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Abstract

Nonalcoholic fatty liver disease (NAFLD) is the hepatic manifestation of both metabolic 

and inflammatory diseases and has become the leading chronic liver disease worldwide. 

High-fat (HF) diets promote an increased uptake and storage of free fatty acids (FFAs) 

and triglycerides (TGs) in hepatocytes, which initiates steatosis and induces lipotoxicity, 

inflammation and insulin resistance. Activation and signaling of Toll-like receptor 4 

(TLR4) by FFAs induces inflammation evident in NAFLD and insulin resistance. Currently, 

there are no effective treatments to specifically target inflammation associated 

with this disease. We have established the efficacy of phenylmethimazole (C10) to 

prevent lipopolysaccharide and palmitate-induced TLR4 signaling. Because TLR4 is a 

key mediator in pro-inflammatory responses, it is a potential therapeutic target for 

NAFLD. Here, we show that treatment with C10 inhibits HF diet-induced inflammation 

in both liver and mesenteric adipose tissue measured by a decrease in mRNA levels of 

pro-inflammatory cytokines. Additionally, C10 treatment improves glucose tolerance 

and hepatic steatosis despite the development of obesity due to HF diet feeding. 

Administration of C10 after 16 weeks of HF diet feeding reversed glucose intolerance, 

hepatic inflammation, and improved hepatic steatosis. Thus, our findings establish C10 

as a potential therapeutic for the treatment of NAFLD.

Introduction

Obesity is the single most important risk factor for 
the development of nonalcoholic fatty liver disease 
(NAFLD), which is the most prevalent liver disease in the 
western hemisphere (Lazo & Clark 2008, Bellentani et  al. 
2010). NAFLD, the hepatic manifestation of metabolic 
syndrome (Yki-Jarvinen 2014), is linked to visceral obesity  

(a systemic pro-inflammatory state), dyslipidemia, insulin 
resistance and type 2 diabetes mellitus (T2DM) (Zelber-
Sagi et al. 2006). Specifically, NAFLD is a disease of excess 
fat accumulation in the liver of individuals with no history 
of alcohol abuse, which can range from benign steatosis to 
advanced steatohepatitis (NASH) and cirrhosis (El-Serag & 
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Kanwal 2014). NASH is associated with increased mortality 
not only from vascular disease but also from complications 
of cirrhosis and hepatocellular cancer. Thus, targeting 
hepatocellular inflammation is expected to significantly 
prevent the progression of the disease and reduce mortality 
in patients with NAFLD (Younossi et al. 2011).

High-fat (HF) diets promote weight gain leading 
to an increase in adipose tissue mass (i.e. obesity). 
Simultaneously, these HF diets cause an increase in levels 
of circulating free fatty acids (FFAs) and triglycerides (TGs) 
that deposit in adipose tissue as well as in the liver and 
skeletal muscle (i.e. ectopic fat deposition) (Day 2002, 
Dowman et al. 2010). Ectopic fat deposition in the liver 
is the hallmark of hepatic steatosis, which is the earliest 
stage of NAFLD and is associated with the development of 
insulin resistance (Day & James 1998, Surwit et al. 1988, 
Xu et al. 2003, Cani et al. 2007). The ectopically deposited 
FFAs and TGs observed in steatosis induce a local, low-
grade hepatic inflammation (Weisberg et  al. 2003, Glass 
& Olefsky 2012) and is otherwise a benign disease at this 
stage (Jia et al. 2014, Sawada et al. 2014). Unfortunately, 
steatosis often leads to the development of NASH, which 
is characterized by immune cell infiltrate, hepatocyte 
injury and/or fibrosis.

Pathological activation and signaling of toll-like 
receptor 4 (TLR4) by non-immune ligands (including 
FFAs) and immune ligands (including gut-derived 
lipopolysaccharide or LPS) contribute to the inflammation 
present in NAFLD (Lu et  al. 2008, Broering et  al. 2011). 
TLR4 signaling is mediated via two intracellular pathways 
involving the myeloid differentiation primary response 
88 (MyD88) or adaptor proteins translocation-associated 
membrane protein 1/TIR-domain-containing adapter-
inducing interferon-β (TRIF) (Holland et  al. 2011). In 
the MyD88-dependent pathway, MyD88 signals the 
activation of IL-1 receptor-associated kinases (IRAK4/
IRAK1) and TNF receptor-associated factor (TRAF6) to 
activate nuclear factor κB (NFKB) and activated protein 
1 (AP1) leading to the induction of pro-inflammatory 
cytokines (IL6, TNFA) (Paik et al. 2003, Takeda et al. 2003, 
Shi et al. 2006, Miura et al. 2013, O’Neill et al. 2013). In 
the MyD88-independent pathway, TLR4 recruits TRAF3 
and receptor-interacting protein 1 (RIP1) by TRIF/toll-like 
receptor adaptor molecule 1 (TICAM1) to promote the 
downstream activation of TANK-binding kinase 1 (TBK1) 
and inhibitor κB kinase ε (IKKE) (Seki et  al. 2001, Akira 
et al. 2006, Schneider et al. 2006). This molecular complex 
(TRIF/TICAM1/TRAF3/RIP1/TBK1/IKKE) phosphorylates 
interferon regulatory factor 3 (IRF3) (Fitzgerald et  al. 
2003). Following phosphorylation, IRF3 homodimerizes 

and translocates to the nucleus where it induces type 1 
interferon expression (e.g. IFNB (Fitzgerald et  al. 2003, 
Hemmi et al. 2004)). Indirectly, IRF3 interacts with NFKB 
and AP1 to induce IL6 and TNFA expression.

Activation of TLR4-mediated inflammation also 
exacerbates hepatic lipid accumulation, although the 
exact mechanism is still unknown. Mice deficient in 
TLR4 demonstrate HF diet-induced weight gain but 
are protected against inflammation, hepatic steatosis 
and insulin resistance (Shi et al. 2006, Poggi et al. 2007, 
Suganami et al. 2007, Tsukumo et al. 2007, Davis et al. 2008, 
Spruss et al. 2009, Pierre et al. 2013, Jia et al. 2014, Ferreira 
et al. 2015). Liver-specific TLR4-knockout (TLR4LKO) mice 
become obese when placed on a HF diet but remain 
insulin sensitive and are protected from the development 
of steatosis (Jia et al. 2014). The attenuation of steatosis 
and insulin resistance is most likely due to reduced pro-
inflammatory gene expression in liver and adipose tissue 
of both global and liver-specific TLR4-deficient mice (Jia 
et al. 2014).

Even with the acknowledged epidemic of obesity and 
associated NAFLD, there is an overwhelming failure (1) to 
clinically recognize the disease in the early stages due to 
the lack of specific diagnostic indicators or (2) to initiate 
treatment as there are no effective medications which 
specifically attenuate the early systemic inflammatory 
processes of NAFLD. This leaves patients and physicians 
only with long-term weight loss through diet to treat 
NAFLD, which is effective but very difficult to sustain 
(Gelli et  al. 2017), or bariatric surgery, which can be 
very effective at reducing hepatic fat content (Hannah 
& Harrison 2016, Schwenger et  al. 2018) but can have 
significant associated complications (Chang et al. 2017). 
In light of this and studies suggesting a direct involvement 
of TLR4-mediated inflammation in the development of HF 
diet-induced hepatic steatosis and insulin resistance, there 
is a concerted effort directed at developing therapeutics 
targeting TLR4 signaling. We have developed a library of 
small-molecule inhibitors of inflammation that potently 
block TLR signaling, including FFA- and gut-derived LPS-
induced TLR4 signaling (Harii et  al. 2005, McCall et  al. 
2007, 2010, 2013, Schwartz et  al. 2009, Deosarkar et  al. 
2014). Our lead compound, phenylmethimazole (C10), is 
a derivative of methimazole that inhibits inflammation 
resulting from TLR3 and TLR4 signaling in both immune 
and non-immune cells by blocking homodimerization 
of IRF3 and thus blocking its nuclear translocation 
and transcriptional activation activity (Courreges et  al. 
2012). Thus, we hypothesized that C10 will prevent  
and/or reverse HF diet-induced hepatic and adipose tissue 
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inflammation as well as hepatic steatosis and glucose 
intolerance in a diet-induced obesity (DIO) mouse model.

Materials and methods

Phenylmethimazole (C10) solutions

Phenylmethimazole (C10) (Concord Biosciences, 
Cleveland, OH, USA) was prepared as a 200 mM stock 
solution in 100% (v/v) DMSO (Sigma-Aldrich) and further 
diluted to achieve the working concentration indicated in 
individual experiments.

Cell culture

Mouse hepatocyte cell line, AML-12 (ATCC), was cultured 
in DMEM-F12 with 0.005 mg/mL insulin, 0.005 mg/mL  
transferrin, 5 ng/mL selenium and 40 ng/mL 
dexamethasone, 10% (v/v) fetal bovine serum (Gibco) and 
1% (v/v) penicillin/streptomycin. Human hepatocellular 
carcinoma cell line, HepG2 (ATCC) was cultured in 
DMEM, 10% (v/v) fetal bovine serum (Gibco) and 1% 
(v/v) penicillin/streptomycin (Gibco). Both cell lines were 
grown at 37°C with 5% CO2. A working solution of C10 
(100 µM) was prepared in 0.25% DMSO (Sigma-Aldrich). 
For palmitate and LPS treatments, cells (cell passages <20) 
were incubated with 750 µM palmitate (Sigma-Aldrich) 
solution conjugated to FFA-free BSA (Sigma-Aldrich), 2% 
in serum-free culture media or complete culture media 
containing 10 ng/mL LPS (Sigma-Aldrich).

Mice and experimental design

This work was conducted with approval from the Ohio 
University Institutional Animal Care and Use Committee 
in accord with accepted standards of humane animal care.

Experimental procedures

Six-week-old C57BL/6J male mice were purchased from 
Jackson Labs and housed 4 per cage in an environment 
controlled for temperature (18–22°C) and humidity on 
a 14:10-h light/darkness cycle. Mice were allowed to 
acclimate for 1 week prior to diet placement and C10 and 
control treatments.

Prevention study
Prior to the start of the experiment, mice were randomly 
assigned to a treatment group: low-fat (LF) diet ((#D12450B, 
Research Diets Inc., New Brunswick, NJ, USA) (10% fat, 

20% protein, 70% carbohydrate)) sham injection, HF diet 
((#D12492, Research Diets Inc) (60% fat, 20% protein, 
20% carbohydrate)) sham injection, HF diet + DMSO, HF 
diet + 1 mg/kg C10 in 10% DMSO and PBS. Mice received 
intraperitoneal (IP) injections once daily for 18  weeks. 
Weights were recorded weekly. Body composition (%fat, 
%fluid and %lean measurements) was obtained using 
the Bruker Minispec Whole Body Composition Analyzer 
(Billerica, MA, USA). An intraperitoneal glucose tolerance 
test (IPGTT) was performed on mice after 13  weeks on 
their respective diets and initiation of treatment.

Reversal study
Prior to the start of the experiment, mice were randomly 
assigned to a diet group: LF diet group or HF diet group. After 
16 weeks on their respective diet, an IPGTT was performed to 
evaluate glucose tolerance in each mouse. Any mouse in the 
LF diet group that was glucose intolerant and any mouse in 
the HF diet group that were glucose tolerant were removed 
from the study. Inclusion/exclusion criteria were as follows: 
If the IPGTT curve for a HF diet-fed mouse was identical or 
very similar to that of the LF diet-fed group, it was excluded. 
Similarly, if the IPGTT curve for a LF diet-fed mouse was 
identical or very similar to that of the HF diet-fed group, it was 
excluded. One week following the IPGTTs (i.e. after 17 weeks 
on respective diets), mice fed the HF diet were randomly 
assigned to a treatment group; HF diet + sham injection, HF 
diet + DMSO, HF diet + 1 mg/kg C10 in 10% DMSO and PBS. 
Mice received once daily IP injections for 14 weeks. Weights 
were recorded weekly. Body composition was obtained as 
described earlier. Another IPGTT was performed on mice 
after 12 weeks of C10 or control treatments.

Intraperitoneal glucose tolerance tests (IPGTTs)

Intraperitoneal glucose tolerance tests (IPGTTs) were 
performed on 12-h fasted mice. Body weight and blood 
glucose (Freestyle Freedom Blood Glucose monitoring 
System, Abbott Laboratories) was measured prior to 
IP injection of glucose (Sigma-Aldrich) (1–2 g/kg body 
weight). Subsequent blood glucose measurements were 
performed at time 0 and at 20/30, 60, 90, 120 and 180 min 
post IP injection of the glucose bolus.

Histological analysis

For microscopic examination of liver morphology and 
steatosis, liver tissue was fixed in 10% buffered formalin 
for 12–24 h. Formalin-fixed tissues were dehydrated in 
ethanol and embedded in paraffin for hematoxylin and 
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eosin staining. Liver sections for histological staining were 
cut to 5 µm. Tissue preparation for histological analysis 
was performed by Ohio University Heritage College of 
Osteopathic Medicine Histological Core Services.

Hepatic TG quantification

Hepatic TG content was evaluated using a protocol based on 
the Salmon and Flatt method of lipid saponification (Salmon 
& Flatt 1985, List et al. 2009). Glycerol concentration was 
plotted against absorbance. The concentration of glycerol 
(mg glycerol/g tissue) was calculated by multiplying the 
determined concentration from the equation of the graph 
by the dilution factor and the number 5.31. The number 
(5.31) was used to correct the conversion of glycerol to TG 
by units of glycerol (mg/dL) to units of TG (mmol/L) and to 
mg/g tissue. TG content in AML-12 cells was presented as a 
ratio of total protein determined by BCA.

Serum TG and total cholesterol

Serum TG and total cholesterol were measured using blood 
collected at the experimental endpoint from non-fasted 
mice. The commercially available colorimetric Triglyceride 
Quantification Assay Kit (Abcam, cat #ab65336) was 
performed according to the manufacturer protocol 
to quantify serum TG. The commercially available 
colorimetric Cholesterol/Cholesteryl Ester Quantitation 
Assay Kit (Abcam, cat #ab65359) was used according to the 
manufacturer protocol to measure serum total cholesterol.

Quantitative real time-PCR analysis

Total RNA was isolated from cells in culture or frozen 
liver and mesenteric adipose tissue using TRIzol reagent 
(Invitrogen, Thermo Fischer Scientific). Preparation 
of cDNA was achieved using the high-capacity cDNA 
reverse transcription kit with RNase Inhibitor (Applied 
Biosystems, Thermo Fischer Scientific). TaqMan (Applied 
Biosystems, Thermo Fischer Scientific) and SYBR Green 
(Bio-Rad) biochemistries was used to perform qRT-PCR to 
quantify gene expression according to the manufacturer’s 
protocol. Murine TaqMan gene expression assays used 
include: Ifnb (Mm00439552_s1), Adgre1 (Emr1;F4/80) 
(Mm00802529_m1), Il6 (Mm00446190_m1) and Gapdh 
(Mm99999915_g1) as the housekeeping gene. Mouse Tnfa 
primers were as follows: sense primer, 5′-Cgg TCC CCA 
AAg GGA TgA g-3′; antisense primer, 5′ CCT TgA AgA 
gAA CCT ggg AgT A-3′. Human TaqMan gene expression 
assays used include: TNFA (Hs00174128_m1), IFNB1 

(Hs01077958_s1) and GAPDH (Hs02786624_g1) as the 
housekeeping genes.

Statistical analysis

Statistical analysis was performed using GraphPad Prism 
7 for Mac. Statistical differences were determined using a 
one-way or two-way ANOVA followed by a Tukey–Kramer 
or Bonferroni test for post hoc comparison.

Figure 1
C10 inhibits hepatic inflammation in addition to triglyceride 
accumulation in cell culture. AML-12 and HepG2 cells were treated with 
100 µM C10 or DMSO (control) to determine if C10 could prevent hepatic 
inflammation in the presence of 0.75 mM palmitate or 10 ng/mL LPS. 
Treatment with C10 prevented palmitate- (A) and LPS (B)-induced 
pro-inflammatory cytokine (Ifnb1 and Tnfa) expression. Inhibition of 
palmitate-induced pro-inflammatory cytokine expression was also 
observed in HepG2 cells (C). Treatment with C10 prevented palmitate-
induced triglyceride accumulation in AML-12 cells (D). Bars indicate 
mean + s.e.m. Significance was determined using a one-way ANOVA 
followed by Tukey’s post hoc analysis for multiple comparison; *P < 0.05 
between Untreated and Palmitate + C10 treated groups compared to 
both Palmitate and Palmitate + DMSO groups (A, C and D) or P < 0.05 
between Untreated and LPS + C10 treated groups compared to LPS and 
LPS + DMSO groups (B). #Different from LPS, P < 0.05. +Different from 
Palmitate and Palmitate + DMSO, P < 0.05 (D).
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Results

C10 prevents FFA- and LPS-induced inflammation in 
both murine and human hepatocytes in culture and 
TG accumulation in murine hepatocytes

In previous studies, we have shown that C10 prevents 
palmitate- and LPS-induced pro-inflammatory cytokine 
expression in murine macrophages (RAW264.7 cells) 
and differentiated 3T3-L1 adipocytes by inhibiting TLR4 
signaling, specifically by blocking transcriptional activity 
of IRF3 (McCall et al. 2010). In HFD-induced NAFLD, TLR4 

expressed in hepatocytes is activated by both FFAs and LPS 
(Matsumura et al. 2000, Reyna et al. 2008). Stimulation of 
the MyD88-dependent pathway leads to pro-inflammatory 
cytokine expression, specifically Tnfa and Il6, while 
activation of the MyD88-independent TLR4 pathway leads to 
direct upregulation of type 1 interferons (Ifnb1) and indirect 
upregulation of Tnfa (Paik et al. 2003, Takeda et al. 2003, Shi 
et al. 2006, Miura et al. 2013, O’Neill et al. 2013). As indicated 
in Fig. 1A and B, treatment with palmitate and LPS leads to 
the upregulation of Ifnb1 and Tnfa in murine hepatocytes 
(AML-12 cells) compared to the untreated control groups 
and C10 prevents LPS- and palmitate-induced upregulation 

Figure 2
C10 does not prevent weight gain or an increase 
in fat mass due to HF-feeding. Seven-week old 
C57BL/6J male mice were fed either LF or HF diet 
and treated once daily with sham, DMSO, or C10 
intraperitoneal injection for 18 weeks. Total body 
weights were measured weekly and body 
composition was measured every 2 weeks for the 
duration of the study. Adipose (mesenteric, 
subcutaneous, epididymal, and retroperitoneal) 
tissue weight was measured after tissue harvest 
at 18 weeks. (A) HF diet feeding promoted a 
marked increase in body weight when compared 
to LF-fed mice. (B) Additionally, % Fat mass was 
increased in HF-fed mice when compared to 
LF-fed controls. Percent Lean Mass was increased 
in LF-fed mice when compared to HF-fed groups. 
Percent Fluid Mass was no different between 
LF- and HF-fed mice. (C) HF-fed mice displayed 
increased adipose tissue weights after 18 weeks 
on HF diet when compared to LF-fed mice. Data 
points on line graphs (A and B) indicate mean 
and error bars indicate +/− s.e.m. and bars on bar 
graphs (C) indicate mean + s.e.m. Significance was 
determined using ANOVA followed by Tukey’s 
post hoc analysis for multiple comparison; 
*Different from HF-fed groups; P < 0.05, n = 8.
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of Ifnb1 and Tnfa. Treatment with C10 also prevents 
palmitate-induced pro-inflammatory cytokine expression 
in HepG2 cells, a human hepatocellular carcinoma cell line 
(Fig. 1C). The solvent control, DMSO, is known to exhibit 
anti-inflammatory effects by repressing pro-inflammatory 
cytokine production (Elisia et  al. 2016). Although DMSO 
had some anti-inflammatory activity, we show that C10 
has a greater anti-inflammatory effect by inhibiting pro-
inflammatory cytokine production when compared to the 
palmitate- and LPS-stimulated DMSO groups.

Inflammation is associated with enhanced hepatic de 
novo lipogenesis and TG accumulation (Feingold & Grunfeld 
1987, Grunfeld et al. 1988, 1991, Feingold et al. 1990, 1992). 
Exogenous Tnfa in mice and rats has caused increased TG 
production and storage in the liver (Feingold & Grunfeld 
1987, Feingold et al. 1990). In addition to preventing FFA- 
and LPS-induced pro-inflammatory cytokine expression in 
vitro, C10 also reduced palmitate-mediated accumulation of 
TG in mouse hepatocytes (AML-12 cells) (Fig. 1D).

C10 does not affect weight gain, body composition 
or adipose weight in HF diet-fed C57BL/6J male mice

It is already known that TLR4-deficient mice develop 
obesity when fed a HF diet. Thus, we were interested in the 
effect of C10 treatment on weight and body composition 

in a HF diet-induced model of obesity (DIO model).  
Seven-week-old C57BL6/J male mice were fed either a 
LF diet (10% fat) or HF diet (60% fat). Mice were dosed 
once daily with intraperitoneal (IP) sham injections, IP 
injections of DMSO (vehicle) or IP injections of 1 mg/kg 
C10 for 18 weeks. During the 18-week study (Prevention 
Study), mice were evaluated for the development of obesity 
by measurement of body weight and body composition. A 
HF diet challenge resulted in significantly more weight gain 
compared to the LF-fed mice (Fig. 2A). Body composition 
revealed increased fat mass as a percentage of total body 
weight in the HF-fed mice when compared to the LF-fed 
mice (Fig. 2B). Obesity was also assessed by adipose tissue 
weight. At the end of the 18-week study, HF-fed mice had 
increased adipose tissue weight in mesenteric, subcutaneous, 
epididymal and retroperitoneal depots when compared to 
the LF sham group (Fig.  2C). C10 and DMSO treatment 
had no significant effect on weight, body composition or 
adipose tissue weight of HF-fed mice (Fig. 2).

C10 blocks hepatic TG deposition in HF diet-fed 
C57BL/6J male mice

Our in vitro experiments demonstrated that C10 prevented 
palmitate-induced TG accumulation in mouse hepatocytes 
(Fig. 1D). Thus, we sought to determine if C10 could prevent 

Figure 3
C10 prevents HF diet-induced hepatic steatosis. Hematoxylin and eosin staining was performed on liver tissue sections prepared after 18 weeks of HF 
diet feeding. Liver triglyceride content was determined by biochemical analysis (A) Histological examination revealed that C10 prevents hepatic lipid 
accumulation. All images in (A) were taken at 400× magnification. Scale bar, 40 µm. (B) Treatment with C10 decreased hepatic triglyceride content when 
compared to HF-fed sham and DMSO groups but had no effect on serum triglyceride levels. Dotted lines represent the mean and error bars 
indicate + s.e.m. Significance was determined using ANOVA followed by Tukey’s post hoc analysis for multiple comparison; *Different from HF-fed groups; 
P < 0.05. #Different from HF sham and HF DMSO groups; P < 0.05.
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hepatic TG accumulation in vivo. After 18 weeks of HF diet 
feeding and C10 treatment (Prevention Study), histological 
examination of the liver revealed the absence of steatosis in 
C10-treated mice when compared to livers of the HF sham 
and HF DMSO control mice. (Fig. 3A). To further quantify 
C10 inhibition of hepatic lipid accumulation, TG content 
was quantified biochemically which revealed increased TG 
content from liver samples of HF-fed mice when compared 
to LF-fed mice. Treatment with C10 reduced hepatic TG 
content compared to HF sham and HF DMSO groups 
(Fig.  3B). There was no difference noted among adipose 
depot weights of HF diet groups; however, the difference in 
hepatic TG content in the liver of C10-treated mice when 
compared to the HF controls indicate that C10 may have a 
localized effect on hepatic lipid metabolism. Serum TG and 
cholesterol levels were measured in non-fasted mice after 
16 weeks of HF diet feeding (Fig. 4A and B, respectively). 
Total serum TG remained unchanged (Fig. 4A) while total 
serum cholesterol was elevated in HF diet-fed mice when 
compared to LF sham controls; C10 did not affect serum 
cholesterol levels in HF-fed mice (Fig. 4B).

C10 protects C57BL/6J male mice from HF  
diet-induced glucose intolerance

Ectopic fat deposition in insulin target tissues impairs the 
function of insulin signaling and thus impairs glucose 
homeostasis (i.e. induces glucose intolerance/insulin 
resistance). Previous in vitro studies have shown that 
treatment with C10 prevent palmitate-induced IRS1 
serine 307 phosphorylation, a process known to mediate 
insulin resistance in insulin-stimulated 3T3L1 adipocytes 
(McCall et  al. 2010). To determine the effect of C10 on 
glucose tolerance in HF diet-fed mice, we performed a 2-h 
intraperitoneal glucose tolerance test (IPGTT) 13 weeks post 
diet and treatment initiation. The HF-fed control animals 
exhibited glucose intolerance, with significantly higher 
glucose levels at 20, 60, 90, 120 and 180 min following glucose 
administration during the IPGTT compared to LF-fed mice 
(Fig. 5), and the area under the curve (AUC) was significantly 
higher in the HF-fed mice compared to LF-fed mice (Fig. 5). 
HF-fed mice receiving C10 treatment had improved glucose 
tolerance despite their obesity as compared to the HF sham 
and HF DMSO-treated mice (Fig. 5).

C10 prevents HF diet-induced inflammation in liver and 
mesenteric adipose tissue from C57BL/6J male mice

Inflammation, specifically due to cytokines and 
chemokines produced by FFA and gut-derived LPS 

activation of TLR4 signaling, leads to systemic glucose 
intolerance by impairing insulin signaling in target 
tissues including adipose and liver. Activation of the 
TLR4 signaling pathways leads to expression of pro-
inflammatory cytokines, in particular, Tnfa and type 
1 interferons (Ifnb1). Our model of HF diet feeding 
promotes an increase in circulating FFAs, gut-derived 
LPS, as well as an increase in fat deposition and 
accumulation in adipose tissue and the liver (Fraulob 
et  al. 2010). Pathologic exposure of adipose and liver 
tissue to FFAs and gut-derived LPS activates TLR4 
signaling and induces a local inflammatory tissue 
response marked by an increase in pro-inflammatory 

Figure 4
Total serum cholesterol is elevated in HF diet-fed mice, but serum 
triglyceride is unchanged. Total serum triglyceride and cholesterol were 
measured from non-fasted mice after 16 days of diet challenge and/or 
C10 treatment using commercially available colorimetric assays. (A) Serum 
triglyceride levels were unaffected by HF diet feeding and C10 treatment. 
(B) Total serum cholesterol was elevated in HF-fed mice when compared 
to LF sham controls. Dotted lines represent the mean and error bars 
indicate + s.e.m. Significance was determined using ANOVA followed by 
Tukey’s post hoc analysis for multiple comparison; *Different from HF-fed 
groups; P < 0.05, n = 6–8.
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cytokine gene expression. We observed that palmitate 
treatment induces expression of Tnfa and Ifnb1 in  
AML-12 cells, which was inhibited by treatment with 
C10 (Fig.  1). Additional studies in our laboratory have 
shown that C10 prevents transcriptional activity of NFKB 
and IRF3 thereby inhibiting the upregulation of cytokine 
and chemokine production (McCall et  al. 2010, 2013, 
Deosarkar et al. 2014). To determine the efficacy of C10 
to prevent HF diet-induced inflammation, adipose and 
liver tissue were collected from the mice in this study for 
analysis of pro-inflammatory gene expression. In both 
adipose and liver tissue, there was a significant increase 
in Tnfa and Ifnb1 expression in our HF sham and HF 
DMSO groups (Fig. 6). However, as in our in vitro studies, 
this HF diet-mediated increase in Tnfa and Ifnb1 mRNA 
levels was inhibited in both liver and adipose tissues 
from the HF diet-fed C10-treated animals (Fig. 6A and B, 
respectively). Additionally, mRNA levels of F4/80, which 
encodes a cell surface macrophage marker remained low 
in adipose tissue of C10-treated mice despite HF diet 
feeding (Fig. 6C).

C10 reverses HF diet-induced glucose intolerance, 
hepatic and adipose inflammation and hepatic steatosis

The observation that C10 prevents HF diet-induced 
hepatic steatosis and inflammation as well as adipose 
inflammation and glucose intolerance in our DIO 
mouse model led us to question if C10 could reverse 
established glucose intolerance, hepatic steatosis and 
hepatic inflammation in these mice. To address this, 
male C57BL/6J mice were put on either a LF diet or a 

Figure 5
C10-treated mice maintain glucose tolerance despite obesity. A 3 h 
intraperitoneal glucose tolerance test was performed after 13 weeks of 
HF diet feeding. C10 prevented HF diet-induced glucose intolerance. Area 
under the curve was significantly lower in the LF sham group as well as 
the HF C10-treated group throughout the duration of the glucose 
challenge. Data points on the line graph indicate mean and error bars 
indicate +/− s.e.m. and bars on the bar graph indicate mean + s.e.m. 
Significance was determined using ANOVA followed by Tukey’s post hoc 
analysis for multiple comparison; *Different from HF sham and HF DMSO 
groups; P < 0.05, n = 8.

Figure 6
C10 prevents HF diet-induced inflammation in vivo. Inflammatory gene 
expression was measured in liver and mesenteric adipose tissue after 
18 weeks of HF diet feeding. Hepatic Ifnb1 and Tnfa expression were 
reduced in C10-treated mice when compared to HF sham and DMSO 
groups (A). Additionally, C10 prevented an upregulation of Ifnb1 and 
Tnfa in mesenteric adipose tissue (B) as well as Emr1(F4/80), a 
macrophage marker (C). Bars indicate mean + s.e.m. Significance was 
determined using ANOVA followed by Tukey’s post hoc analysis for 
multiple comparison; *Different from HF sham and HF DMSO groups; 
P < 0.05, n = 7–8.
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HF diet for 16 weeks after which glucose tolerance was 
evaluated in each mouse via IPGTT. Mice on the LF 
diet that were glucose tolerant remained in the study 
and were maintained on the LF diet for the duration of 
the experiment. Mice on the HF diet that were glucose 
intolerant remained in the study and were maintained 
on the HF diet for the remainder of the study. As 
can be seen in Figs  7 and 8, the LF-fed mice weighed 
significantly less than the HF-fed mice (Fig.  7A, Week 
0) and the IPGTT revealed that the LF-fed mice were 
glucose tolerant, whereas the HF-fed mice were glucose 
intolerant (Fig.  8A). One week later (after 17  weeks 
on the diets), the glucose-intolerant HF-fed mice were 
randomly divided into HF sham, HF DMSO and HF C10 
(1 mg/kg) treatment groups as described earlier for the 

‘prevention study’ and were treated as indicated for 
14 weeks. There was no difference in weights between the 
HF-fed treatment groups (Fig. 7A), although all HF-fed 
groups continued to gain weight and become more 
obese over the course of the 14-week treatment period 
(Fig.  7); however, the HF-fed C10-treated mice were 
now glucose tolerant (Fig.  8B), indicating that despite 
a continued rise in obesity, C10 reversed the glucose 
intolerance that was present in the mice prior to C10 
treatment (Fig. 8A and B). Hepatic steatosis (Fig. 9A) was 
also reduced as well as total serum cholesterol (Fig. 9B). 
Serum TG remained unchanged (Fig.  9B). Moreover, 
hepatic inflammation (Tnfa, Ifnb1 and Il6) (Fig. 9C) was 
dramatically reduced in C10-treated mice compared to 
the HF controls.

Figure 7
C10 did not reverse body weight increase due to 
HF diet feeding. Weeks 0–14 are represented as 
the start and end points of the C10 ‘reversal 
study’ post 16 weeks of HF or LF diet feeding. 
Total body weight was measured weekly and 
body composition was measured every 2 weeks 
during the duration of the study. At the end of 
the study, adipose tissue weight was measured. 
(A) Body weight of HF diet-fed mice remained 
significantly greater than LF diet-fed mice. (B) 
Additionally, body composition revealed that HF 
diet-fed mice had significantly greater % Fat 
Mass as well as a decrease in % Lean Mass when 
compared to the LF-fed mice. Percent Fluid Mass 
was no different between LF- and HF-fed mice. 
(C) Adipose (Subcutaneous, Mesenteric, 
Epididymal, and Retroperitoneal) tissue weight 
was greater in the HF diet-fed mice when 
compared to the LF diet-fed mice. C10 did not 
reverse the increase in adipose tissue mass due to 
HF diet feeding. Data points on line graphs (A 
and B) indicate mean and error bars indicate 
+/− s.e.m. and bars on bar graphs (C) indicate 
mean + s.e.m. Significance was determined using 
ANOVA followed by Tukey’s post hoc analysis for 
multiple comparison; *Different from HF-fed 
groups; P < 0.05, n = 5–6.
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Discussion

Inflammation is widely recognized as a key factor in the 
pathogenesis of metabolic diseases, specifically obesity-
related diseases such as T2DM and NAFLD. Obesity 
alone is considered the most important risk factor for 
development of NAFLD and is the driver of inflammation 
in this disease that is responsible for its progression (Wild 
et  al. 2004, Dabelea et  al. 2014, Imes & Burke 2014). 

The major inflammatory signaling pathway in chronic 
inflammation in a state of obesity is TLR4 (Davis et  al. 
2008, Pierre et al. 2013, Jia et al. 2014, Sawada et al. 2014). 
TLR4 is abundantly expressed in insulin target tissues 
such as adipose tissue, liver and skeletal muscle and is 
now accepted as a key player in obesity-induced insulin 
resistance and T2DM (Jialal et  al. 2014). Earlier studies 
suggested that the stimulation of TLR4 seen in obesity/
insulin resistance/T2DM results from gut-derived LPS 
(Lassenius et al. 2011, Jayashree et al. 2014, Velloso et al. 
2015); however, it is now evident that FFAs derived from 
HF diets can also trigger TLR4 signaling in these target 
tissues (Reyna et  al. 2008, Kim et  al. 2012) leading to 
NAFLD and insulin resistance.

In our model, we used a HF diet to promote the 
development of insulin resistance and hepatic steatosis. 
HF diets increase circulating levels of FFAs, which deposit 
in adipose tissue and other tissues such as the liver. 
Acceleration of hepatic FFA deposition occurs in obesity-
induced NAFLD due to an increase in dietary fatty acids or 
lipolysis of adipose tissue. We hypothesized that C57BL/6J 
mice fed a HF diet would develop hepatic inflammation, 
steatosis and insulin resistance, which would be prevented 
and/or reversed with C10 treatment. Human and mouse 
hepatocyte cell lines demonstrated an inflammatory 
response when exposed to LPS and FFAs. In our in vitro 
system, C10 exhibited potent anti-inflammatory properties 
by preventing FFA- and LPS-induced pro-inflammatory 
cytokine expression measured by a reduction in Tnfa 
and Ifnb1 mRNA levels in hepatocytes in culture. Similar 
findings were observed in vivo as pro-inflammatory 
cytokine expression was also significantly reduced by C10 
in liver and mesenteric adipose tissue of mice fed a HF diet. 
In addition to anti-inflammatory effects, C10 treatment 
prevented glucose intolerance (an indirect measure of 
insulin resistance) and hepatic steatosis in mice fed a HF 
diet. Inhibition of FFA-induced hepatic lipid accumulation 
by C10 treatment was also observed in vitro. Furthermore, 
and most clinically relevant, HF diet-induced insulin 
resistance was reversed by C10 intervention. C10-treated 
mice also had significantly reduced hepatic inflammation 
and decreased hepatic TG content, albeit the latter effect 
was not as dramatic as was observed in the ‘prevention 
study’. The modest effect of C10 on hepatic TG content 
in the ‘reversal study’ may be due to the fact that the HF 
diet used in this study induced an overwhelming amount 
of hepatic steatosis due to the HF diet containing 60% fat. 
If the C10 treatment had continued for a longer duration 
or the diet changed to regular chow, we anticipate this 
effect would be more pronounced, especially given the 

Figure 8
C10 treatment reverses HF diet-induced glucose intolerance. A 3 h 
intraperitoneal glucose tolerance test was performed just prior to the 
initiation of treatment (A) and after 12 weeks from the start date of the 
reversal study (B). (A) At the beginning of the study all HF-fed mice were 
glucose intolerant compared to LF-fed mice. (B) Following treatment, 
blood glucose levels remained elevated in the HF sham and HF DMSO 
groups when compared to the LF sham and HF C10-treated mice. Area 
under the curve was significantly lower in the C10-treated group when 
compared to the HF sham and DMSO groups and was nearly 
indistinguishable from the LF sham group. This indicates that C10 
reverses glucose intolerance due to the HF diet feeding. Data points on 
line graphs indicate mean and error bars indicate +/− s.e.m. and bars on 
bar graphs indicate mean + s.e.m. Significance was determined using 
ANOVA followed by Tukey’s post hoc analysis for multiple comparison; 
(A) * Different from LF sham, (B) * Different from HF sham and DMSO 
groups; P < 0.05, n = 5–6.
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fact that hepatic inflammation and insulin resistance was 
significantly reduced. In this regard, we have previously 
shown that continued HF feeding after intensive insulin 
therapy, in this same mouse model, prevents the ‘Legacy 
Effect’ of early insulin treatment in new-onset T2DM (Guo 
et al. 2015). While not evaluated in this study, it would 
be of interest in future studies to see if other models of 
NAFLD (e.g. ob/ob or db/db mice) also respond similarly to 
C10 treatment.

Currently, there are no therapeutic interventions 
to prevent the inflammation associated with NAFLD. 
Because NAFLD is associated with metabolic disease and is 
often considered the hepatic manifestation of metabolic 
syndrome, pharmacological agents that target the lipid 
accumulation or insulin resistance component of NAFLD 

are used as front-line therapies. Certain anti-diabetic 
therapies including pioglitazone (Ratziu et  al. 2008), 
acarbose (Chiasson et  al. 2002), metformin (Haukeland 
et al. 2009) and possibly statins (Eslami et al. 2013) exhibit 
anti-inflammatory properties and are effective at treating 
NAFLD. However, there is a real need for novel, new 
classes of anti-inflammatory drugs for the prevention and 
treatment of the localized inflammation associated with 
NAFLD as the inflammation in the presence of steatosis 
is what leads to NASH and the more severe stages of the 
disease that result in death.

The pathogenesis of NAFLD is now considered to be 
‘multiple-hit’ due to hepatic insults that occur in parallel, 
which ultimately leads to increased lipid accumulation and 
immune infiltration (Day & James 1998). The early stage of 

Figure 9 
C10 treatment reverses HF diet-induced hepatic 
steatosis and hepatic and adipose inflammation 
and reduces serum cholesterol. (A) Treatment 
with C10 decreased hepatic triglyceride content 
when compared to HF-fed sham and DMSO 
groups. (B) Total serum cholesterol levels were 
reduced in the HF-fed C10-treated mice when 
compared to HF-fed control mice, however, serum 
triglyceride levels were unchanged. Dotted lines 
represent the mean and error bars indicate + s.e.m. 
(C) Hepatic Ifnb1, Tnfa and Il6 expression was 
reduced in C10-treated mice when compared to 
HF sham and DMSO groups. Bars indicate 
mean + s.e.m. Significance was determined using 
ANOVA followed by Tukey’s post hoc analysis for 
multiple comparison; #Different from HF sham 
and DMSO groups; P < 0.05. *Different from 
HF-fed groups; P < 0.05, n = 4–6.
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NAFLD (steatosis) is considered benign; however, it is now 
believed to be an active state of inflammation and metabolic 
dysfunction (Tilg & Moschen 2010, Buzzetti et  al. 2016). 
Moreover, we now know that inflammation occurs in hepatic 
steatosis and thus it can be targeted by pharmacological 
agents before the onset of NASH. Activation of TLR4 signaling 
is a key mediator of HF diet-induced hepatic inflammation.

In addition to being a critical mediator of TLR4 
signaling, MyD88 has recently been shown to be critical 
for maintaining mammalian target of rapamycin (mTOR) 
activation (Chang et  al. 2013). Given the metabolic 
consequences of NAFLD (i.e. obesity, insulin resistance 
and T2DM), mTOR involvement is essential in light of 
its role in cardiovascular diseases such as atherosclerosis, 
coronary heart disease and stroke (Tarantino & Capone 
2013, Patil & Sood 2017). Moreover, a key mechanism 
linking inflammation to altered glucose and lipid 
metabolism is that visceral adipocytes and associated 
macrophages produce and release copious amounts of 
inflammatory cytokines into both the portal and systemic 
vasculature, which cause insulin resistance in insulin 
target tissues (i.e. liver, muscle and fat). Thus, the novel 
findings presented herein that C10 can reverse HF diet-
induced hepatic steatosis, glucose intolerance, as well 
as hepatic and visceral adipose inflammation, coupled 
with the finding that C10 inhibits Tnfa-induced Vcam1 
expression and reduces monocytic cell adhesion to 
endothelial cells (Dagia et al. 2004), an important process 
in the pathogenesis of atherosclerosis and other chronic 
inflammatory diseases, suggests that C10 may have a 
more profound clinical impact than the treatment of 
NAFLD alone.
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