
materials

Article

The Role of Sintering Temperature and Dual Metal
Substitutions (Al3+, Ti4+) in the Development of
NASICON-Structured Electrolyte

Hashlina Rusdi 1, Roshidah Rusdi 2, Shujahadeen B. Aziz 3,4 , Abdullah Saad Alsubaie 5 ,
Khaled H. Mahmoud 5 and Mohd F. Z. Kadir 1,*

����������
�������

Citation: Rusdi, H.; Rusdi, R.; Aziz,

S.B.; Alsubaie, A.S.; Mahmoud, K.H.;

Kadir, M.F.Z. The Role of Sintering

Temperature and Dual Metal

Substitutions (Al3+, Ti4+) in the

Development of NASICON-

Structured Electrolyte. Materials 2021,

14, 7342. https://doi.org/10.3390/

ma14237342

Academic Editors: Junwei Wu and

Yanan Chen

Received: 14 October 2021

Accepted: 24 November 2021

Published: 30 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Centre for Foundation Studies in Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
linaharun98@um.edu.my

2 Centre for Nanomaterials Research, Institute of Science, Universiti Teknologi MARA,
Shah Alam 40450, Malaysia; roshidahrusdi@yahoo.com

3 Hameed Majid Advanced Polymeric Materials Research Lab., Physics Department, College of Science,
University of Sulaimani, Sulaimani 46001, Iraq; shujahadeenaziz@gmail.com

4 Department of Civil Engineering, College of Engineering, Komar University of Science and Technology,
Sulaimani 46001, Iraq

5 Department of Physics, Khurma University College, Taif University, Taif 21944, Saudi Arabia;
asubaie@tu.edu.sa (A.S.A.); k.hussein@tu.edu.sa (K.H.M.)

* Correspondence: mfzkadir@um.edu.my

Abstract: The aim of this study is to synthesize Li1+xAlxTixSn2−2x(PO4) sodium super ion conductor
(NASICON) -based ceramic solid electrolyte and to study the effect of dual metal substitution on the
electrical and structural properties of the electrolyte. The performance of the electrolyte is analyzed
based on the sintering temperature (550 to 950 ◦C) as well as the composition. The trend of XRD
results reveals the presence of impurities in the sample, and from Rietveld Refinement, the purest
sample is achieved at a sintering temperature of 950 ◦C and when x = 0.6. The electrolytes obey
Vegard′s Law as the addition of Al3+ and Ti4+ provide linear relation with cell volume, which signifies
a random distribution. The different composition has a different optimum sintering temperature at
which the highest conductivity is achieved when the sample is sintered at 650 ◦C and x = 0.4. Field
emission scanning electron microscope (FESEM) analysis showed that higher sintering temperature
promotes the increment of grain boundaries and size. Based on energy dispersive X-ray spectroscopy
(EDX) analysis, x = 0.4 produced the closest atomic percentage ratio to the theoretical value. Electrode
polarization is found to be at maximum when x = 0.4, which is determined from dielectric analysis.
The electrolytes follow non-Debye behavior as it shows a variety of relaxation times.

Keywords: NASICON-structured; mechanical milling; glass ceramic electrolyte; impedance; dielec-
tric properties; Li1+xAlxTixSn2−2xP3O12

1. Introduction

Most researchers and engineers are rapidly changing their direction towards energy
storage solutions, e.g., lithium-ion batteries and supercapacitors, due to growing awareness
of the environmental impacts of fossil fuels and the resilience of energy grids worldwide.
Lithium-ion batteries are used in various applications, such as automotive, aviation, electri-
cal appliances, and smart devices [1,2]. Ceramic solid electrolyte (CSE) has many significant
advantages, including high mechanical strength, excellent thermal stability together with
electrochemical stability. These unique characteristics enable CSE to be helpful in machines
that require highly durable materials [3,4]. CSE can eliminate several disadvantages, e.g.,
solvent evaporation, leakage, corrosion, and flammability [5].

Typically, CSE is a great Li-ion conductor compared to polymer and polymer/composite
electrolytes, due to the presence of channels in which alkaline ions can migrate easily [6].
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CSE also possesses better mechanical strength than polymer electrolyte. Some polycrys-
talline electrolytes that are classified under CSE are perovskite-type, which is a calcium
titanium oxide mineral composed of calcium titanate (CaTiO3) [7]; garnet-type, such as
Li7La3Zr2O12 [8]; sulfide-type, such as Li3PS4 and Li4SnS4 [9]; argyrodite-type, for example
Li6PS5Br [10]; and NASICON-type, such as LiZr2(PO4)3 system [11]. Other types of CSE
have amorphous structures instead of regular crystalline structures. Lithium phosphorus
oxynitride (LiPON)-type—[12] and lithium thiophosphates (Li2S–P2S5) [13]—are some
examples of amorphous CSE.

The performance of NASICON-type is strongly dependent on the materials and
composition used in the framework. This is because the parent compound, LiM2(PO4)3 can
be altered to various possible structures where M can be tin (Sn), titanium (Ti), germanium
(Ge), hafnium (Hf) or zirconium (Zr) [14]. The PO4 tetrahedron and MO6 octahedron
in NASICON structure acts as channels for alkali ions to move from one electrode to
another [15]. Other researchers [16–18] reported that LiSn2P3O12 has great electrical and
thermal stability and withstands shock and pressure. However, LiSn2P3O12 usually has a
low conductivity value. This obstacle can be solved by substitution method using trivalent
cation like gallium (Ga), indium (In), yttrium (Y), aluminum (Al), vanadium (V), iron
(Fe), chromium (Cr) or scandium (Sc). In this work, dual metal element substitution
method has been implemented using Al3+ and Ti4+. Hence the new formula after dual
metal element substitution is Li1+xAlxTixSn2−2xP3O12, where x is varied from 0.2 to 0.8.
The substitution process creates positive charge deficiency, which is compensated by
Li− ion [19]. In this work the Li1+xAlxTixSn2−2x(PO4)3sample will be produced using
several sintering temperatures from 550 to 950 ◦C. The influence of sintering temperature
and composition on the electrical and structural properties of the samples will be the main
focus. Based on our knowledge, there is no report on Li1+xAlxTixSn2−2xP3O12 electrolyte.

2. Experimental Procedures
2.1. Materials

Lithium oxide (Li2O) 99%, tin (IV) oxide (SnO2) 98%, ammonium dihydrogen phos-
phate (NH4H2PO4) 98%, titanium (IV) oxide (TiO2) 99.8% and aluminum oxide (Al2O3)
99.99%. These materials were procured from Sigma Aldrich (Saint Louis, MO, USA).

2.2. Li1+xAlxTixSn2−2xP3O12 Preparation

Starting materials, e.g., SnO2, Li2O, TiO2, NH4H2PO4 and Al2O3 were ground and
mixed using a planetary ball miller. The mixture was then placed in an alumina crucible
and heated at 700 ◦C for 2 h. The pre-heating process was performed to eliminate H2O
and NH4 from NH4H2PO4 to gain P2O5 [3]. The resultant mixtures were inserted into a jar
filled with zirconium (Zr) balls (diameter = 0.4 cm). The milling process was conducted
using a Fritsch 7 ball mill (Tencan, Changsha, China) at 500 rpm for 80 h. The height and
inner diameter of the jar were 7.3 cm and 5.2 cm, respectively. The mixture was pressed at
7 tons of pressure using Specac Hydraulic Press to form an electrolyte pellet. The thickness
of the electrolyte was from 1 to 13 mm. Different sintering temperatures such as 550, 650,
750, 850 and 950 ◦C were used for 8 h. A desiccator containing SiO2 gel was used to store
the final electrolyte and to remove excess moisture.

2.3. Li1+xAlxTixSn2−2xP3O12 Characterization

A Bruker AXS D8 Advance X-ray Diffraction spectrometer (Malvern Panalytical Ltd.,
Malvern, UK), (Cu-K radiation, 1.5406 Å) was employed to study the phase and structural
properties of the electrolytein 2θ range between 10 and 90◦.The sample holder for XRD
analysis was PW1813/26, 26 mm ∅ Steel Ring. The structure of Li1+xAlxTixSn2−2xP3O12
was matched with the R-3c space group of LiSn2P3O12. XpertHighScore Plus software
version 5.1 (Malvern Panalytical, Malvern, UK) was used to conduct structural studies by
refinement method.Any changes on the surface of the electrolyte were analyzed using JEOL
7600F FESEM (Jeol Ltd., Tokyo, Japan). The electrolytes were examined under vacuum
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condition with accelerating voltage of 5 kV, and magnification of 20 kx. EDX was conducted
using Oxford INCA X-Max 51-XMX 0021 (Oxford instruments nanoanalysis, Tokyo, Japan)
integrated with FESEM (JEOL 7600F).

Solartron SI 1260 Impedance Analyzer (Artisan technology group, Champaign, IL, USA)
was used to analyze the conductivity of each electrolyte in the frequency range of 1 Hz to
32 MHz. The value of conductivity (σ) from impedance spectra was obtained using the
equation below:

σ =
d

Rbulk A
(1)

where d stands for the thickness of the electrolyte, Rbulk is the bulk resistance and A is the
interfacial contact area between the electrode and electrolyte. The dielectric constant may
be used to portray the capacitive behavior of the electrolyte and to confirm the pattern of
conductivity. The charge stored in the electrolyte is called the dielectric constant (ε′), while
the energy dissipation is called the dielectric loss (ε”). Data from impedance analysis was
used to obtain the dielectric parameters via the following equations [20]:

ε′ =
Z′′

ωCo(Z′)2 + ωCo(Z′′ )2 (2)

ε′′ =
Z′

ωCo(Z′)2 + ωCo(Z′′ )2 (3)

where Z′ and Z” are the real (x-axis) and imaginary (y-axis) parts of the impedance. Co
is the vacuum capacitance, and ω stands for angular frequency. The ionic-conducting
behavior of a material may also be examined via electrical modulus analysis. The real
and imaginary parts of modulus are M′ and M”, respectively, where M′ and M” can be
expressed as:

M′ =
(ε′)2

(ε′)2 + (ε′′ )2 (4)

M′′ =
(ε′′ )2

(ε′)2 + (ε′′ )2 (5)

From the peak in the plot of M”, relaxation time (trex) was determined using the
following equation:

trexωpeak = 1 (6)

where ωpeak is the angular frequency of the relaxation peak.

3. Result and Discussion
3.1. X-ray Diffraction Study

Figure 1 shows the XRD patterns obtained for Li1+xAlxTixSn2−2x(PO4)3 with x = 0.2,
0.4, 0.6 and 0.8 that are sintered at five different temperatures. XRD analysis is conducted
to identify the formation of the compound either single phase or multi-phase as well as the
existence of impurity in the compound. It is noticeable in Figure 1 that the samples sintered
at 550 ◦C are more amorphous and when the samples are treated at higher temperature
from 650 ◦C and above, the crystallinity of the sample increased. This is determined
based on the sharpness and shape of the XRD peak. Diffraction peaks in all samples show
the peaks are corresponding to LiSn2(PO4)3 and align with the International Center for
Diffraction Data (ICDD) reference pattern (01-087-2078), which is reported in our previous
work [21].
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Figure 1. XRD diffractograms of Li1+xAlxTixSn2−xP3O12 with x = (a) 0.2, (b) 0.4, (c) 0.6 and (d) 0.8
sintered at various sintering temperatures. The impurity peak of AlPO3 is marked as �.

The samples sintered at 850 ◦C show almost pure samples with low impurity for
all stoichiometries. However, the impurity peak of the AlPO3 phase is also observed in
most samples. The impurity peaks are more obvious for the samples with x = 0.8. For the
rest, the impurity peak to the signal ratio is quite low. It is attributed to a high amount of
substituent, which causes Al3+ ions to react with PO3− ions due to the strength of their
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charge interaction. Al3+ loses 3 electrons while PO3− receives 3 electrons, thus producing
high AlPO3 impurities [22]. This is also due to several factors such as lattice mismatch, ionic
radius and lattice size [23]. These factors can be investigated using Rietveld Refinement
method with the structural ICSD reference 83831 for LiSnPO4.

The refinements are done for samples from 650 ◦C and above due to the crystallinity
issues. All samples that are sintered at 550 ◦C portray amorphous structures. From Rietveld
Refinement analysis, all samples have the lowest impurity amount at a sintering tempera-
ture of 950 ◦C; thus, Figure 2 shows the XRD Refinement results in Li1+xAlxTixSn2−2x(PO4)3
sintered at 950 ◦C. All parameters obtained from refinement analysis are tabulated in
Table 1. The impurity presence in the compound is mostly AlPO4, while some are TiO2 and
SnO2. There is no trend of impurity amount with the increased amount of substituent. The
purest compound with impurity-free is when x = 0.6 is sintered at 950 ◦C. When more sub-
stituents are added into the system, the cell parameter and the cell volume become smaller
than LSP. The refinement results show that the problem with this system or compound is
the element vacancies in the system.
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Table 1 reveals that aluminum and titanium substitution affect the lattice parameters
of the LSP. When aluminum and titanium content increases, the cell volume decreases
when x = 0 to x = 0.2 and increased back when more aluminum and titanium are substi-
tuted as shown in Figure 3. This is due to the smaller ionic radius of Al3+ (0.57 Å) and
larger Ti4+ (0.75 Å) compared to Sn4+ (0.65 Å). Linear relation can be seen between the
cell volume and x. This phenomenon indicates that these samples obey Vegard’s Law [24].
Kahlaoui et al. [25] reported that due to the linearity of cell volume–composition rela-
tions, the distribution of Li and Ba in Bax/2Li1-xTi2(PO4)3 NASICON-based electrolyte
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is expected to be random. Thus, Al3+ and Ti4+ in Li1+xAlxTixSn2−2x(PO4)3 system are in
random distribution.

Table 1. Lattice parameters and side occupancy factor (s.o.f.) of Li1+xAlxTixSn2−xP3O12 (x = 0.2, 0.4, 0.6, 0.8) sintered at
950 ◦C.

Sample Impurity
(%) a(=b)/Å c (Å) V (Å3) c/a Rw χ2

s.o.f of
Li in

6b

s.o.f of
Sn in
12c

s.o.f of
Al in
12c

s.o.f of
P in 3b

s.o.f of
O

LSP
(83831) - 8.63 21.53 1389.82 2.49 - - 1.00 1.00 0.00 1.00 1.00

x = 0 19.0 8.63 21.66 1396.48 2.51 9.60 3.27 1.00 1.00 - 1.00 1.00

x = 0.2 2.0 8.55 21.29 1347.56 2.49 22.06 3.69 1.00 0.79 0.09 0.11 0.70

x = 0.4 1.6 8.58 21.33 1360.55 2.49 40.72 1.24 1.00 0.45 0.50 0.05 0.70

x = 0.6 - 8.61 21.50 1380.20 2.50 16.89 2.45 1.00 0.88 0.30 0.30 1.00

x = 0.8 0.6 8.61 21.50 1380.20 2.50 20.68 2.45 1.00 0.39 0.35 0.13 1.00
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3.2. Conductivity and ImpedanceStudy

Conductivity measurement is done on all samples and sintering temperatures. The
conductivity values are summarized in Table 2. The different sample has different op-
timum temperatures. We can observe that the highest conductivity for x = 0.2 and 0.4
is at a sintering temperature of 650 ◦C, while that for x = 0.6 and 0.8 is at 550 ◦C and
850 ◦C respectively. The result shows that lower sintering temperature is more suitable
for glass-ceramic to give relatively good conductivity values and applied as solid elec-
trolyte. Using low sintering temperatures, the inter-atom and intermolecular forces are not
strong, making the process of electron or ion conduction easy, and flowing to complete
the circuit in the system. Narayanan et al. [26] reported the same phenomenon wherein
high sintering temperatures reduce ionic conductivity. The authors also stated that the
synthesis conditions and sintering temperature greatly influence the conductivity of the
NASICON samples.
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Table 2. Conductivity values for all samples at different sintering temperatures.

Sintering Temperature
(◦C)

Conductivity (S cm−1)

x = 0.2 x = 0.4 x = 0.6 x = 0.8

550 4.03 × 10−6 2.13 × 10−6 2.83 × 10−6 3.59 × 10−7

650 4.08 × 10−6 4.74 × 10−6 1.41 × 10−6 1.41 × 10−7

750 1.65 × 10−6 1.60 × 10−6 1.87 × 10−6 9.25 × 10−8

850 1.03 × 10−6 7.12 × 10−7 2.65 × 10−6 3.57 × 10−6

950 2.46 × 10−6 3.85 × 10−6 2.82 × 10−6 2.62 × 10−6

As the Li1+xAlxTixSn2−2x(PO4)3 sample has the highest conductivity at sintering temper-
ature of 650 ◦C, Nyquist plots of all samples at sintering temperature of 650 ◦C are chosen for
a better comparison purpose. Figure 4 shows the Nyquist plot of Li1+xAlxTixSn2−2x(PO4)3
where x = 0.2, 0.4, 0.6, 0.8 and is sintered at 650 ◦C. The value of Rbulk for this kind of
plot is taken from the meeting point of the titled line and the semicircle. The semicircle
at higher frequency region is due to the conduction of ions in the bulk of the electrolyte
while the tilted line at low frequency indicates polarization effects [27]. It is obvious that
the bulk resistance of the electrolyte is reduced and is the smallest when x = 0.4. As the
amount of substituent increases, the bulk resistance is observed to increase. The highest
conductivity achieved is 4.74 × 10−6 S cm−1 when x = 0.4 (Table 2). Rao et al. [28] stated
that the differences in conductivity are typically related to the connectivity between grains,
which have a higher concentration of imperfections near the grain boundary. The authors
reported a similar trend of conductivity variation where the highest conductivity value is
4.25 × 10−6 S cm−1 for LiTi2(PO4)3 system. The inclusion of x = 0.4 of Al3+ has optimized
the conductivity to 2.5 × 10−6 S cm−1 for Li1+xAlxSn1.2+xP3O12-based solid electrolyte,
which is reported by Lu et al. [29]. From Table 1, the conductivity values change more
on the c side and the cell volume increases as x value increases. When the cell volume
increases, this may cause the ion to move more easily in the cell, which in turn enhances
the conductivity values. However, too large a volume can lead to conductivity decrement
as ions require more energy to move to neighboring sites.

3.3. FESEM Analysis

FESEM micrographs of samples sintered at 650 ◦C are selected as the highest con-
ductivity is obtained at this sintering temperature, as can be seen in Figure 5. FESEM
micrographs of all compositions show an irregularity in shape, and some have a flaky
type of morphology along high agglomeration. When x = 0.2, the surface has some large
grain structure with size more than 1 µm, while most grain structure is less than 1 µm in
x = 0.4. FESEM micrographs of x = 0.6 and 0.8 possess a bimodal grain size distribution
with small grains localized around larger grains. Narváez-Semanate et al. [30] reported
that the sample with bimodal grain size distribution in the Li1+xAlxTi2−x(PO4)3 system
has low ionic conductivity value. Furthermore, among all compositions, the sample with
x = 0.4 has the most consistent particle arrangement and size distribution, while x = 0.2, 0.6
and 0.8 has larger grain structures. The pathway of ions and electrons to conduct is easier
in compounds with consistent particle size distribution [31].Results of FESEM analysis are
in good agreement with the conductivity results in Table 2.
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Figure 6 illustrates the FESEM micrographs of the Li1.4Al0.4Ti0.4Sn1.2P3O12 sintered
at low and high temperatures. Electrolyte sintered at 750 ◦C shows an increase in grain
size, while the grain size is further increased for 950 ◦C and clear grain boundaries can be
seen. The increment in grain size is usually due either to re-crystallization or the existing
defects in the crystal [32,33]. These results are in good agreement with XRD analysis, in
which most samples experience increments in crystallinity at higher sintering temperature,
as shown in Figure 1. Liu et al. [34] reported the same pattern of grain size growth for
the Li1.3Al0.3Ti1.7(PO4)3 system. The authors also stated that sintering temperature will
affect the grain size and the resistance of the electrolyte. This explains the pattern of
the conductivity value in Table 2 where most samples possess low conductivity when
sintered at high temperature. Figure 7 shows the EDX plot, and the average value of atomic
percentages of elements is tabulated in Table 3. Based on EDX analysis, x = 0.4 produced
the closest atomic percentage ratio to the theoretical value.
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Table 3. Average value of atomic percentages of elements for all electrolytes at 650 ◦C.

x Elements
Atomic Percentage (%)

Theory Calculated

0.2

Sn 32 16.1

P 60 63.0

Al 4 9.3

Ti 4 11.6

0.4

Sn 24 36.7

P 60 53.0

Al 8 3.5

Ti 8 6.8

0.6

Sn 16 30.8

P 60 61.9

Al 12 3.7

Ti 12 3.6

0.8

Sn 8 26.8

P 60 60.9

Al 16 8.4

Ti 16 3.9

3.4. Dielectric Analysis

Highest conductivity of Li1+xAlxTixSn2−2xP3O12 is obtained at sintering temperature
of 650 ◦C; thus, dielectric study at this sintering temperature is chosen to verify the pattern
of conductivity. Dielectric analysis is a crucial method for identifying ionic transport and
phase transition mechanism in a system. The pattern of ε′ is displayed in Figure 8, which
has almost the same trend as ε′′ in Figure 9, where it is high at low frequency region [35].
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Figure 9. Variation of ε′′ at different frequencies for Li1+xAlxTixSn2−2x(PO4)3 at sintering temperature
of 650 ◦C.

As observed in Figure 8, the value of ε′ is low at high frequency region (Log f > 3)
while high at low frequency region [36]. Rao et al. [28] reported that polarization happens at
low frequency as ions can form proper charge double layers at the surface of the electrode.
ε′ is observed to approach zero as Log f is more than 3. At rapid rate of electric field, charge
carriers experience unstable flow, including collisions among charge carries, which disable
proper formation of charge double-layer [37]. The value of ε′ is at maximum when x = 0.4.
Thus, it is proven that in Li1+xAlxTixSn2−2x(PO4)3, the number of charge carriers is the
largest when x = 0.4. The trend of conductivity in Table 2 (at sintering temperature of
650 ◦C) is further verified, as it is consistent with the trend of ε′ in Figure 8.

The loss of energy of Li1+xAlxTixSn2−2x(PO4)3at 650 ◦C is shown in Figure 9. The
value of ε′′ for a sample with x = 0.4 is at maximum, and drops as x value changes to
0.2, 0.6 and 0.8. This shows that Li1.4Al0.4Ti0.4Sn1.2(PO4)3 has more free ions or charge
carriers compared to other compositions. More energy loss is observed as more ionic
collision occurs. The pattern of dielectric constant and loss in this study is similar to other
NASICON-based solid electrolyte works [28,38]. These authors stated that their NASICON-
based electrolytes have the behavior of an ionic conductor. Meena et al. [39] reported that
the hump in dielectric of Co3−xMnxO4 ceramic is due to the presence of dielectric anomaly
peak. According to the work by Hyatt et al. [40] and Luo et al. [41], the hump in the real
part of permittivity is due to the presence of second phase and impurity.

3.5. Electric Modulus Atable Analysis

The electrical properties of Li1+xAlxTixSn2−2x(PO4)3 is further studied using electrical
modulus, which analyzes the response of Li+ ions in the presence of electric field. Modulus
is used to examine ionic conductivities in correlation with the ionic process and conductivity
relaxation. It can be observed that the pattern of M′ in Figure 10 possesses a peak at
~Log f = 7 for all compositions. The presence of this peak is common in a conductor of ion.
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Relaxation process is usually located at the high frequency region, while conduction
process is at low frequency region [42]. The value of M′ is low and almost approaching
zero from Log f = 0 to Log f = 3. Tripathi et al. [43] reported that at low frequency region,
electrode polarization is dominant. This outcome tallies with the results of conductivity in
Table 2.

Figure 11 illustrates the effect of frequency on M”. The peak of M” shifted towards
higher frequency from x = 0.2 to x = 0.4 and shifted back towards lower frequency regions
for x = 0.6 and 0.8. Nikam and Deshpande [44] stated that variation of relaxation of
charge carriers signifies that the system follows non-Debye-type behavior. This outcome
is similar to the NASICON-type structure reported by Arumugam et al. [45] with the
Li1.3Al0.3Ti1.7(PO4) system.

The trex of each electrolyte is tabulated in Table 4. trex is 98 × 10−8 s for x = 0.2 and
reduces to 1.57 × 10−8 s when x = 0.4. The trend of trex supports the trend of conductivity.
The presence of relaxation is attributed to conduction of free ions in alternating electric
fields. It is noticeable that there are several humps in the frequency range between Log
f = 4 to 6 in all composition. This is due to the presence of grain and grain boundaries. Po-
larization of ceramic is highly influenced by the existence of grain boundaries [46]. Supriya
et al. [47] stated that a high number of grain boundaries produce more dipole formation.

Table 4. Relaxation time for Li1+xAlxTixSn2−2x(PO4)3 (x = 0.2, 0.4, 0.6, 0.8).

x trex (s)

0.2 1.98 × 10−8

0.4 1.57 × 10−8

0.6 2.49 × 10−8

0.8 1.57 × 10−5
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4. Conclusions

The main objective of this study has been achieved as different sintering temperature
yields different grain size, grain boundary visibility, conductivity and impurity content for
NASICON electrolyte with the Li1+xAlxTixSn2−2x(PO4)3 system. Li1+xAlxTixSn2−2x(PO4)3
systems have been successfully prepared using mechanical milling method at 550, 650, 750,
850 and 950 ◦C. Enhancement of crystallinity with increasing sintering temperature can
be seen in XRD analysis. The purest Li1+xAlxTixSn2−2x(PO4)3 system can be obtained at
sintering temperature of 950 ◦C and x = 0.6. Thus, in applications that require pure samples,
this sintering temperature and composition can be used. The Li1+xAlxTixSn2−2x(PO4)3
system obeys Vegard’s Law: a linear pattern of cell volume can be observed as Al3+ and
Ti4+ are added. The optimum sintering temperature to obtain highest conductivity for
samples with x = 0.2, 0.4, 0.6 and 0.8 are 650 ◦C, 650 ◦C, 550 ◦C and 850 ◦C, respectively.
Thus, it can be verified that sintering temperature has a great influence on conductivity.
The Li1+xAlxTixSn2−2x(PO4)3 system has the highest conductivity at sintering temperature
of 650 ◦C and x = 0.4. Growth in grain size and grain boundary can be seen at high sintering
temperature. Maximum electrode polarization and dielectric constant are obtained when
x = 0.4. The Li1+xAlxTixSn2−2x(PO4)3 system follows non-Debye behavior as it shows a
variation of relaxation times. Thus, it can be concluded that different sintering temperatures
and compositions produced Li1+xAlxTixSn2−2x(PO4)3 with various properties (e.g., purity,
structure, crystallinity, conductivity and dielectric). Hence, the selection of sintering
temperature as well as composition should be aligned with the desired application. The
performance of the electrolyte can be further enhanced in order to be useful in energy
devices. This ceramic electrolyte can be used in hybrid polymer–ceramic electrolytes where
polymers like polyethylene oxides (PEO) and polyvinylidene fluoride (PVDF) are used.
This can improve electrolyte flexibility and provide more channel for ions to be conducted.
Thus, a number of improvements can be made in the future. Other than that, different
synthesis approaches (e.g., sintering temperature, size of balls in the ball miller, sintering
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time, composition, compatibility of materials and ambience for the analysis) might yield a
different result.
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