56�C, resulting in the Fmax range of 330 to 339 nm (Fig. 5),
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indicating an internalisation of the Trp residues, as occurs with
oligomerisation or aggregation. Protein D on its own showed the
most significant blue shift at 56�C (310 nm).

The Fmax of TT, 330 nm, was slightly red-shifted (C2 nm)
when conjugated to 18C, suggestive of some unfolding, while
the Fmax of DT, 332 nm showed a slight blue-shift (-1 nm)
when conjugated to polysaccharide 19F. Blue-shifts, up to 5 nm,
can be seen in both TT and DT conjugates stored at lower
(-20�C and F/T) or higher (up to 37�C) temperatures, with sig-
nificant blue-shifts being observed upon storage at 56�C, from
332 to 317 nm, or 331 to 314 nm, for 18C-TT or 19F-DT bulk
conjugates, respectively. Unlike the pattern with Protein D,
which was stabilized following conjugation, TT and DT were
more stable on their own than compared with their conjugated
forms.

Discussion

Physico-chemical analysis methods have been widely used in
determining the structural integrity and consistency of conjugate
vaccines for controlling their quality. In the present study, in
vitro physico-chemical methods have been applied to thermo-sta-
bility samples of 10 monovalent PnPs-Protein D/TT/DT and 9
monovalent PnPs-CRM197 conjugate vaccine components from
two manufacturers.

Differences in the hydrodynamic size of the PS-protein conju-
gate molecules could be attributed in part to the carrier proteins’
quaternary structure. Within the same polysaccharide serotype,
CRM197 conjugates have slightly larger hydrodynamic size than
Protein D conjugates, as judged from their SEC elution. The
mass of monomeric CRM197 (58.4 g/mol)23 is larger than
monomeric Protein D (40 g/mol) based on amino acid composi-
tion.21 Of the carrier proteins used in these vaccines, TT and
CRM197 have been previously shown to be relatively stable.5–7,24

In this study, Protein D, and to a lesser extent DT, showed a pro-
pensity to form higher sized forms; conjugation conferred some

degree of stability. Some aggregation of the CRM197 carrier pro-
tein was evident after storage at 56�C for 8 wk.

The stability samples showed different patterns of higher MW
association, which may have been due to non-specific aggregation
of the carrier protein. A loss of highly charged PS, such as the
negatively charged serotypes 1, 6, 18, 19, and 23, could conceiv-
ably result in a greater access of protein hydrophobic patches and
non-specific association which could lead to aggregation. Of
these, types 1, 18C, and 19F did have significantly increased free
saccharide and correlative increase in acidity, as did serotype 5.
Types 1 and 5 contain tri- and di-deoxysugars which are suscepti-
ble to acid hydrolysis and backbone depolymerization.11,13 While
mild acid hydrolysis of types 18C and 19F can lead to the forma-
tion of free phosphate, the mechanisms are different, with the
depolymerization of 18C being via the breakage of the rhamno-
pyranosidic bond rather than the branching glycerophosphate,18

and the degradation of 19F being through the labile in-chain
phosphodiester-amino-sugar linkage.19

Repeated freeze-thawing had little effect on the size of 8 of
9 serotypes of CRM197 conjugates; only type 5-CRM197 con-
jugates became slightly ‘aggregated’ without a change of low
MW material peak. Apart from type 6B-CRM197 conjugates,
all other serotypes of CRM197 conjugates released significant
amounts of low MW materials with concomitant reduction
of hydrodynamic size of molecules at storage temperature of
55�C. This may be due to loss of saccharide linked to the
conjugated protein when stored at elevated temperature, as
well as to protein degradation itself, as supported by evidence
from the variable detector signals.

The molecular size distribution of all serotypes of Protein D/
TT/DT conjugates remained consistent at storage temperatures
of -20�C, 4�C, or repeated freeze-thawing except serotype 5,
which presented as an enhanced aggregate formation with
increased free saccharide.

Pneumococcal polysaccharide serotype 19F has been previ-
ously reported to be relatively sensitive to depolymerization25,26

with the highest relative molecular size change in a 23-valent
panel tested without demonstrating antigenic lability over time;
its instability was attributed to its less compact structure,27

although the weak in-chain Rha-phosphodiester linkage would
also play a role.19

The long-term (5�C) stability study of 23-valent pneumococ-
cal polysaccharides by the Hennessey group26 demonstrated that
epitope recognition of polysaccharides by polyvalent antibodies
could change over time (types 1, 9V and 18C), without a con-
comitant reduction in molecular size through depolymerization,
and this was attributed to the loss or migration of O-acetyl
groups. That free saccharide of these serotypes was generated fol-
lowing one to two months at 55–56�C as found in the present
study should not be surprising. Following 70�C for several hours,
Type 1 was also reported by Hennessey to be unstable.28

Some serotypes may have undergone changes to saccharide
substituents (such as O-acetyl, amino, pyruvyl, and phosphoryl
groups), which may not have resulted in backbone degradation
detectable by the HPAEC-PAD method, but these could poten-
tially impact on immunological protection. These would also
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include the PneNAc on type 5, the Rha on type 7F, the Gal of
type 14 and the P-Gro of types 18C and 23F. A limitation of
this study is that analysis such as NMR, which could be per-
formed on bulk conjugates, was not performed to determine the
extent of these changes. Types 7F-PD and 9V-PD, which have
relatively stable backbones containing uronic acid, hexoses and
amino sugars, could also have had significant de-O-acetylation.
Further information about the stability of type 1, is particularly
important, in light of the high incidence of type 1 disease in the
African meningitis belt.29

A further limitation of the study is that the high MW species
were not completely resolvable from the TSK5000PWXL column
void, although the column could discriminate between high and
low MW populations. A column combination such as the
TSK6000C5000PWXL or mixed bed polymer column, may be
preferable in this regard. A separate study of TSK polymer col-
umns from the authors’ group has demonstrated a correlation
between elution volume and MALLS-derived mean molecular
mass for six different conjugated polysaccharide types.

The HPAEC-PAD method of Talaga et al.,10 used here is a
specific and sensitive technique for the analysis of monovalent
bulk conjugates. The use of a common hydrolysis method across
all serotypes meant that particularly resistant or labile serotypes
may not give as highly accurate results as other serotypes, due to
their lower recovery.10 The method applied in this study, how-
ever, used purified polysaccharide rather than monosaccharide
quantitative standards, which would ameliorate this issue. It is
recognized that serological and colorimetric-based methods do
not necessarily give improved quantitation.

From the present study, all data indicated that 6B was the
most stable serotype. Athough 6B contains a phosphodiester
bond; it is comparatively more stable than 6A.30 Types 7F and
23F were also comparatively more stable than the other 7 sero-
types of the Protein D/TT/DT conjugate vaccine. Despite their
structural stability, a number of studies have pointed to 6B and
23F-Protein D conjugates being less immunogenic than their
corresponding CRM197 conjugates.

31-33 The correlation between
molecule structure and immune response for these two serotypes
in the two different vaccines is still unclear; though they induce a
weaker immune response, both are efficacious.34 Future studies
should address the stability of serotype conjugates in final con-
tainers, and the role that protein aggregation may play in immu-
nogenicity. MALLS analysis of PS, carrier protein and CRM197

conjugate stability is both information and reproducible.35

This study is the first which presents a comprehensive analysis
of components from different commercially licensed pneumococ-
cal conjugate vaccines. The methodological approaches in this
study which are routinely used in the pre-clinical and batch
release testing of Hib and meningococcal conjugate vaccines
could discriminate between high quality and degraded pneumo-
coccal vaccines components.

All pneumococcal- Protein D/TT/DT and CRM197 mono-
valent bulk conjugates were stable when stored at their rec-
ommended temperature, 4�C, for the duration of the study.
The % free saccharide contents of all the serotypes used in
the 10-valent vaccine were maintained within 10% at

temperatures up to 37�C despite a pattern of ‘aggregation’ or
high MW association of conjugates. Serotypes 1, 5, and 19F
were less stable than other serotypes. Because the final prod-
ucts of both vaccines consist of adjuvanted, liquid formula-
tions, further studies could be performed to assess the
stability of the different serotypes in the final combinations.
The findings here will be useful to those involved in the
development and evaluation of new pneumococcal conjugate
vaccines, which are required to reduce the significant burden
of S. pneumoniae cases and deaths world-wide.

Materials and methods

Materials
Pneumococcal conjugate vaccine components from two dif-

ferent manufacturers, A and B, were studied. Bulk conjugates
from manufacturer A, manufactured as consistency lots, con-
sisted of polysaccharide of serotype 1, 4, 5, 6B, 7F, 9V, 14, and
23F conjugated to Protein D, serotype 18C conjugated to TT
and 19F conjugated to DT; bulk conjugates from manufacturer
B, manufactured during clinical development, included nine
serotypes: 1, 4, 5, 6B, 9V, 14, 18C, 19F, and 23F, conjugated to
CRM197. These bulk conjugates did not contain any adjuvant
and they were stored at 4�C in saline for conjugates from manu-
facturer A or saline-based buffer from manufacturer B, at concen-
trations of 0.15 to 1 mg protein/ml.

Stability sample treatment
The Protein D, TT, and DT individual monovalent bulk con-

jugates and carrier proteins, supplied sterile by the manufacturer,
were incubated at -20, 4, 37, or 56�C for 5 wk, and, a separate
set of sample stored at -20�C was subjected to 5 once-weekly
cycles of freeze-thawing (F/T). In each F/T cycle, frozen vaccines
were left at 22�C -25�C for 1 h/week and were returned to
-20�C in between the thawing cycles.

The CRM197 bulk conjugates were sterile-filtered with
0.2 mm low protein binding membranes and incubated at 4 or
55�C for 8 wk or subjected to 8 once weekly cycles of freeze-
thawing and stored as for pneumococcal-Protein D/TT/DT vac-
cine components. At the end of the incubation period, all vac-
cines were stored at 4�C for up to 2 mo until evaluated.

HPLC-SEC conjugate size analysis
The HPLC system used for size-exclusion chromatography

(SEC) analysis was a Dionex (part of ThermoFisher Scientific)
DX600 that consisted of a GP50 gradient pump, AS autosam-
pler, TCC-100 column oven, and a variable wavelength VWD
UV-Vis detector. Dionex Chromeleon software (Version 6.8)
was used to program the runs and analyze the data. A TSK-GEL
PWXL guard column and TSK G5000PWXL analytical column
(7.8 mm x 30 cm) (Tosoh Bioscience GmbH) with a fraction-
ation range of Mr 4000 - 1 £ 106 Da was kept at 30�C in a
TCC-100 column oven. The columns were calibrated using
DNA (Sigma D1626), thyroglobulin (Sigma T9145), bovine
serum albumin (Sigma A1900), carbonic anhydrase (Sigma
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C7025) and tyrosine (Sigma T3754), as described in Saydam
et al.8 Protein absorbance at 280 nm and 214 nm, and refractive
index were monitored.

Bulk conjugate vaccine samples or carrier protein containing
50 mg of protein content in 100 ml volume were loaded onto the
SEC column and eluted isocratically in PBS ‘A’ (10.1 mM
Na2HPO4, 1.8 mM KH2PO4, 171 mM NaCl, 3.4 mM KCl,
pH 7.4 § 0.1) at a flow rate of 0.3 ml/min.

HPAEC-PAD saccharide analysis
The antigenically distinct polysaccharides present in the 10-

valent conjugate vaccine components contain very different
repeating unit structures10-20 and require separate and specific
assays for their quantitation. The HPAEC-PAD system was used
to measure both the free and total saccharide content of pneumo-
coccal-Protein D/TT/DT conjugates to determine the % free, or
non-conjugated, saccharide, which is a key marker of integrity,
with modifications of the method of Talaga et al., 2002.10 An
ICS3000 BioLC chromatography system was equipped with a
gradient pump (SP), pulsed amperometric detector (ED) and an
autosampler (AS). The electrochemical detector used a gold
working electrode and an Ag/AgCl reference electrode. A Carbo-
Pac PA-10 (4 £ 250 mm) column preceded by an Amino Trap,
then PA10 guard column (Dionex, part of ThermoFisher Scien-
tific) was used to quantify selected saccharide content from each
serotype of pneumococcal bulk conjugate vaccines after hydroly-
sis with 2 M TFA, at 121�C for 2 h, based on Method 1 of
Talaga10 (Table 1A and 1B). Sample injections were performed by
an autosampler with a 100 ml loop. Samples were eluted at a flow
rate of 1 ml/min with a multistep gradient as follows: 0–15 min,
18 mM NaOH; 15–18 min, 18–100 mM NaOH; 18–35 min,
100 mMNaOH; and 0–300 mMNaOAc; followed by a re-equili-
bration step with 18 mM NaOH for 20 min. Monosaccharides

were detected by pulsed amperometric detection using the quadru-
ple –potential waveform with the following pulsed potentials and
durations: E1 D 0.1 V, t1 D 400 ms; E2 D -2 V, t2 D 20 ms; E3
D 0.6 V, t3 D 10 ms; E4 D -0.1 V, t4 D 60 ms. The quadruple
waveform confers greater reproducibility between runs due to lon-
ger-term electrode surface stability.36 Dionex Chromeleon software
was used to program the runs and analyze data.

Free saccharide was separated from the pneumococcal-Protein
D/TT/DT conjugate vaccines by ultrafiltration using Microcon-
100 filters (Merck Millipore) with 100 kDa MWCO that were
centrifuged at 6900 £ g for 15 min at room temperature. The
100 kDa filters were chosen for measuring degraded polysaccha-
ride, rather than unconjugated polysaccharide necessarily. Any
conjugated-polysaccharide would not be expected to filter
through. Equivalent results would be expected from the use of
30 kDa filters. The filtrates subjected to acid hydrolysis were
used for measurement of free saccharide content of the sample.
The filtrates (for free saccharide) or conjugate vaccines (for total
saccharide) were hydrolysed using TFA in final concentration of
2 M at 121�C for 2 h.10 The hydrolysate solutions were then
dried using a SpeedVac to evaporate TFA and samples were re-
dissolved in water to 0.6 ml prior to chromatography.

Quantitative polysaccharide standards were prepared for each
serotype from bulk purified polysaccharide from manufacturer A
over the range of 0.5–27 mg/ml. Purified polysaccharides were
prepared in the same diluent, 150 mM NaCl, with their unitage
based on dry weight. They were hydrolysed, dried and re-dis-
solved in water in the same way as the vaccine samples. An identi-
cal amount of D-fucose (Sigma F8150) (20 ml of 100 mg/ml)
was added to 480 ml of each sample and standard as internal
standard just prior to chromatography. A volume of 50 ml was
injected. The average of two injections was used for determina-
tion of free and total saccharide content. Fucose eluted at
6.0 min. For each serotype, the saccharide peaks selected for
quantitation and their elution times PS are listed in Table 1B.

pH determination
The pH values of stability samples of Protein D, TT, and

DT bulk conjugates were read using a Jenway 3305 pH

Table 1A. Saccharide substituents of pneumococcal polysaccharide vaccine
hydrolysates

Mono- and disaccharidea Appearance in PnPs serotypes

Gro 18C, 23F
Rib-ol 6B
FucN 4, 5
ManNb3FucN 5
Rha 6B, 7F, 18C, 19F, 23F
GalN 4, 7F
ManN 4, 9V, 19F
GlcN 7F, 14
Gal 4, 6B, 7F, 9V, 14, 18C, 23F
Glc 5, 6B, 7F, 9V, 14, 18C, 19F, 23F
ManNb4Glc 9V, 19F
GlcAb3FucN 5
Gro-P 18C, 23F
GalA 1
Rib-ol-P 6B
GlcAa3Gal 9V
GlcA 5, 9V
P-ManN 19F

aSaccharides identified by Talaga et al.10 from HPAEC-PAD analysis

Table 1B. Saccharide substituents of pneumococcal polysaccharide vaccine
hydrolysates utilized for quantitation of unconjugated saccharide (B)

Serotype Saccharide selectedb Elution time (min)

1 GalA 29.9
4 Gal 14.2
5 Glc 15.2
6B Rha 10.5
7F GlcN 11.2
9V Glc 15.1
14 GlcN 11.3
18C Rha 9.7
19F Rha 9.8
23F Rha 9.5

bThe identification of the saccharide chromatographic peak selected is
based on that determined by Talaga.10

www.landesbioscience.com 2751Human Vaccines & Immunotherapeutics



meter (Bibby Scientific Ltd.). The pH meter was calibrated
using pH standards of 4.0, 7.0 and 10.0 (Fisher Scientific)
before determination, and samples were equilibrated to room
temperature for »15 min prior to their pH measurement,
but were not shaken. The pH values were accurate to
§ 0.05 pH units.

Fluorescence spectroscopy
Intrinsic fluorescence spectra of Protein D, TT, and DT con-

jugates and carrier proteins were obtained using a Spex Fluoro-
max single photon-counting spectrofluorometer (Jobin Yvon
Ltd.) at 25�C, in 1 cm path-length quartz cells (Hellma
GmbH) with a protein concentration of 50 mg/ml. An excita-
tion wavelength of 280 nm was used with a band pass of
4.25 nm for the excitation monochromator and 4.50 nm for
the emission monochromator. Spectra were collected between
260 and 500 nm at a data increment of 0.5 nm and an integra-
tion time of 1 s. Fluorescence spectra were corrected by sub-
tracting the corresponding base-line spectra of PBS, pH 7.4.
Fluorescence emission lmax (Fmax) values obtained were accu-
rate to § 0.5 nm.
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