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Abstract

Mushrooms have been used for centuries not only as food but also in traditional medi-

cine as a source of components with pro-health activity. One of them is Coprinus

comatus (O.F.Müll.) Pers. also called shaggy mane, chicken drumstick mushroom, or law-

yer's wig. In Asian countries, C. comatus (CC) is approved as edible mushroom and often

cultivated for consumption, whereas in many other countries, although it is widespread,

it is unrecognized and not used. In this review, for the first time, we discussed about the

composition related to functional properties as well as the potential risks associated with

consumption of CC by reviewing scientific literature. The information has been collected

in order to get to know this species thoroughly. Various studies show many of the physi-

ological activities, such as antioxidant, anticancer, antiandrogenic, hepatoprotective,

acetylcholinesterase inhibitory, antiinflammatory, antidiabetic, antiobesity, antibacterial,

antifungal, antinematode, and antiviral. Besides positive physiological properties, CC has

also negative features, for example, skin reactions in patients with dermatitis and atopic

predisposition, risk of confusion with poisonous mushrooms, quick autolysis after collec-

tion, and contamination of toxic elements.
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1 | INTRODUCTION

Mushrooms have been used as food and also as traditional medicine by

their content of components with pro-health activity (Demirbas, 2001;

Gao, 2006). A great example of these mushrooms belonging to the

phylum Basidiomycota is Coprinus comatus (O.F.Müll.) Pers., also called

shaggy mane, chicken drumstick mushroom, or lawyer's wig, usually

grows in spring and autumn on lawns. C. comatus (CC) belongs to the

phylum Basidiomycota, family Agaricaceae, and Coprinus genus, which

share name with it. Orton and Watling reported that in 1780 CC was

categorized by Otto Friedrich Müller and first named Agaricus comatus.

Seventeen years after, Christiaan Hendrik Persoon changed name A.

comatus to CC and transferring this mushroom to Coprinus genus (Kirk,

Cannon, Minter, & Stalpers, 2008; Orton &Watling, 1979).

The unique feature of this species is that it is edible only when

young, old one undergoes autolysis. The cap of CC is normally white,

but with time it turns pink and covers the stipe over (Figure 1). After

depositing spores or being picked, it changes its color to black and dis-

solves itself in a matter of hours (Rouhana-Toubi, Wasser, Agbarya, &

Fares, 2013). Normally, a cap is from 5 to 10 cm tall, initially egg

shaped, opens into a long bell. When it is white, its top breaks up into

large recurved scales. The stem of CC is white, hollow, and 6–15 cm

tall. The stem ring becomes colored with black spores. Spores are black,

smooth, and ellipsoidal with size of 9–13 × 7–9.5 μm. It occurs in
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woods, meadows, and verges of roads. Many physiological effects

of CC have been reported, for example, antioxidant, anticancer, anti-

androgenic, hepatoprotective, acetylcholinesterase inhibitory, antiin-

flammatory, antidiabetic, antiobesity, antimicrobial, antiviral, antifungal,

and antinematode activity (Dotan, Wasser, & Mahajna, 2011; Li, Lu,

Suo, Nan, & Li, 2010; Park et al., 2014; Sabo et al., 2010; Stojkovi�c

et al., 2013; Zaidman, Wasser, Nevo, & Mahajna, 2008; Zhang

et al., 2017; S. Zhao et al., 2014; Zhou & Han, 2008). CC is valued for its

taste as well as for nutritional properties; therefore, in 2006, in China,

382,000 tons of this mushroom have been consumed (Bailey, Turner,

Jakeman, & Hayes, 1984; Fan et al., 2006). CC is cultivated as an edible

mushroom in Japan, China, and other Asian countries, but in some coun-

tries in Europe, for example, and in Poland, it is not legally classified as

an edible mushroom (Polish Journal of Laws, 2018). The aim of the pres-

ented work is to discuss the composition related to functional properties

as well as the potential risks associated with consumption of CC by

reviewing scientific literature.

2 | NUTRITIONAL VALUE AND CHEMICAL
COMPOSITION OF CC

Mushrooms are appreciated for their taste but also for nutritional

value. Nutritional value of CC was examined by various researchers.

The assays show that 100 g dry weight (d.w.) of CC provided energy

in amount of 368.1–525 kcal. The main compounds of mushrooms

were carbohydrates. The content of carbohydrates in CC was

49.2–76.3 g/100 g d.w. It is worth emphasizing that CC was a good

source of dietary fiber because dried CC contained 32.8 ± 4.2%

water-insoluble and 1.79 ± 1.1% water-soluble fiber. CC has been

reported to have 11.8–29.5 g of protein and 1.1–5.4 g of fat in

100 g d.w. (Akata, Ergonul, & Kalyoncu, 2012; Cheung, 2013;

Stojkovi�c et al., 2013; Vaz et al., 2011). Nutritional value of protein

from mushrooms is related to ratio of various protein fractions. The

analyses detected six different protein fractions: albumins, globulins,

prolamines, prolamines-like fraction soluble in alcohol after reduced

with 2-mercaptoethanol, glutelin-like fraction soluble in alkali, and

true glutelin. Protein fractions were presented as percentage of total

protein in CC and reached value 14.75 ± 0.72%, 27.36 ± 0.65%,

5.48 ± 0.18%, 5.27 ± 0.26%, 4.48 ± 0.14%, and 6.97 ± 0.17%, respec-

tively. Moreover, the total protein content in mushroom was higher

than in other foods mentioned by Petrovska, such as barley, amaranth

grain, maize, rice, wild rice, wheat, and sorghum (Petrovska, 2001). It

is worth emphasizing that protein from mushroom like CC is also

highly digestible, and usually it is in a range 71–90%. It was found that

2 g protein from mushroom is equal to 1 g meat protein. Therefore, in

Eastern Europe mushrooms were sometimes called ’forest meat‘ or

’meat for poverty’ (Kalač, 2016; Mukerji & Manoharachary, 2010).

The chemical composition of CC fruiting body depends on origin,

environmental condition, and so forth. Mushrooms are rich in various

types of biologically active substances and their metabolites with

many different properties (Tang, Yin, Zhang, Jia, & Gao, 2015). Some

of these compounds were found only in cultivated mushrooms,

whereas others only in wild ones (Table 1). Trehalose dominates in

the carbohydrates group of free sugars (Stojkovi�c et al., 2013). Poly-

saccharides extracted from water extract of CC fruiting bodies were

fractionated by size-exclusion chromatography and analyzed by 1D/2D

NMR spectroscopy. Detailed analysis has shown presents of disaccha-

ride α, α-trehalose [α-D-Glcp-(1!1)-α-D-Glcp], β-D-glucans containing of

β-D-Glcp-M, lower molecular mass penta-saccharide-repeating α-L-fuco-

α-D-galactan, (!6)-α-D-Galp-(1!6)-[α-L-Fucp-(1!2)-]α-D-Galp-(1!6)-

α-D-Galp-(1!6)-α-D-Galp-(1!}p. The most common component was

α-D-glucans containing of [!4)-α-D-Glcp-(1!]n backbones with

roughly 10% of branching at C-6 by terminal α-D-Glcp-(1!6)- or

α-D-Glcp-(1!6)-α-D-Glcp-(1!6)- sequences (Li, Dobruchowska,

Gerwig, Dijkhuizen, & Kamerling, 2013). The amino acids with the

largest concentration were glutamic acid (441.6 mg/100 g d.w.) and

alanine (222.8 mg/100 g d.w.). In addition, CC contained lower

F IGURE 1 Coprinus comatus in
the forest. (A) The young fruit bodies,
at edible stage. (B) The old
mushrooms beginning to autodigest
and turn into a black inky liquid
(arrow) [Colour figure can be viewed
at wileyonlinelibrary.com]
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content of cys-thionine (1.9 mg/100 g d.w.) and methionine

(5.3 mg/100 g d.w.). Polyunsaturated fatty acids (PUFA) were the

main fatty acids fraction in CC and reached value 66.01%. Saturated

fatty acids (SFA) were 18.72%, and monounsaturated fatty acids

(MUFA) were 15.27% (Stojkovi�c et al., 2013). Pedneault, Angers,

Gosselin, and Tweddell also determined quantity of PUFA, SFA, and

MUFA, and there were 65.3, 23.8, and 10.4%, respectively. Further-

more, fatty acids profiles of two fractions: neutral and polar lipids were

determined. The both lipid fractions were chiefly composed of linoleic

acid (18:2 Δ9c, 12c; 64.5% of neutral lipids and 63.7% of polar lipids) or

palmitic acid (16:0; 18.9% of neutral lipids and 20.4% of polar lipids).

The lower concentrations were measured in the fatty acids with small

number of carbon and none of double bonds (Pedneault et al., 2008).

Moreover, the content of the total tocopherols (588.2 μg/100 g) in culti-

vated CC is worth attention, because it is significantly higher than the

total tocopherols level in wild CC (Stojkovi�c et al., 2013). An important

component of mushrooms is provitamin D2 called ergosterol, but the

content of ergosterol has not been determined in CC yet (Kalač, 2016;

Reyes et al., 2009; Teichmann, Dutta, Staffas, & Jägerstad, 2007;

Villares, Mateo-Vivaracho, García-Lafuente, & Guillamón, 2014).

Tešanovi�c et al. detected polyphenol compounds, group of the

secondary metabolites with bioactivity, such as flavones, flavonols,

flavanones, flavanols, biflavonoids, isoflavonoids, hydroxybenzoic

acids, hydroxycinnamic acids, coumarins, and chlorogenic acids in CC

water extract (Table 2). Among phenolic compounds, the largest con-

tent was detected for quinic acid (14.6 mg/100 g d.w.) and quercetin

TABLE 1 The content of selected chemical compounds in
Coprinus comatus (Pedneault, Angers, Gosselin, & Tweddell, 2008;
Reyes et al., 2009; Stojkovi�c et al., 2013)

Group of
compounds Compound

Content in 100 g
d.w. (mean ± SD)

Free sugars (g) Fructose 0.11 ± 0.1a

Mannitol 1.84 ± 0.1

Trehalose 5.41 ± 0.4

Amino acid (mg) Aspartic acid
Threonine
Serine
Asparagine
Glutamic acid
Glutamine
Glycine
Alanine
Valine
Cysteine
Methionine
Isoleucine
Tyrosine
Phenylalanine
Histidine
Lysine
Tryptophan
Arginine
Proline
Phosphoserine
α-amino adipic acid
α-aminobutyric acid
Cys-thionine
γ-aminobutyric acid
Ornithine

70.6
61.7
76.2
39.6
441.6
57.4
55.2
222.8
94.4
22.3
5.3
63.0
80.6
61.2
59.6
31.0
64.8
18.2
57.5
60.0
112.5
6.4
1.9
41.9
36.1

Fatty acids profiles
of neutral/polar
lipids (%)

4:0
5:0
6:0

0.02/−
0.02/−
0.03/−

7:0
8:0
9:0
10:0
11:0
12:0
13:0
14:0
14:1 Δ9c
15:0
16:0
16:1 Δ7c
16:1 Δ9c
16:1 Δ11c
16:2 Δ7c, 10c
16:2 Δ9c, 12c
17:0
17:1 Δ9c
18:0
18:1 Δ9t
18:1 Δ9c
18:1 Δ11c
18:2 Δ9c, 12c
18:3 Δ9c, 12c, 15c
20:0
20:1 Δ9c
20:1 Δ11c
20:2 Δ11c, 14c

0.03/−
0.02/−
0.04/−
0.02/0.04
0.05/0.02
0.13/0.12
0.03/0.04
0.57/0.78
0.03/0.04
0.37/0.44
18.9/20.4
0.09/0.3
0.87/1.14
0.7/0.56
0.07/−
0.07/0.07
0.08/0.32
0.05/0.04
1.84/1.98
0.12/0.1
7.45/5.88
0.65/0.71
64.5/63.7
0.47/1.07
0.13/0.15
0.04/−
0.18/0.43
0.35/0.25

(Continues)

TABLE 1 (Continued)

Group of
compounds Compound

Content in 100 g
d.w. (mean ± SD)

21:0
22:0
22:1 Δ13c
23:0
23:1 Δ14c
24:0
24:1 Δ15c
25:0
26:0

0.08/0.08
0.33/0.18
0.05/0.07
0.14/0.08
0.02/−
0.89/0.75
0.17/0.13
0.06/0.05
0.04/0.06

SFA (relative %) 18.72 ± 0.1

MUFA (relative %) 15.27 ± 0.1

PUFA (relative %) 66.01 ± 0.1

Organic acids (g) Oxalic acid 0.68 ± 0.0

Quinic acid 3.37 ± 0.4

Malic acid 4.08 ± 0.2

Citric acid 11.84 ± 0.2

Fumaric acid 0.65 ± 0.0

Tocopherols (μg) α-Tocopherol 13.24 ± 0.7

β-Tocopherol 375.99 ± 10.8a

γ-Tocopherol 165.57 ± 6.7a

δ-Tocopherol 31.76 ± 2.0

Abbreviations: MUFA, monounsaturated fatty acids; PUFA, polyunsatu-

rated fatty acids; SFA, saturated fatty acids.
aDetected in cultivated but not in wild mushrooms.
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(3.01 mg/100 g d.w.). Whereas the lowest amount was detected

for isoflavonoids: genistein (0.023 mg/100 g d.w.) and daidzein

(0.061 mg/100 g d.w.) (Tešanovi�c et al., 2017). The majority of poly-

phenols existed as aglycone or glycoside forms, which affects biologi-

cal property. Glycosylation of polyphenols decreased bioactivity, like

antibacterial, antioxidant, antidiabetic, antiinflammatory, and antican-

cer, although it enhance antistress, antiobesity, antirotavirus, and

antiallergic activity (Ng & See, 2019; Xiao, 2017). CC extracts can

also contain other compounds with health benefits, for example,

laccase, glycan binding protein, and triglycerides (Ren, Shi, Han, Liu, &

Guo, 2012; Zhang et al., 2017; Zhao et al., 2014).

Mushrooms contain many essential minerals. Tel et al. quantified

composition of microelements and macroelements in CC and other

wild mushrooms. Macroelements dominated in CC were phosphorus

(5,726.4 mg/kg d.w.), potassium (4,077.2 mg/kg d.w.), magnesium

(1,348.5 mg/kg d.w.), sodium (291.7 mg/kg d.w.), and calcium

(157.2 mg/kg d.w.). The microelements contained in CC were iron

(237.9 mg/kg d.w.), zinc (53.25 mg/kg d.w.), and manganese

(10.97 mg/kg d.w.) (Tel et al., 2014).

Composition, nutritional value, and also potentially pollution of

CC may depend on growing condition. Jang et al. tested optimal con-

ditions and growing medium to cultivate CC. The results show that

the best growing medium was that contained agar, peptone, malt, and

yeast extracts. Favorable mycelial growth was in temperature 26�C

and pH 7. The most effective source of carbon was sucrose and nitro-

gen source was tryptone (Jang, Lee, Liu, & Ju, 2009).

3 | THE POSITIVE INFLUENCE OF CC
ON THE HUMAN HEALTH

3.1 | Antioxidant activity

Various mushrooms including CC have been reported as therapy

support in many human diseases because of a large range of activities

on human body. One of them is the antioxidant activity which is closely

related to other pro-health properties like anticancer, antiinflammatory,

and antiobesity. Li et al. showed antioxidant properties of the stipe

and cap from CC. Assay measured ability to inhibit linoleic acid peroxi-

dation indicated that ethanol solution reached antioxidant activity level

of about 80.6% at 1 mg/mL (extract from stipe of CC) and 70.5% at

5 mg/mL (cap of CC). However, antioxidant activity of water extract

from stipe was 61.5% and from cap 72.6% in higher concentration—

10 mg/mL. Moreover, antioxidant activity of ethanol solution extracts

from cap was more intense than that of L-ascorbic acid at 1 mg/mL con-

centration (Li et al., 2010). In another study, antioxidant effect of etha-

nol solution extracts from CC at 1 mg/mL concentration reached value

63.4%. However, the water extracts from fruiting body of CC reached

65.6% at concentration 5 mg/mL (Tsai, Tsai, & Mau, 2009).

The reducing power of CC extracts was also tested with

spectrophotometric method, which measures the force to reduce fer-

ricyanide to ferrocyanide. The reducing power of ethanol solution

extract of cap and stipe at 10 mg/mL concentration was 1.653 and

0.364, while water extracts reached 0.998 and 1.122, respectively

(Li et al., 2010). The reducing power of CC ethanol solution extract in

a different studies was 0.50 at 10 mg/mL concentration and in water

extract was 0.48 at 5 mg/mL (Tsai et al., 2009). However, reference

substance, which was L-ascorbic acid, showed reducing power of

2.087 at 1.0 mg/mL (Li et al., 2010). Naturally occurring antioxidant

components, such as ascorbic acid, β-Carotene, lycopene, and various

phenolic compounds were found in the CC extracts (Sánchez, 2016).

Ethanol solution extracts contained more flavonoids and tocopherols

but less polysaccharides than hot water extracts. The authors showed

differences in the chemical composition and the antioxidant activity

TABLE 2 The content of phenolic compounds in C. comatus
aqueous extract (Tešanovi�c et al., 2017)

Groups of compounds Compound

Content

(mg/100 g
d.w.)

Flavones Apigenin 0.141

Baicalein 0.544

Chrysoeriol 0.143

Vitexin 0.193

Apigenin-7-O-glucoside 0.201

Luteolin-7-O-glucoside 0.070

Apiin 0.170

Baicalin 0.898

Flavonols Quercetin 3.010

Isorhamnetin 0.582

Quercitrin 0.108

Kaempferol-3-O-glucoside 0.182

Hyperoside 0.026

Quercetin-3-O-glucoside 0.105

Rutin 0.146

Flavanones Naringenin 0.259

Flavanols Catechin 0.454

Epicatechin 0.336

Biflavonoids Amentoflavone 0.484

Isoflavonoids Daidzein 0.061

Genistein 0.023

Hydroxybenzoic acids p-Hydroxybenzoic acid 0.928

Protocatechuic acid 0.480

Syringic acid 0.356

Hydroxycinnamic acids p-Coumaric acid 0.185

o-Coumaric acid 0.116

Caffeic acid 0.158

Ferulic acid 0.149

Coumarins Esculetin 0.148

Scopoletin 0.197

Umbeliferon 0.160

Chlorogenic acids Quinic acid 14.600

5-O-Caffeoylquinic acid 0.554
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between the cap and stipe. Overall, CC extracts from cap were better

antioxidant than stipe extracts (Li et al., 2010). Ren et al. tested

impact of CC on total antioxidant status (TAOS), assay which indirect

measured formation various oxidant species. The triglycerides from

the fermented CC (TFC) reduce level of TAOS in every tested concen-

tration compared with control. Ren et al. claims that the reduction of

TAOS level causing antiinflammatory effect of TFC (Ren et al., 2012).

Similar results were published by Cao et al., who tested the anti-

oxidant and hypoglycemic effects of polysaccharides fractions of fer-

mented CC called extracellular polysaccharides (ECPs), intracellular

polysaccharides (ICPs), deproteinized extracellular polysaccharides

(EDPs) and deproteinized intracellular polysaccharides (IDPs). The

highest DPPH (α-diphenyl-β-picrylhydrazyl) radical scavenging capac-

ity from of all tested CC fractions was ICPs (63.78 ± 0.38%) in

10 mg/mL concentration. The highest OH radical scavenging capacity

in 10 mg/mL concentration reached ICPs with 91.85 ± 1.38 U/mL

and ECPs with 84.95 ± 0.78 U/mL (Cao et al., 2019).

Data presented in Table 3 shows antioxidant properties, like scav-

enging ability on DPPH, OH and superoxide radicals in ethanol solution

and water extracts from cap and stipe. Scavenging ability on DPPH and

OH radicals were the highest in ethanol solution extracts from CC cap

(0.86 mg/mL and 3.23 mg/mL, respectively) and scavenging ability on

superoxide radicals was the highest in ethanol solution extracts from

stipe (20.7 mg/mL; Li et al., 2010).

Polysaccharides from CC affects on hepatic and mitochondrial anti-

oxidant enzymes, such as glutathione peroxidase (GSH-Px), superoxide

dismutase (SOD) and catalase (CAT). Treatment with polysaccharides

from CC increased activity of hepatic GSH-Px about 166.78%, SOD

about 83.72% and CAT about 63.12%. However, activity of mitochon-

drial enzymes GSH-Px, SOD and CAT was increased by CC about

92.00%, 67.03%, and 51.61%, respectively (Zhao et al., 2019). Song & Du

proved medium antioxidant ability of polysaccharides from CC compared

with other tested mushrooms on assays: superoxide anion radical scav-

enging activity (SRSA), reducing power (RP), chelating ability (CA) and

weak antioxidant ability on assays: hydroxyl radical scavenging activity

(HRSA) and DPPH scavenging ability (DSA) (Song & Du, 2011). Hydroxo

perhydroxo mercury(II) complex assay (HPMC) performed by Karaman

et al. showed antioxidant property of 3 extracts from CC. Fruiting body

extract (FBE) of CC reached antioxidant activity value 2.3 ± 0.1%/μL,

mycelia extract (ME) reached 1.7 ± 0.1%/μL and activity of filtrate extract

(FE) was 2.0 ± 0.1%/μL. Moreover, content of quinic acid was evaluated

and it was also higher in FBE (46.1 mg/g d.w.) compared with ME

(1.3 mg/g d.w.) and FE (1.9 mg/g d.w.) (Karaman et al., 2019).

Numerous reports of CC health-promoting properties led to the cre-

ation of a commercial preparation of CC. Popovi�c et al. shows the effects

of CC aqueous suspension on the expression of antioxidant markers

in homogenate from rat liver. The study reported that CC significant

increased level of glutation (GSH) compared with control samples

(Popovi�c, Vukmirovi�c, Stilinovi�c, Capo, & Jakovljevi�c, 2010). GSH is non-

protein thiol, which participates in ability to scavenging reactive oxygen

species (Coco-Bassey et al., 2019). One week therapy with CC before

dose of carbon tetrachloride resulted in a significant increase of xanthine

oxidase (XOD), lipid peroxidation and peroxidase. Carbon tetrachloride

was prooxidant factor which also increase the intensity of peroxidation

in lipid. Furthermore, Popovi�c, Vukmirovi�c, Stilinovi�c, Capo, & Jakovljevi�c

claims that CC has ability to protect against carbon tetrachloride toxicity

because GSH level in group treater CC with carbon tetrachloride was

almost equal to treated only CC group (Popovi�c et al., 2010).

3.2 | Antiinflammatory effects

Ren et al. demonstrated analgesic and antiinflammatory effects of

TFC. The inflammatory response is linked to a signal promoting kinase

release. In acute inflammation induced by carrageenan in mice, ther-

apy with triglycerides from CC in a dose of 30 mg/kg body weight

(b.w.) reduced proinflammatory factors: tumor necrosis factor α (TNF-

α) by 58%, interleukin 1 beta (IL-1β) by 27%, vascular endothelial

growth factor alpha by 47%, and interleukin 17 (IL-17) by 89%. The

writhing test, in which abdominal constrictions are induced by acetic

acid, was used to screen analgesic and antiinflammatory effect of

TFC. TFC in a dose-dependent manner inhibited abdominal constric-

tions through peripheral antinociceptive activity. Although, TFC did

not show central antinociceptive properties measured by the hot-

plate test (usually used to assess analgesic effect of narcotic and other

drugs) (Calcagni & Elenkov, 2006; Ren et al., 2012). Polysaccharides

from CC significant attenuated level of interleukin 6 (IL-6), inducible

nitric oxide synthase (iNOS), and cyclooxygenase 2 (COX-2) indicated

that CC reduce inflammatory response caused by alcohol (Zhao

et al., 2019). The writhing test that evaluates analgesic property

TABLE 3 EC50 (half maximal effective concentration) values of ethanol solution and hot water extracts from cap and stipe of Coprinus
comatus in antioxidant properties (Li et al., 2010)

Antioxidant attribute

Cap - EC50 (mg/mL) Stipe - EC50 (mg/mL)

Ethanol solution Hot water Ethanol solution Hot water

Antioxidant activity 1.56 ± 0.24 0.81 ± 0.03 0.62 ± 0.42 5.08 ± 0.17

Reducing power 1.67 ± 0.13 0.95 ± 0.05 1.93 ± 0.23 14.8 ± 0.22

Scavenging ability on DPPH radicals 0.86 ± 0.06 2.09 ± 0.26 7.86 ± 0.16 8.98 ± 0.19

Scavenging ability on OH radicals 3.23 ± 0.28 8.66 ± 0.35 3.35 ± 0.17 16.9 ± 0.41

Scavenging ability on superoxide radicals 25.3 ± 0.21 No effect 20.7 ± 0.38 No effect

Abbreviation: DPPH, α-diphenyl-β-picrylhydrazyl.

2936 NOWAKOWSKI ET AL.



showed that extracts from fermented CC at 1 and 5 mg/kg concentra-

tion inhibited analgesic activity by 19 and 21%, respectively. Anti-

nociceptive effect was tested by the formalin test and reaches

inhibition value 3% at first phase and 6% at second phase at 10 mg/kg

concentration (Han, 2009).

Zhao et al. examined influence of flavones from coculture broth of

CC and Morchella esculenta on macrophages RAW264.7 stimulated by

lipopolysaccharide. The results show that the flavones inhibited pro-

ductions of pro-inflammatory NO in dose-dependent manner. The

tested flavones also inhibits productions of other inflammatory media-

tor like TNF-α, IL-1β, iNOS, and COX-2. Moreover, CC affects mitogen-

activated protein kinase (MAPK) signaling pathways by inhibition of

serine/threonine kinase 1, N-terminal protein kinase 1 and 2, and p38

expression (Zhao et al., 2018). MAPK signaling pathways are related

with inflammatory activated by macrophages (Kaminska, 2005). Asahi

et al. examined impact of CC extracts and ergothioneine isolated from

CC on myeloperoxidase (MPO) activity. Leukocytes secreted protein

MPO which generate inflammation and play role in progression of dis-

ease through releasing hypobromous acid and hypochlorous acid.

Extract of CC and ergothioneine inhibited activity of MPO already

at 1 μM concentration in dose-dependent manner. Ergothioneine

from CC at 100 μM concentration reduced activity of MPO to 0%.

Moreover, extract from CC showed the same effect at 1 mg/mL con-

centration. CC also strongly decreased (almost 100%) activity rate of

inflammatory marker 8-bromo-20-deoxyguanosine (8-BrdG) at 1,000 μM

concentration of ergothioneine and 1 mg/mL concentration of CC

extract (Asahi et al., 2016; Gaut et al., 2001). These results indicated

antiinflammatory properties of CC.

3.3 | Anticancer potential

CC extract can modulate viability and proliferation of cancer cells.

Zaidman et al. proved that ethyl acetate extract from CC inhibited prolif-

eration of androgen-sensitive human prostate adenocarcinoma cells

LNCaP, through decreasing transcriptional activity of androgen recep-

tors (AR). Coprinus comatus extract decreased activity of luciferase—

enzyme which reveals AR transcriptional equal to the level of prostate-

specific antigen (PSA), which is a glycoprotein marker used for staging

and screening of prostate cancer. The treatment with CC ethyl acetate

extract inhibited PSA level by 77% (Zaidman et al., 2008). Dotan,

Wasser, and Mahajna indicated that hexane extract showed the stron-

gest antiandrogenic effect compared with ethyl acetate, chloroform, or

ethanol extracts from CC (Dotan et al., 2011). The extract decreased

PSA mRNA and AR protein level in LNCaP cells, inhibited colony forma-

tion in LNCaP cells and AR transcription activity in MDA-kb2 cells. The

study presented CC as an antiandrogenic modulator that could improve

treatment of prostate diseases.

The recent studies proved an effect of CC against human T-cell

leukemia. Moreover, glycan-binding protein isolated from CC called Y3

showed also anti-Tobacco mosaic virus property. The analysis indicated

that Y3 is an 18-aa signal peptide with N-terminus and N-glycosylation

site. Zhang et al. confirmed that Y3 had the effect on growth inhibition

and caused induction of caspase-dependent apoptosis in Jurkat cells

of human T-cell leukemia. Assays using 7-aminoactinomycin D and

Annexin V double staining indicated induction dose-dependent manner

effect of Y3 on early and also late apoptosis of Jurkat cells (90% apopto-

tic cells of total cells). In this study, Y3 shows only weak effect on cells

viability against cervical cancer HeLa cells, pancreas carcinoma Dan-G

cells, and liver carcinoma HepG2 cells (Zhang et al., 2017).

accase from mycelia of CC may have antiproliferative properties. In

nature, laccase takes a part in various physiological processes, because

of its important role in lignin degradation (Baldrian, 2006; Brijwani,

Rigdon, & Vadlani, 2010). CC laccase N-terminal amino acid sequence is

AIGPVADLKV. The results from MTT assay confirmed suppressor effect

against proliferation human liver cancer cells and breast cancer cells

(MCF7) lines with IC50 values of 3.46 and 4.95 μM, respectively (Zhao

et al., 2014). Asatiani et al. results performed on the MCF7 cell line

showed that IC50 of CC extract was 76 ± 1.41 μg/mL and ethyl acetate

extract was 32 ± 0.71 μg/mL. Anticancer effect of CC was caused by

inhibition of inhibitor of kappa B (IκBα) phosphorylation what lead

to induction of the nuclear factor kappa-light-chain-enhancer of acti-

vated B cells (NF-κB) pathway in dose-dependent manner (Asatiani

et al., 2011).

Emsen and Guven proves that methanol and aqueous extracts of

CC were bereft of genotoxicity in human lymphocytes cells, despite

the anticancer effect of CC. In addition, CC did not show an effect on

human lymphocytes proliferation. In the tested cells, oxidative stress

level was inhibited by high concentration of CC and it could be linked

to increase of the capacity of total antioxidant in cells with CC

extracts (Emsen & Guven, 2019).

3.4 | Hepatoprotective activity

Polysaccharides from CC have been reported as biologically active

which may induce liver recovery after damage caused by alcohol con-

sumption. This health and social problems are correlated with liver ill-

ness, for example, hepatitis, cirrhosis, and fatty liver (Yuan, Gong, Li, &

Li, 2007). In animal study, Ozalp et al. indicated that treatment with

CC polysaccharides extract in a dose of 50 mg/kg b.w. may repair liver

damage caused by alcohol (Ozalp et al., 2014).

3.5 | Acetylcholinesterase inhibitory property

Extract from CC was also screened for acetylcholinesterase (AChE)

inhibitory potential. AChE takes a part in a synthesis of acetylcholine

neurotransmitter (Basiri et al., 2013; Giacobini, 2004). Progressive cogni-

tive impairment in Alzheimer's disease is connected with neurotransmit-

ter acetylcholine deficiency and synaptic failure (Bartus, 2000). Inhibitors

of cholinesterase stimulate the cholinergic receptors, increase availability

of acetylocholine in the synaptic cleft, and weaken Alzheimer's disease

symptoms (Anand, Patience, Sharma, & Khurana, 2017). The extract

from CC had AChE inhibitory potential and reached IC50 value of

0.62 mg/mL. The results of the study emphasize the possibility of using
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CC extracts in the palliative therapy of Alzheimer's disease (Pejin

et al., 2019).

3.6 | Antidiabetic properties

Many studies from around the world confirmed the hypoglycemic effect

of CC (Lv, Han, Yuan, & Guo, 2009; Yu et al., 2009; Zhou & Han, 2008).

Zhou and Han tested the potential influence of combination of CC and

vanadium on glycemic metabolism. In this study, homogenized fer-

mented CC fruiting body was used in culture medium containing sodium

metavanadate—NaVO3 (CCRV). The level of hepatic glycogen was

increased by the use of aforementioned combination. In mice fed on

CCRV, glycogen level was at 27.6 ± 5.2 mg/g, and it was higher com-

pared with diabetic mice with value of 14.1 ± 3.8 mg/g and value

24.1 ± 4.3 mg/g in normal mice. Damaged pancreatic β-cells were easily

perceptible in diabetic mice. CCRV-fed mice did not show loss of pan-

creatic cells. The islet cells of mice treated with CCRV were partially

regenerated. The results showed antidiabetic activity of CCRV through

reduction of hyperglycemia in diabetic mice, inhibiting gluconeogenesis,

increasing glycogen, increasing insulin, and regenerating of injured

β-cells. Polysaccharides from CC have hypoglycemic activity because of

inhibition of nonenzymatic glycosylation (NEG), which leads to attenu-

ate increases in concentration of blood glucose (Zhou & Han, 2008).

Han et al. showed effects of CCRV on glucose level in blood in alloxan

treated mice. CCRV reduced level of glucose (10.5 ± 2.0 mmol/L) com-

pared with alloxan-treated mice (21.2 ± 2.1 mmol/L). Also, level of blood

glucose at 60th minute in CCRV treated mice with hyperglycemia

induced by adrenaline was reduced (10.6 ± 1.5 mmol/L) compared with

adrenaline-hyperglycemic mice (15.1 ± 1.0 mmol/L). Moreover, CCRV

decreased glycosylated hemoglobin A1c (HbA1c) concentration

(7.9 ± 0.28%) compare with the control (10.8 ± 0.23%; Han, Yuan,

Wang, & Li, 2006). HbA1c is parameter that measure hyperglycemia and

risk of complications of diabetes (Sherwani, Khan, Ekhzaimy, Masood, &

Sakharkar, 2016).

Cao et al. examined CC impact on activity of α-amylase. This

enzyme hydrolyzed glycosidic bonds and it is responsible for activity of

enzymes in digestive track and saliva, absorption of carbohydrates, and

control postprandial level of glucose in blood. All of that affects a pro-

gress of diabetes (Bhandari, Jong-Anurakkun, Hong, & Kawabata, 2008).

The inhibition of α-amylase causes reduced level of glucose and also

reduced postprandial glucose (Ng & Rosman, 2019). The all polysaccha-

rides extracts of CC tested by Cao et al. inhibit activity of α-amylase at

2–10 mg/mL concentration. Extract called ICPs had the highest inhibi-

tory effect on α-amylase and reached 87.15 ± 0.99% (Cao et al., 2019).

Polysaccharides from CC caused inhibition of nonenzymatic glycosyla-

tion that can limit diabetic complications, like macroangiopathy and

microangiopathy. CC polysaccharides extracts inhibited 98% of NEG

level at ≥30 mg/mL concentration. The chart of CC inhibitory effect on

NEG reached almost similar value like antidiabetic drug—metformin—

but was more sharp (Ding, Wang, Wang, Wang, & Zhang, 2012).

Comatin, compound isolate from CC, also showed antidiabetic

properties. Ding et al. compared hypoglycemic effect of comatin with

popular antidiabetic drug metformin. Comatin decreased a level of

glucose in blood more than metformin after 1, 2, 3, and 4 hr in

alloxan-induced diabetic rats. Furthermore, comatin stronger than

metformin reduced glycometabolism and lipometabolism parameters

like fasted blood glucose (40.7% compared with 21.7%), postprandial

blood glucose (49.8% compared with 22.8%), fructosamine (23.4%

compared with 16.6%), total cholesterol (49.3% compared with

29.7%), and total triglycerides (28.7% compared with 19.1%) (Ding

et al., 2010).

3.7 | Antiobesity effect

Coprinus comatus has also antiobesity effect and plays a role in

adipogenesis. The results based on differentiation of preadipocytes

into adipocytes show that CC inhibits intracellular TG 3T3-L1 adipo-

cytes and reduces the content of triglycerides by 21% at 40 mg/mL

concentration and 43% at 150 mg/mL. Increasing size and number of

adipocytes correlate with higher lipid deposition. The main regulator

of adipocyte gene expression and adipocyte differentiation is peroxi-

some proliferator-activated receptor gamma (PPARγ). Activation of

PPARγ causes lipoprotein lipase expression, adipocyte protein 2, as

well as adiponectin and fatty acid synthase (Gregoire, Smas, &

Sul, 1998). The phosphatidylinositol 3-kinase/Akt signaling pathway is

a second path of adipogenesis regulation and adipocyte differentiation

(Magun et al., 1996; Sakaue et al., 1998). The MTT assay showed that

CC did not affect on viability of 3T3-L1 adipocytes cells at up to

150 μg/mL concentration. The treatment with CC reduced mRNA

levels of PPARγ and C/EBPβ (CCAAT-enhancer-binding proteins) in

a time- and concentration-dependent manner. CC prevented adipocyte

differentiation because of its antagonistic effect on PPARγ. Assays

demonstrated that 150 μg/mL of CC extract significantly down-

regulated expression of C/EBPβ and PPARγ in comparison to the con-

trol. CC extract took a part in Akt/GSK3β pathway regulation of

adipocyte differentiation. Extract in 150 μg/mL concentration reduced

insulin-stimulated uptake of glucose in adipocytes by 35%. The extract

reduced fat mass and body weight what was confirmed in obese rats.

After 5 weeks of treatment with CC extract, the body weight was sub-

stantially reduced by 25% at 60 mg CC extract/kg b.w. and 36% at

200 mg/kg b.w., compared with the control group. Therapy using

200 mg/kg b.w. CC extract reduced total triglycerides and total choles-

terol level in serum by 32 and 46%, respectively. Moreover, the

high-density lipoprotein level was significantly increased in the group

treated with CC compared with the control. Expression of adipogenesis

genes was also inhibited by the extract in high fat diet (HF-diet)

induced obese rats (Park et al., 2014).

3.8 | Antimicrobial activity

The antimicrobial compound (3R,4S)-2-methylene-3,4-dihydroxy-

pentanoic acid 1,4-lactone was isolated from CC by De Carvalho

et al. The CC lactone disrupted with quorum sensing and distracted
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biofilms of Pseudomonas aeruginosa, which also limited the formation

of rhamnolipid B and pyocyanin pathogenicity factors (De Carvalho

et al., 2016). Bacterial biofilm is thin sheet coating bacteria responsi-

ble for resistance to antibiotics and phagocytosis (Magun

et al., 1996). Additionally, that compound also works against Staphy-

lococcus aureus biofilms because it dispersed it at subtoxic level and

cause inhibition of enzyme important for synthesis of cells wall which

is UDP-acetyl glucosamine enolpyruvyl transferase (De Carvalho

et al., 2016). The assay performed by Kalaw and Albinto evaluated

impact of acetone and ethanol extracts from CC on bacteria Gram (+)

S. aureus after 24 hr incubation. The results reveled that ethanol and

acetone extract from CC inhibited growth of S. aureus with

14.09 ± 4.65 and 13.16 ± 3.39 mm zone of inhibition, respectively

(Kalaw & Albinto, 2014). Modi, Parihar, Pithawala, and Jain tested

methanolic and aqueous extracts of CC on other bacterial cultures,

such as Salmonella typhi MTCC-733, Escherichia coli MTCC-425, and

Bacillus cereus MTCC-430. Methanol extracts of CC reach inhibition

zone value of 16 ± 0.5, 21 ± 0.7, and 14 ± 0.11 mm in S. typhi, E. coli,

and B. cereus, respectively. Furthermore, aqueous extracts of CC

reach value of 13 ± 0.5, 16 ± 1.0, and 20 ± 1.75 mm in S. typhi, E. coli,

and B. cereus, respectively. The results were compared with inhibition

zone of positive control (Streptomycin), which reached 27, 26,

and 24 mm at bacterial cultures, respectively (Modi, Parihar,

Pithawala, & Jain, 2014). Many others studies from all over the

world confirmed antimicrobial activity of CC (Mwita, Mshandete,

& Lyantagaye, 2010).

3.9 | Antifungal

In many studies, the assay of antifungal properties was performed

inter alia toward mycelium of CC (Ye & Ng, 2001; Ye, Ng, Tsang, &

Wang, 2001). In addition to this, CC has its own antifungal activity

confirmed on many microfungi species. The antifungal bioassay

carried out by Stojkovi�c et al. indicated that methanolic extracts

from cultivated CC shows the strongest effect toward Trichoderma

viride minimum inhibitory concentration (MIC)—0.2 mg/mL—and

minimum fungicidal concentration (MFC)—1.5 mg/mL and Aspergil-

lus versicolor (MIC—0.2 mg/mL and MFC—1.5 mg/mL). In contrast,

the weakest antifungal activity was achieved against Penicillium

verrucosum var cyclopium and Aspergillus fumigatus (MIC—3.0 mg/mL

and MFC—6.25 mg/mL). The effect toward Penicillium ochrochloron

(MIC—0.2 mg/mL and MFC—3.0 mg/mL) was more efficient

than treatment with ketoconazole (MIC—2.5 mg/mL and MFC—

3.5 mg/mL) standard antifungal drug. The MIC value of CC

against A. versicolor, T. viride, and Penicillium funiculosum (0.2 mg/mL)

was lower or equal compared with ketoconazole (0.2, 1.0, and

2.5 mg/mL, respectively) (Stojkovi�c et al., 2013). The results of

assessment performed by Florianowicz presented that water extract

of CC decrease growth of Penicillium expansum mycelium. The inhi-

bition range of CC was 9–13 mm compared with 15–18 mm of con-

trol (sample without extract), after 3 days of incubation. Whereas

after 5, 7, and 9 days, ranges were 14–19, 19–24, and 20–25 mm

compared with 20–22, 24–27, and 25–27 mm of control, respec-

tively (Florianowicz, 2000).

3.10 | Antinematode activity

Coprinus comatus has also proofed toxicity effect against nematode

(Li & Xiang, 2005). Luo et al. observed on the vegetative hyphae of

CC an exceptional structure called spiny ball. Further research on

these structures shows that isolated and washed spiny balls were

immobilized Panagrellus redivivus nematode. High-resolution MS

assay identified seven compound with nematotoxicity effect such

as 5-Methylfuran-3-carboxylic acid, 5-Hydroxy-3,5-dimethylfuran-2

(5H)-one, 5-Hydroxy-3-(hydroxymethyl)- 5-methylfuran-2(5H)-one,

4,6-Dihydroxyisobenzofuran-1,3-dione, 4,6-Dihydroxybenzofuran-3

(2H)-one, 4,6-Dimethoxyisobenzofuran-1(3H)-one, and 3-Formyl-2,-

5-dihydroxybenzyl acetate. Mechanism of action was presented using

scanning electron microscopy. Spiny balls were devastate cuticles of

nematode, which cause outflow of internal nematode materials. First

examined strain from CC cause immobilized 75.0 and 93.8% nema-

todes after 5 and 10 min exposure, respectively. Although, second

strain immobilized 76.9 and 92.3% of nematodes after 5 and 10 min

after being added on blank water agar plates with P. redivivus (Luo

et al., 2007).

3.11 | Antiviral

Purified laccase from CC may also cause inhibition of protein human

immunodeficiency virus 1 reverse transcriptase (HIV-1 RT) at IC50 =

5.85 μM. HIV-1 RT is an important part in the cycle of retrovirus life

because it takes part in synthesis of double-stranded DNA from single

RNA genome. Consequently, HIV-1 RT was suggested as a main ant-

iviral drug target and in the future it can be used in support of AIDS

treatment (Das & Arnold, 2013; Zhao et al., 2014).

4 | THE ADVERSE EFFECTS OF CC
CONSUMPTION

4.1 | Skin reactions

Coprinus comatus may cause skin reactions in patients with atopic der-

matitis and atopic predisposition. The study of Fischer, Yawalkar,

Brander, Pichler, and Helbling showed that in 32% patients with atopic

dermatitis CC induced delayed-type reactions after atopic patch test

(containing 5 mg protein from cap per 1 g vaseline or 1.35 mg spore

protein per 1 g vaseline). After 48 and 72 hr, negative skin test reac-

tion was observed in the nonatopic control group. Immunohistochemi-

cal and histologic analyses show that the reaction was consistent

with acute skin changes in atopic dermatitis. Reaction for CC was spe-

cific T-cell response because of dominance of CD4+ cells (Fischer,

Yawalkar, Brander, Pichler, & Helbling, 1999).
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4.2 | The risk of confusion with poisonous
mushrooms

Coprinus comatus can sometimes be confused, mainly with the

Coprinopsis atramentaria (Bull.) Redhead, Vilgalys, and Moncalvo. C

atramentaria is found in places and has a cap similar to those of

CC. Coprinopsis atramentaria is edible, but contains coprine, which

causes negative disulfiram-like reaction related to consuming this

Basidiomycota with ethanol. Based on chemical analysis, coprine is

N5-(1-hydroxycyclopropyl) glutamine (Hatfield & Schaumberg, 1975).

Coprine causes inhibition of the dehydrogenase in the liver, which

increases the level of acetaldehyde in the blood after alcohol con-

sumption. However, in opposite to disulfiram-like reaction, coprine

does not inhibit dopamine-beta hydroxylase. Disulfiram-like reaction

ensues if ethanol is consumed in time of 30 min to 3 days after the

mushroom ingestion. It can happen within several minutes after con-

suming alcohol (Haberl, Pfab, Berndt, Greifenhagen, & Zilker, 2011;

Köppel, 1993).

During alcohol metabolism, coprine blocks conversion of acetal-

dehyde into acetate and causes aldehyde accumulation in the liver

and then in the blood (Tottmar & Lindberg, 1977). Usually, accumula-

tion of acetaldehyde causes unpleasant effect, such as flushing,

vomiting, nausea, tachycardia, headache, dizziness, hypotension, palpi-

tations, and dyspnea (Haberl et al., 2011). Therapy of this reaction is

supportive and consists of fluid and electrolyte replacement. Nor-

mally, the symptoms resolve after 6 hr from the time of alcohol inges-

tion and there is a risk that this reaction may recur after repeated

alcohol consumption indicates that CC does not contain coprine

(Berger & Guss, 2005; Berger & Guss, 2005a; Carisson et al., 1978;

Diaz, 2005; Michelot, 1992; Peredy, 2014).

4.3 | Only the young CC fruit body are edible

The majority of edible mushrooms can be eaten in all stages of their

growth. However, CC is edible only when it is young, the old mush-

room becomes inedible. At maturity, spores and hymenia transform

through the process of autodigestion into inky, black fluid which

makes CC darker (Figure 1b). The process of CC autodigestion

reduces its culinary properties and nutritional values (Saiz-Jimenez,-

1983). CC fruiting bodies are highly perishable and must be con-

sumed, processed, or iced within 4–6 hr of collection. Within 2 days,

they undergo autolysis when they are stored after collection (Sas-

Golak, Siwulski, Sobieralski, & Lisiec, 2012).

4.4 | Pollution of CC

Scientific studies confirm that mushrooms, for example, Agaricus

bisporus, Pleurotus ostreatus, CC, and others could be used as a bio-

indicator of soils pollution with toxic metals due to the ability to absorb

a large amount of its (García-Delgado, Alonso-Izquierdo, González-

Izquierdo, Yunta, & Eymar, 2017; Li et al., 2017). Researchers from

across Europe show many data about high concentration of mercury

(Hg) in CC. Total Hg concentration in CC from Germany (in mining area)

was 144 mg/kg d.w., from Finland was 5.6 mg/kg d.w., Switzerland was

3.3 mg/kg d.w., and Slovenia was 2.1 mg/kg d.w. (Byrne, Ravnik, &

Kosta, 1976; Fischer, Rapsomanikis, Andreae, & Baldi, 1995;

Laaksovirta & Lodenius, 1979; Quinche & Dvorak, 1975). The content

of Hg in CC from some sites in Poland was also high and reached

median value 9.2 mg/kg d.w. in caps and 5.2 mg/kg d.w. in stipes

(Falandysz, 2016). Eating contaminated mushrooms can expose con-

sumer to relatively high dose of Hg. Based on the WHO norms, Provi-

sional Tolerable Weekly Intake (PTWI = 4 μg/kg b.w.) and the Hg

content in CC, the toxicity dose can be determined. It is estimated that

the value that will exceed PTWI was from 20 g to 1.6 kg CC depending

on the mushroom habitat (FAO, 2011). Mercury is definitely one of

the most toxic elements to humans. All its forms alter physiological cel-

lular function because it changes the structure of protein by binding

with selenohydryl and sulfhydryl groups. The main target of Hg is the

brain and also immune, endocrine, nerve, renal, and muscle functions

(Berlin, 2003).

Mushrooms not only absorb Hg but they can also accumulate

other toxic metals. Cen et al. presented accumulation of different

metal, for example cadmium (Cd) in cap and stipe of CC. Amount of

Cd in CC increased with the increasing metal level in soil. After CC

cultivation on soil with Cd concentration of 0.5 mg/kg, metal accumu-

lation in stipe was 0.27 mg/kg d.w. and in cap was 0.35 mg/kg

d.w. (Cen, Hu, & Xu, 2012).

Nickel (Ni) is considered as the one of the largest heavy pollutants

(Tang et al., 2016). Accumulation of Ni in the food chain could cause

health problem in a human body, such as eczema, respiratory prob-

lems, and allergic contact dermatitis (Yeganeh et al., 2013). Tang et al.

tested Ni concentration in CC depending on bacterial inoculation,

and it was from 5.22 to 15.90 mg/kg. Bioconcentration factor which

is content of Ni in CC/Ni concentration in soil was 0.07–0.21 and

depended on bacterial inoculation (Tang et al., 2018). Kalač indicated

that CC harvested on unpolluted areas may also accumulate alumi-

num, barium, and vanadium (Kalač, 2016).

There is only little information about toxicity dose of CC in publi-

shed papers. Ren et al. determined lethal dose LD50 (dose which

killed half of the subjects) by injection of triglycerides extracted from

fermented CC to mice. LD50 was estimated as 400 mg/kg b.w. (Ren

et al., 2012). Different assay on mice showed that oral administration

of alkalic-extractable polysaccharides from CC in 1,000–6,000 mg/kg

b.w. dose was without any toxicity symptoms ( Zhao et al., 2019). Ma

et al. evaluated toxicity effect of vanadium (IV and V) absorbed by

CC and fermented mushroom of CC on mice. The study consisted of

measured body weight and masses organs such as the liver, kidney,

and heart. In this test, vanadium (IV and V) absorbed by CC reduced

body weight (28.6 ± 2.1 and 20.2 ± 2.6 g), liver weight (1.36 ± 0.06

and 1.23 ± 0.07 g), kidney weight (0.41 ± 0.03 and 0.32 ± 0.05 g),

and heart weight (0.16 ± 0.02 and 0.10 ± 0.01 g) compared with con-

trol value of body weight (36.9 ± 1.9 g), liver weight (1.40 ± 0.07 g),

kidney weight (0.47 ± 0.03 g), and heart weight (0.18 ± 0.01 g). On

the contrary, fermented mushroom of CC did not decrease
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significantly body weight (36.0 ± 1.7 g), liver weight (1.38 ± 0.05 g),

kidney weight (0.44 ± 0.02 g), and heart weight (0.18 ± 0.02 g; Ma &

Fu, 2009).

5 | CONCLUSIONS

In this review, for the first time, all information about composition, bio-

activity, as well as potential hazards related to the consumption of CC

has been collected in order to get to know this species thoroughly. In-

depth study is required to investigate bioactive compounds of CC and

its influence on health as well as to ensure its acceptance among con-

sumers. In this connection, it is also relevant to confirm health benefits

and safety of CC. In addition to its basic nutritional value, CC could pro-

vide pro-health benefits, which is the characteristic of functional food.

Given these points, CC should be considered for use as nutraceuticals,

functional foods, and raw materials for medical preparations.
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