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Abstract: Diabetes mellitus is a chronic condition characterized by increased blood glucose levels
from dysfunctional carbohydrate metabolism. Dietary intervention can help to prevent and manage
the disease. Food hydrocolloids have been shown to have favorable properties in relation to glycaemic
regulation. However, the use of food hydrocolloids of bacterial origin to modulate glucose responses
is much less explored than other types of hydrocolloids. We, therefore, carried out the first review
examining the impact of intake of food hydrocolloids of bacterial origin (as a direct supplement
or incorporated into foods) on glycemic response in humans. Fourteen studies met the inclusion
criteria. They used either xanthan gum, pullulan, or dextran as interventions. There was a wide
variation in the amount of hydrocolloid supplementation provided and methods of preparation.
Postprandial blood glucose responses were reduced in half of the studies, particularly at higher
intake levels and longer chain hydrocolloids. When xanthan gum was added to the cooking process
of muffins and rice, a significant reduction in postprandial blood glucose was observed. The use of
these hydrocolloids is potentially effective though more research is needed in this area.

Keywords: glycemic response; blood glucose; bacterial; polysaccharides; gums; satiety; xanthan;
pullulan; dextran

1. Introduction

Diabetes mellitus is a chronic condition characterized by increased circulating blood
glucose levels resulting from dysfunctional carbohydrate metabolism. Age, obesity, and
physical inactivity are all factors reported to increase the risk of the disease, particularly
in people who are genetically susceptible [1]. Type 2 diabetes mellitus (T2DM) has the
highest incidence, accounting for at least 90% of all the cases of diabetes globally. Currently,
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about 387 million people are reported to have this condition, and an estimated 179 million
people are undiagnosed. On average, approximately 2.2 million deaths are directly caused
by diabetes annually [2]. Estimates from the International Diabetes Federation show that
by 2035, more than 592 million people will have T2DM globally, and most of them (about
77%) will be living in low- and middle-income countries. The management of elevated
glucose levels in T2DM includes interventions designed to increase physical activity and
dietary changes.

The glycemic index (GI) is a ranking system to reflect how a specific food will increase
blood glucose level, usually within two hours after consuming that food compared to white
bread or glucose equivalent carbohydrate load set to a value of 100. Accordingly, foods
with low GI result in lower postprandial glucose levels and lower postprandial insulin
levels [3]. Reducing postprandial glucose excursions may help reduce the risk of T2DM
complications [4]. To this effect, hydrocolloids have long been known to have a lowering
effect on postprandial hyperglycemia since early work on guar gum [5–7] and gelatin [8].

Hydrocolloids gums are polysaccharides used to increase viscosity and gelatinization
and have many applications in the food industry as thickeners, emulsifiers, and stabilizers.
Hydrocolloids slow starch digestion potentially due to the formation of a physical barrier
that limits the effect of digestive enzymes [9–11]. This can be attributed to the inhibitory
effect of the hydrocolloid on protein hydrolysis to immediate binding of the hydrocolloids
to enzymes, therefore slowing the interaction between the enzyme and the substrate.
It has also been suggested that hydrocolloids may alter enzymes conformation [11,12].
The addition of hydrocolloids gums through food processing can also reduce the overall
digestibility of foods [13]. Hydrocolloids can reduce or restrict contact between enzymes
and substrates, reduce mass transfer in the gut (e.g., by increasing viscosity or gelling) and
inhibit enzyme activity [14–16].

Hydrocolloids can be categorized depending on their function as thickening agents
(xanthan gum, locust bean gum or LBG, carboxymethyl cellulose or CMC and guar gum)
or gel-forming agents (agar-agar or AA, carrageenan, gelatin, pectin, gellan gum, and
konjac-glucomannan or KG). It is also useful to characterize hydrocolloids based on their
natural source: (1) plants, (2) seeds, (3) animal extract, and (4) bacterial or microbial
polysaccharides [17].

While other hydrocolloids have been investigated extensively and their effect on
glycemic control reviewed, there has been little focus on hydrocolloids from the microbial
origin (also known as bacterial polysaccharides or microbial polysaccharides) in relation
to glycemic control. Bacterial or microbial polysaccharides gums are polysaccharides pro-
duced extracellularly by microorganisms for different purposes in the food, pharmaceutical,
and medical industries. The common hydrocolloids of bacterial origin include xylinan,
scleroglucan, schizophyllan, and xanthan, gellan, curdlan, pullulan, and dextran. Xanthan
gum (XG) is a polysaccharide by-product of the bacteria Xanthomonas campestris. It con-
sists of repeated units of glucose, mannose, and glucuronic acid (Figure 1A). Discovered in
1968, it has a range of food uses approved by the Food and Drug Administration, including
its use as a thickening agent and stabilizer. Pullulan is a polysaccharide polymer consisting
of maltotriose as a building block (Figure 1B). Three glucose units of maltotriose are linked
through α-(1→4) glycosidic bonds [18]. It is produced by the fungus Aureobasidium
pullulans and is used in food as a texturizer. Dextran is a complex branched polysaccharide
(Figure 1C) produced from lactic acid bacteria.

This systematic review aimed to investigate and examine the effect of hydrocolloids
of bacterial origin (as a direct supplement or incorporated into foods) to improve glycemic
control and appetite in healthy individuals and those diagnosed with type 2 diabetes.
Tolerance issues reported in the selected literature will also be noted.
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Figure 1. Chemical structures of (A) xanthan, (B) pullulan, and (C) dextran. These structures are in
the public domain and are reproduced from a copyright-free repository.

2. Materials and Methods

The review protocol was informed by the guidelines of the Preferred Reporting
Items for Systematic Review and Meta-Analysis (PRISMA) [19]. The review protocol is
available at PROSPERO with registration number CRD42021227056 and can be accessed at
PROSPERO (https://www.crd.york.ac.uk/prospero/). (accessed on 8 June 2021).

2.1. Inclusion and Exclusion

The inclusion criteria were based on the Participant–Intervention–Comparator–
Outcomes–Study design (PICOS) format. Participants: studies were considered for in-
clusion only if all participants were adults aged 18 or above, male and female, and were
healthy, prediabetic, or diagnosed with diabetes. All study participants that met the criteria
were included, regardless of ethnicity and gender. Any studies on animal models and
in-vitro were excluded. Intervention: only studies in which the intervention included diet
consumption of any type of hydrocolloids from bacterial origin were included: xanthan,
gellan, pullulan, dextran, curdlan, scleroglucan, schizophyllan, or cyanobacterial; any
studies that used a different type of dietary intervention were excluded. Comparison: no
intervention or comparator group, placebo, standard food intake. Outcomes: the primary
outcomes of interest included demonstrating the effectiveness of hydrocolloid gum in
modifying blood glucose response, fasting and postprandial glucose, and insulin. Sec-
ondary outcomes are appetite and satiating effect. Any adverse events associated with

https://www.crd.york.ac.uk/prospero/
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the intervention were also noted, as this indicated safety and tolerance. Study design:
randomized controlled trials, quasi-experimental studies (non-randomized controlled tri-
als, before-and-after,) with the last search completed on 4 February 2021. Only studies
published in English were included. Any studies using secondary data (such as reviews)
were excluded, as were non-experimental research, ongoing trials, and meeting abstracts.

2.2. Search Strategy

An electronic search was performed using 3 databases, Web of Science, MEDLINE,
and Embase, between 1950 and 2021. Some databases were available only from 1974
onwards. An initial search was conducted in late 2020 and then updated on 4 February
2021. An advanced literature search was performed by using “AND” and “OR” operators
to narrow down or expand its scope, increasing retrieval effectiveness. Along with Boolean
search techniques, references from eligible journal articles were trawled to identify as
many primary sources as possible. The search keywords were not restricted to just the
microbial polysaccharides to avoid the risk of missing papers focused mainly on some of the
more common hydrocolloids. Using synonyms and alternating search terms significantly
increased the number of hits or search results. Reference chaining and manual searches
on other engines such as Google and Google Scholar were also carried out to capture
possible hits missed by the initial electronic search on the main databases. All the retrieved
references by the electronic databases were exported to an EndNote database.

The search strategy and keywords were set as follows:

1. (hydrocolloid* or polysaccharid*).ti,ab.
2. (xanthan or xylinan or acetan or “hyaluronic acid” or gellan or curdlan or pullulan or

dextran or scleroglucan or schizophyllan or cyanobacterial).ti,ab exp hydrocolloid/
3. 1 or 2
4. (“glyc?emic index*” or “glyc?emic response*” or “glyc?emic load*”).ti,ab.
5. glycemic index/
6. glycemic load/
7. 4 or 5 or 6
8. ((glucose or sugar) adj2 blood).ti,ab.
9. ((glucose or sugar) adj2 plasma).ti,ab.
10. Blood Glucose/
11. 8 or 9 or 10
12. 7 or 11
13. 3 and 12
14. limit 13 to human

2.3. Study Selection, Data Extraction, and Synthesis

Two researchers (N.A. and L.M.) independently screened the articles by evaluating
titles and abstracts of studies retrieved from the electronic database against the inclusion
and exclusion criteria. After screening, all the relevant studies were retrieved as full-text
articles. Ethical approval was not required, as only published studies were included in
the analysis.

The titles, abstracts, and content of these articles were screened to ensure that they
were relevant to the current study using a data extraction form. Information about the
participants, interventions, comparisons outcomes, study design (PICOS), and other details
such as year of publication, research setting, main findings, study limitations, and follow-
up were documented. The primary outcomes of interest included demonstrating the
effectiveness of hydrocolloid gum in improving the glycemic profile. Adverse events and
adherence were also noted as indicators of safety and tolerance.

Statistical analysis was not undertaken as the methods and outcomes of the selected
studies were heterogeneous. As such, a narrative synthesis of the included studies was
used to answer the research question.
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2.4. Risk of Bias across Studies

Each included study was assessed for potential risk of bias (for example, from the
study design and reporting) by two researchers independently (N.A. and L.M.) using
the ROBINS-I tool [20,21]. Seven domains of bias were evaluated. The pre-intervention
domains were biased due to confounding and bias in the selection of participants into the
study. The intervention bias domain was biased in the classification of interventions. The
post-intervention domains were biased due to deviations from intended interventions, bias
due to missing data, bias in the measurement of outcomes, and bias in the selection of the
reported result. Each domain consisted of 3–8 signaling questions. If the signaling questions
in every domain were answered with “No/Probably No”, the study was considered to
have a low risk of bias, and no further signaling questions were considered. If one or
more questions were answered by “Yes/Probably Yes”, this was considered a potential
marker for risk of bias, and further questions related to this domain were assessed. Any
disagreement was resolved through discussion. Finally, data were collected from each
study and extracted into a Microsoft Excel spreadsheet. The risk of bias figure was created
using the ROBINS-I tool.

3. Results

The electronic search identified 1327 records from the databases (see review flow
diagram in Figure 1), including 209 from Medline, 430 from EMBASE, and 688 from Web of
Science. One hundred forty-five papers were found to be duplicates, leaving 1182 citations
for initial screening. Three papers were added from cross-referencing and other internet
searches. This yielded 50 records for full-text screening. Fourteen papers satisfied the
criteria and were included in this systematic review. Figure 2 summarizes the process of
literature search, identification, and screening, based on the PRISMA flow chart. Of these
14 papers, 4 investigated pullulan [22–25], 7 investigated xanthan gum [26–32] and three
investigated dextran [33–35].

The characteristics and main findings of the included studies are summarized in
Table 1 and described in more detail below.

3.1. Pullulan and Glycemic Response

Wolf et al. [22] reported a randomized, crossover, double-masked, two-period, two-
treatment study of a 474 mL juice-like beverage containing 50 g of carbohydrate from
pullulan or maltodextrin control. They measured finger-prick blood glucose at 15, 30, 45,
60, 90, 120, 150, and 180 min postprandially. Twenty-eight participants completed the study.
Compared with control, incremental peak blood glucose concentration was significantly
lower when subjects consumed pullulan (4.24 ± 0.35 mmol/L versus 1.97 ± 0.10 mmol/L;
p < 0.01). Pullulan had a significantly lower incremental area under the glucose curve
by 50%.

In the study by Spears et al. [23], 50 g of low-molecular-weight pullulan was provided
in 474 mL juice-like beverage and compared to 50 g maltodextrin control in 34 healthy
participants. The study day consisted of a 3-h tolerance test measuring finger-prick capillary
plasma glucose and serum insulin. These data showed that low–molecular weight pullulan
did not reduce the incremental plasma glucose response compared to maltodextrin. Late
phase plasma glucose concentration was significantly higher for pullulan at 150 and 180 min
216 ± 21 compared to control 197 ± 25 (p < 0.05). However, the postprandial incremental
serum insulin response was reduced by pullulan, 237 ± 25 compared to control 309 ± 30.
The incremental peak serum insulin was significantly reduced by 30% when subjects
consumed pullulan compared to maltodextrin.

Based on ROBINS-I tool for assessing the risk of bias, 11 studies were considered as
low risk of bias, one as a moderate and 2 as high risk. These results are presented as a
summary plot in Figure 3.
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Table 1. Summary characteristics and results of the included studies.

Author
Year
Country

Study
Design

Intervention
Acute/Long-Term
and Details

Comparator
Duration of
Glucose
Assessment

Washout n Gender Age Glucose
Results

Appetite
Results

Other Outcomes
Reported

Bloom
1952
USA

One-way

Acute intervention
100 mL of 20%
dextran (n = 2);
200 mL of 20%
dextran (n = 2)

N/A 2 h N/A 4 N/K N/K
Low rise in
blood sugar
over 2 h

N/A N/A

Joelson
1956
USA

One-way
Acute intervention
400 mL of
5% dextran

N/A 3 h N/A 5 N/K N/K
No increase
in postprandial
blood sugar

N/A N/A

Osilesi
1985
USA

Crossover

Long-term
intervention
Xanthan
containing muffins
12 g/day for 6
weeks

xanthan-free
muffins for 6
weeks

2 h no wash out 9 DP,
4 HV

M = 2,F = 7
M = 1,F = 3

53 ± 4
37 ± 5

Prior feeding
of xanthan
induced
reduction in
post-load
glucose by 31%
in patients and
25% in HV

Episodic
increased
fullness
no gut
symptoms

Reduction in
fasting glucose
and total
cholesterol in both
groups. No
significant change
in insulin, gastrin,
and GIP, and
triglycerides in
patients

Eastwood
1987
UK

Before-after

Long-term
intervention
Xanthan as fluid
gel three times
daily for 23 days,
total between 10.4
and 12.9 g/day

N/A 4 h N/A 5 HV M = 5 26–50
No significant
effect on
plasma glucose

N/A

Increased fecal
weight and
intestinal transit.
No effect
on plasma
biochemistry,
hematological
indices, urinalysis,
insulin, serum
immunoglobulins,
triglycerides,
phospholipids and
cholesterol
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Table 1. Cont.

Author
Year
Country

Study
Design

Intervention
Acute/Long-Term
and Details

Comparator
Duration of
Glucose
Assessment

Washout n Gender Age Glucose
Results

Appetite
Results

Other Outcomes
Reported

Edwards
1987
UK

Randomized
crossover

Acute intervention
50 g glucose drink
and (1) 2.5 g
xanthan; (2)
xanthan and locust
bean gum; (3)
xanthan/Mey; (4)
locust bean gum
or guar

50 g glucose
control drink 2 h N/K 16

HV
M = 12
F = 4 18–25

Significant
reduction in
glucose AUC

N/A

Reduction in
insulin AUC. No
change in gastric
emptying

Wolf
2003
USA

Randomized
crossover

Acute intervention
474 mL beverage
with pullulan 0.1
g/1 mL = 47 g

Maltodextrin
beverage 3 h 5–13 days

28
out of
36
HV

M = 22
F = 14 18–75

Positive
incremental
AUC reduced
by 50%

N/A
Increased breath
hydrogen
concentration

Spears
2005
USA

Randomized
crossover

Acute intervention
beverage with low
molecular weight
pullulan 50 g

Maltodextrin
beverage 3 h 4–14 days 34

HV
M = 19
F = 15 20–39

No effect on
incremental
plasma glucose
response

N/A

Higher breath
hydrogen at later
time points.
Serum insulin
lower during the
first 90 min
postprandially,
higher at 3 h. No
effect on
symptoms
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Table 1. Cont.

Author
Year
Country

Study
Design

Intervention
Acute/Long-Term
and Details

Comparator
Duration of
Glucose
Assessment

Washout n Gender Age Glucose
Results

Appetite
Results

Other Outcomes
Reported

Stewart
2010
USA

Single-blind
randomized
crossover

Long-term
intervention
Sauce mixed with
12 g/day of (1)
pullulan; (2)
resistant starch; (3)
soluble fiber; (4)
soluble corn fiber
give for 14 days

Maltodextrin Only fasting
time point 21 days 20

HV
M = 10
F = 10

32 ± 5
38 ± 4

No significant
change in
fasting glucose

No change in
hunger

Increase in
gastrointestinal
symptoms. No
change in ad
libitum diet, stool
parameters,
trigycerides,
cholesterol,
insulin, C-reactive
protein, ghrelin,
blood pressure
and body weight

Peters
2011
Netherland

Randomized
crossover

Acute intervention
Drink containing
15 g pullulan as (1)
long-chain; (2)
medium-chain

Maltodextrin
drink 5 h week 35

HV
F = 27
M = 8 20–59

Subset of
n = 12 tested
for glucose.
Significant
increase of
AUC
0–150 min in
medium-chain
and long-chain

Significant
reduction in
long-chain
group
0–150 min

Breath hydrogen
was significantly
higher for both
chain lengths. Ony
occasional
complaints of
symptoms.
Insulin was lower
for long-chain
pullulan

Paquin
2013
Canada

Randomized
crossover

Acute intervention
4 juices 300 mL: (1)
xanthan
0.18 g/100 mL;
(2) B-glucan;
(3) xanthan +
B-glucan
0.09 g/100 mL;
(4) control

Control juice 2 h 1 week 14
HV M 20–50

No difference
in AUC
compared to
control group

No change No significant
change in insulin
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Table 1. Cont.

Author
Year
Country

Study
Design

Intervention
Acute/Long-Term
and Details

Comparator
Duration of
Glucose
Assessment

Washout n Gender Age Glucose
Results

Appetite
Results

Other Outcomes
Reported

Fuwa
2016
Japan

Crossover

Acute intervention
250 g Rice with:
(1) xanthan added
during rice
cooking 0.5, 1.0,
1.5, 2.0, and 2.5%;
(2) xanthan mixed
with cooked rice at
0.5, 1.0, 1.5, 2.0,
and 2.5%

250 g
cooked rice 2 h >3 days 11

HV F 19–39

Significant
decrease in
postprandial
glucose at 15,
30 and 45
min in >1,
1.5% added
during rice
cooking
group and in
xanthan sol
group at
15–60 min

N/A N/A

Tanaka
2018
Japan

Ordered
intervention

Acute intervention
150 mL enteral
formula + 1.0%
xanthan

150 mL
enteral
formula

2 h 7 days 5
HV

M = 2
F = 3 21–22

AUC glucose
48% smaller
than control

N/A N/A

Naharudin
2020
UK

Randomized
double blind

Acute intervention
Semi-solid
fasts containing
xanthan 0.1 g/kg
of body weight.
One with and one
without added
carbohydrate

Water as
control 105 min >4 days 22 M = 22 23 ± 3

No
significant
change in
plasma
glucose

Significant
reduction in
hunger,
increase in
fullness
compared to
control

Significant
differences in
insulin and ghrelin
in the added
carbohydrate
group

Subhan
2020
Canada

Trial 1.
Single-blind
randomized
crossover

Acute intervention
20 g of:
(1) isomalto-
oligosaccharides;
(2) dextran;
(3) maltodextrin;
(4) dextrose
reference

Water as
control 2 h 1 week 12

HV N/K 18–75

Dextran did
not increase
plasma
glucose
compared
with water

N/A N/A

AUC = area under the curve, DP = diabetic patient, M = male, F = female, HV = healthy volunteer, N/A = not applicable, N/K = not known.
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Peters and colleagues [25] carried out a randomized controlled study in 35 participants
who were given a 325 mL commercial meal replacement drink containing 15 g medium-
chain pullulan, long-chain pullulan, or maltodextrin as control. A subset of 12 participants
underwent glucose measurements. The area under the curve for glucose of the two pullulan
drinks was significantly higher than that for maltodextrin. The latter showed the greatest
blood glucose excursion, with the medium-chain pullulan exhibiting an intermediate
excursion and the long-chain pullulan the lowest excursion.
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The study by Stewart et al. [24] provided a sustained fiber intervention with 12 g/day
(divided into two daily doses) taken mixed with a commercial apple sauce for 14 days.
The pullulan was used, and it was compared with resistant starch, soluble fiber dextrin,
soluble corn fiber, and maltodextrin as a control. Only fasting glucose was measured after
the intervention, and this did not differ from the control.

3.2. Xanthan and Glycemic Response

Osilesi et al. [26] conducted a crossover trial, nine borderline Type 2 diabetic subjects
and four healthy controls that received six muffins containing 12 g xanthan gum or control
for 6 weeks for each (consecutive) arm of the study in an otherwise free-living setting. The
addition of xanthan gum significantly lowered fasting glucose 76 ± 3 compared to control
91 ± 3 and post-load serum glucose 98 ± 3 compared to 131 ± 15 after the first 6 weeks
(p < 0.01). In the diabetic group, the xanthan containing muffin intervention lowered fasting
glucose by 38% compared to control muffin intervention (93 ± 10, 149 ± 13) (p < 0.05) and
post-load glucose by 31% (p < 0.05).

A study by Eastwood et al. [27] investigated daily doses of xanthan varied between
10.4 g and 12.9 g over 23 days. In this before and after study design, the results showed no
significant effect on blood glucose, with a small increase at 30 min after glucose tolerance
test ingestion of xanthan.

A study by Edwards and colleagues [28] assessed xanthan. On sixteen healthy par-
ticipants received a 250 mL drink containing a 50 g glucose load and 2.5 g of viscous
polysaccharide (xanthan or xanthan/locust bean gum or xanthan/Mey or locust bean gum
or guar). Glucose was significantly reduced by the addition of xanthan, compared with
control. The area under the curve for glucose at 2 h was significantly lower for the xanthan
group (129 ± 23, 217 ± 21 respectively, p < 0.05).

In a randomized controlled trial by Paquin et al. [29], 14 healthy male subjects con-
sumed four 300 mL juice drinks on four different study days, at least one week apart. One
was a control juice. The incremental peak of glucose showed a significant reduction in the
mix of xanthan gum and β-glucan compared to control (p = 0.001). The IAUC for glucose,
insulin overall 2 h test showed no significant overall treatment effect.

The study by Tanaka et al. [31] explored the effects of 1% w/v xanthan gum added to
150 mL of a commercial semi-solidified enteral feed versus the same enteral feed without
xanthan gum as a control on the blood glucose level. Five healthy participants drank
the control feed on a morning study day after a 12 h fast. They then repeated the study
after 7 days washout drinking the enteral feed plus xanthan gum intervention. The results
showed that blood glucose levels were 22% lower for the xanthan gum intervention
compared to control at 20 min postprandially (p < 0.05) and overall, as delta area under the
curve for 120 min (p < 0.05).

In Fuwa et al. [30], the xanthan was mixed into the rice meal and added directly
during the rice cooking. The concentrations used were 0, 0.5, 1.0, and 2.5% of raw rice
weight. The participants underwent a 12 h fast before the studies. The addition of ≥1.0%
xanthan gum during rice cooking significantly reduced blood sugar levels at 15 and 30 min,
and this was still significantly lower at 45 min for participants who received the meal with
xanthan at 1.5%. Blood glucose was also significantly reduced by adding the xanthan sol at
15–60 min postprandially. The 15-min postprandial blood sugar levels were significantly
reduced in subjects who had consumed the sol form of xanthan gum before rice. The
findings suggested that the blood sugar levels after rice consumption were suppressed
most effectively when the rice was coated in xanthan gum sol.

In a recent publication, Naharudin et al. [32] used xanthan gum in three arm-study.
The first intervention was water control, and the second intervention a viscous breakfast
(eaten with a spoon) based on low-calorie orange squash and xanthan gum. The third
breakfast was the same second intervention but with about 20 times more energy added as
maltodextrin. For the purpose of this review, the relevant sample is the second one, the
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low-calorie orange squash and xanthan gum which, compared to water control, did not
alter blood glucose.

3.3. Dextran and Glycemic Response

Two early studies used dextran as a feeding intervention. One [33] gave 100 mL of
20% dextran to two fasted human participants and 200 mL of 20% dextran to another two
fasted participants. They observed a modest rise in blood sugar over 2 h post-intervention
and concluded that intestinal breakdown of the dextran into glucose was possible and
seemed rapid. The other study [34] delivered 500 mL of 5% un-hydrolyzed high molecular
weight dextran orally to five patients. It did not observe any significant rise in blood sugar
in these participants over 3 h postprandial.

Subhan et al. [35] reported two trials investigating the effects of ingestion of isomalto-
oligosaccharides. In trial 1, dextran was used as a comparator/placebo. In the trial, 20 g
of dextran, isomalto-oligosaccharides, maltodextrin, dextrose, and water were given to
12 healthy participants. Dextran did not increase blood glucose compared with water. The
treatments and the data showed that dextran’s values were both significantly lower than
for the isomalto-oligosaccharides, noting that the Glycemic Glucose Equivalent for dextran
was 0.28 ± 0.08, much lower than 1.

These were small-scale studies of dextran that were not followed up in the
intervening years.

3.4. Appetite

Two studies examined the effect of pullulan intake on appetite. Stewart et al. [24]
assessed hunger using visual analog scales (VAS) and measured before breakfast, lunch,
and dinner on day 3 and day 14, and no differences were found between treatments and
control. Peters et al. [25] assessed appetite using VAS, and appetite scores were significantly
reduced for the long-chain pullulan drink compared to maltodextrin, whilst the medium-
chain pullulan was different from maltodextrin.

Three studies examined the effect of xanthan gum consumption on appetite. In the
study by Osilesi et al. (1985) [26], participants reported a sense of fullness after consuming
the xanthan-containing muffin. Paquin et al. [29] measured appetite by (VAS) question-
naires. There was no significant overall effect on satiety for 2 h test. Naharudin et al. [32]
assessed the hunger using VAS reported that xanthan gum lowered hunger and increased
fullness compared to control. They concluded that the increased viscosity caused by the
xanthan was responsible for the changes in satiety.

3.5. Tolerance

Four studies examined the overall tolerance of pullulan consumption. Wolf et al. [22]
assessed gastrointestinal tolerance using questionnaires. The frequency and intensity
of flatulence were significantly higher after subjects consumed pullulan compared with
control. Spears et al. [23] assessed malabsorption and gastrointestinal tolerance using
symptom questionnaires for 24 h after consuming the test meal. Gastrointestinal symptoms
were generally of low intensity. Peters et al. [25] reported a low gastrointestinal disturbance
for the pullulan group. Stewart et al. [24] reported that gastrointestinal symptoms were
moderate albeit significantly higher with pullulan.

Two studies noted the tolerance of xanthan gum. Osilesi et al. [26] reported that the
intervention was well tolerated with no side effects. Eastwood et al. [27] reported no sign
of adverse effects from the ingestion of xanthan at that dose.

4. Discussion

This systematic review investigated the evidence related to the dietary intake of food
hydrocolloids of bacterial origin in improving the glycemic response in humans. This
category of food hydrocolloids is still under-researched compared with other types of
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hydrocolloids. Our searches found 14 publications on three food hydrocolloids of bacterial
origin: pullulan, xanthan, and dextran.

Pullulan reduced blood glucose excursions depending on its chain length and di-
gestibility, the effect being stronger for longer-chain, lower digestibility pullulan [25]. This
was shown for a 15 g acute supplementation. The positive effect on reducing glycemic
excursion was confirmed for pullulan that is hydrolyzed slowly over time. At a higher
acute dose (50 g), information on the chain length was not provided [22]. Pullulan with
low-molecular-weight can be rapidly hydrolyzed in the small bowel and could not reduce
the glycemic response compared with maltodextrin even at the relatively high acute dose
(50 g) [23]. An additional paper studied a low (5 g) acute dose of pullulan, but this was
given in combination with other materials (effective by themselves in reducing glucose
responses, such as resistant starch). Therefore, it was not possible to isolate the effect
of pullulan [36]. In the only chronic study providing a 12 g pullulan intervention daily
for 2 weeks, there was no effect of pullulan on fasting glucose. However, postprandial
responses/areas under the curve for glucose were not measured in this case [24]. Not all
the pullulan literature had data on satiety, with the only positive effect on reducing appetite
shown by the long-chain type [25]. Slow digestibility and malabsorption result in some
of the pullulan reaching the colon and fermentation. This causes some gastrointestinal
symptoms such as flatulence, which may be a tolerance issue, particularly at high doses or
repeated dosing, especially in those with particular sensitivity.

Xanthan ingestion was generally well-tolerated, but the results on blood glucose
responses are more mixed. This hydrocolloid showed a positive effect in reducing blood
glucose responses in a group of diabetic and healthy participants at repeated dosing of
12 g per day for 6 weeks [26]. However, this was not observed in healthy participants after
23 days of repeated ingestion of around 10–13 g daily [27]. The addition of 2.5 g of xanthan
to an acute glucose load drink reduced the area under the curve for glucose [28]. However,
an addition of about 0.5 g to an acute intervention juice drink did not change the area
under the curve for glucose [29] nor in addition to a viscous breakfast [32].

Interestingly the addition of 1% w/v xanthan gum to enteral feeding in an acute
setting lowered blood glucose levels [31]. An additional report studied a low acute dose of
xanthan in a drink, but this was given in combination with other materials (guar gum or
konjac mannan). Therefore it was not possible to isolate the effect of xanthan [37]. Only
some of the papers on xanthan considered satiety. Some positive effects were shown [32],
possibly only due to the increase in viscosity, although another study showed no significant
effects [29]. There was again limited information for the secondary outcome of satiety.
One of the studies on juices showed a positive effect of xanthan on satiety [32], while in
another study, there was little effect compared to the control [29]. In one of the studies,
the participants reported (against no formal measurement) an occasional sense of fullness
following the intervention and no gastrointestinal symptoms [26].

One of the most interesting findings of this review was the effect of modifying food
processing during cooking using the xanthan hydrocolloid. Adding xanthan gum to the
muffins reduced fasting glucose significantly [26]. Additionally, [30] added xanthan gum
to rice cooking, resulting in a significant reduction in blood glucose responses. This is an
interesting and relatively simple intervention to modulate glucose responses effectively
by coating a typically high glycemic index staple food (rice) with a food hydrocolloid and
warrants further investigation.

There is much less data on dextran. Early work indicated that it had modest to no
effects on blood glucose for 2–3 h post-prandially, whilst a recent study showed that 20 g
dextran did not increase blood glucose compared to control.

The mechanisms whereby food hydrocolloids may modulate blood glucose responses
include surface interactions acting as a barrier for enzymatic access, restricting leakage of
amylose chains during gelatinization, and increasing digesta viscosity. This may slow the
release and breakdown of nutrients from the food matrix into absorbable forms [38,39].
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Some of the limitations highlighted by this review are that these studies used markedly
different doses of hydrocolloids, from small to what may be considered high amounts.
Xanthan, pullulan, and dextran are considered safe for dietary consumption. The European
Food Safety Authority EFSA re-evaluated xanthan gum in 2017 and concluded that it
was safe for use without any need to set a maximum dose for intake [40]. Most of the
studies included in our review were carried out using one-off, acute doses monitored
for a short period. Sustained exposure to food interventions may elicit body adaptation
and provide different responses [41]. Many of the studies included interventions using
small numbers of participants and often only healthy volunteers. Moreover, the data are
generally reported without comparison between male and female participants; therefore, it
was not possible to comment on possible gender differences in the glycemic effect of these
hydrocolloids of bacterial origin. It was also difficult to categorize the risk of bias of the
two older studies [33,34] using the ROBINS-I tool due to the lack of information provided
in those short reports.

5. Conclusions

The results from this systematic review indicated a mixed picture overall, with only
half of the studies reporting a reduction in blood glucose responses upon intervention with
food hydrocolloids of bacterial origin. The amounts of hydrocolloids provided and the
methods varied substantially between studies, and only three of the hydrocolloid types
have been studied, with the others remaining to be investigated. Further work with larger
numbers of subjects, both with acute and longer-term interventions, is needed. Modifying
food processing using food hydrocolloids of bacterial origin may be a promising strategy
to help modulate glucose excursions.
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