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Abstract: The role of the autonomic nervous system in obesity and insulin-resistant conditions
has been largely explored. However, the exact mechanisms involved in this relation have not
been completely elucidated yet, since most of these mechanisms display a bi-directional effect.
Insulin-resistance, for instance, can be caused by sympathetic activation, but, in turn, the associated
hyperinsulinemia can activate the sympathetic branch of the autonomic nervous system. The
picture is made even more complex by the implicated neural, hormonal and nutritional mechanisms.
Among them, leptin plays a pivotal role, being involved not only in appetite regulation and glucose
homeostasis but also in energy expenditure. The purpose of this review is to offer a comprehensive
view of the complex interplay between leptin and the central nervous system, providing further
insights on the impact of autonomic nervous system balance on adipose tissue and insulin-resistance.
Furthermore, the link between the circadian clock and leptin and its effect on metabolism and energy
balance will be evaluated.
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1. Introduction

Excessive weight gain is associated with the presence of cardiovascular risk factors,
such as dyslipidemia, impaired glucose tolerance (IGT) and type 2 diabetes mellitus (T2D),
hypertension, and kidney failure [1]. The increasing prevalence of obesity is a worldwide
emergency, being associated with increased morbidity and mortality [2].

Neural mechanisms have been involved in the pathogenesis of obesity and insulin
resistance, particularly sympathovagal imbalance, and the relative prevalence of sym-
pathetic activity has been suggested to play a pivotal role in this complex bi-directional
relationship [3]. Among the numerous mechanisms linking obesity and insulin-resistance
(IR) with the imbalance of the autonomic nervous system (ANS), leptin has been widely
investigated for its major role on energy expenditure regulation and sympathetic activation,
mediated by its actions in the brain, possibly by increasing sympathetic outflow from the
dorsomedial hypothalamus (DMH) [4].

The purpose of this review is to offer a comprehensive view of the complex interplay
between leptin and the central nervous system (CNS), providing further insights into
the impact of ANS balance on adipose tissue and IR. Furthermore, the link between
the circadian clock and leptin and its effect on metabolism and energy balance will be
evaluated.
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2. The Bi-Directional Relationship between Autonomic Nervous System and
Obesity/Insulin-Resistance

The ANS plays a central role in either the short-term or in the long-term regulation of
body weight. Particularly, the short-term regulation of body weight is mainly mediated by
the sensation of satiety, through gastric distension, due to the activation of vagal afferent
nerves and gut hormones release. However, vagal activity is also involved in this latter
pathway, since the activation of vagal afferents has now been recognized, as an early step
in the control exerted by gut hormones on nutrient delivery to the intestine, by regulating
food intake and gastric emptying (Figure 1) [5]. Therefore, gut hormones and vagal afferent
neurons have been considered to play an important role in the pathogenesis of obesity [6].
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projects to the dorsal motor nucleus (DMN). This pathway modulates glucose production, gastro-

intestinal motility and hormone release (cholecystokinin, CCK; peptide YY, PYY; glucagon-like 

peptide-1, GLP-1), and pancreatic secretion via efferent vagal nerves (light blue line). The sug-

gested site of action of vagal nerve stimulation (VNS) is indicated by the dotted purple lines, while 

the mechanism of weight loss hypothesized vagal nerve blockade (VBLOC) includes a decrease in 

gastric emptying and inhibition of pancreatic exocrine secretion (dotted red lines) [5]. 

Figure 1. Peripheral signals of sense of satiety, after gastric distension, reach the nucleus of the solitary
tract/area prostrema complex (NTS/AP) via afferent vagal nerves (green line). The NTS projects
to the dorsal motor nucleus (DMN). This pathway modulates glucose production, gastrointestinal
motility and hormone release (cholecystokinin, CCK; peptide YY, PYY; glucagon-like peptide-1,
GLP-1), and pancreatic secretion via efferent vagal nerves (light blue line). The suggested site of
action of vagal nerve stimulation (VNS) is indicated by the dotted purple lines, while the mechanism
of weight loss hypothesized vagal nerve blockade (VBLOC) includes a decrease in gastric emptying
and inhibition of pancreatic exocrine secretion (dotted red lines) [5].

More complex is the bi-directional relationship between obesity and sympathetic
activity. In insulin-resistant states, such as in obesity, increased basal sympathetic activity
has been reported and correlated with the degree of IR [7–9], suggesting that the reduced
thermogenesis and the low metabolic rate observed in obese patients will eventually result
in IR and compensatory hyperinsulinemia.
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The consequent activation of the sympathetic nervous system (SNS) is associated with
important hemodynamic effects on blood vessels, heart and kidney.

The stimulatory action of insulin on SNS activity is directly exerted in the brain: in the
fasting state, low levels of plasma insulin reduce insulin-mediated glucose metabolism in
hypothalamic neurons, resulting in the activation of an inhibitory pathway that suppresses
chronically active sympathetic centers in the brain stem. Following carbohydrate intake,
the increased insulin concentration stimulates insulin-mediated glucose metabolism in the
same neurons, leading to augmented insulin-mediated glucose metabolism, reduction of
the inhibitory pathway, and finally stimulation of the sympathetic centers at the brain-stem
levels, with a consequent increase in central sympathetic outflow [3]. This mechanism
has been proposed to explain the “pro-hypertensive” effect of insulin in susceptible in-
dividuals [10,11], where hypertension could represent the unwanted consequence of a
compensatory mechanism recruited in the obese to restore energy balance and limit further
weight gain (i.e., IR) (Figure 2). In other words, obese subjects, while resistant to the effects
of insulin on peripheral glucose uptake, should not be resistant to the effect of insulin
on the SNS, although this is not invariably associated with increased blood pressure due
to a counterbalance of vascular compensatory mechanisms [12]. Obese subjects of the
normative aging study were shown to be sensitive to the effects of insulin on sympathetic
activity despite resistance to the effects of insulin on glucose uptake and displayed an
increased 24-h urinary norepinephrine excretion [13], the amounts of norepinephrine ex-
creted being related to the degree of obesity [14]. More recently, however, in adult obese
patients, a blunted post-prandial increase in sympathetic tone has been demonstrated [15].
This interesting finding, though not univocally accepted [16], could represent a mechanism
of inhibition of post-prandial thermogenesis, thus favoring weight gain.
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Figure 2. Relationship between obesity and blood pressure (BP). Insulin-mediated sympathetic
stimulation is a mechanism recruited in the obese to restore energy balance by increasing metabolic
rate. The increased BP is related to the increased levels of insulin and sympathetic nervous system
(SNS) activity [3].

The direct correlation between muscle basal nerve sympathetic activity and body
fat suggests a link between SNS activity and obesity-related IR. Therefore, the prolonged
stimulation of the sympathetic system, exerted by hyperinsulinemia in obesity, evokes
hemodynamic responses, such as increased heart rate and cardiac output and reduced heart
rate variability [17], which may represent the substrate for both the increased ischemic
heart disease and the increased incidence of arrhythmias and sudden deaths, observed in
obese patients.
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However, a chronic increase in sympathetic outflow has been reported to decrease
β-adrenergic responsiveness itself [8,18] through a down-regulation of the β-adrenergic
receptors, which are known to mediate energy expenditure both at rest and after food
intake. This mechanism could result in a reduced ability to dissipate energy and, as a
consequence, a tendency toward weight gain.

In conclusion, in the complex regulation of body weight, a pivotal role is played by
the ANS, both by the parasympathetic and the sympathetic branch. While the afferent
vagal pathways seem to represent the most important link between the gut and the brain,
sympathetic activation is involved in lipolysis increase and energy expenditure in white
and brown adipose tissue (WAT and BAT), where, however, it results ineffective, in obesity.
Sympathetic activation may favor the development of hypertension and organ damage in
obesity and lead to overt cardiovascular disease.

3. The Interplay between Leptin and Central Nervous System Impact on Autonomic
Effect on Obesity and Insulin-Resistance

Leptin is a hormone released by the WAT and has been shown to increase energy
expenditure, acting both on the cardiovascular system and BAT thermogenesis via the
arcuate nucleus (ARC) of the hypothalamus [19]. The ARC seems to represent the main site
of action of leptin for stimulating SNS activity, as demonstrated by the lack of activation of
sympathetic activity by leptin following ARC destruction [20]. However, animal studies
have shown that leptin administration increases sympathetic outflow to the kidneys, the
adipose tissue, the skeletal muscle vasculature and adrenal glands, also in different areas
of CNS [21], thus resulting in augmented energy expenditure [22], and in sympathetic
vasomotor activity [23].

Numerous data support the concept that leptin represents an important regulator of
regional sympathetic nerve activity with pathophysiological implications in obesity [24].

Leptin regulates energy balance by decreasing appetite and increasing energy ex-
penditure through sympathetic stimulation [25]. Leptin plasma levels decrease during
fasting and increase after overfeeding [26]. It has been shown that rodents and humans
that lack leptin or its receptor present dramatic hyperphagia with weight gain, whereas
leptin administration demonstrated to decrease food intake [27,28].

It has been widely reported that leptin increases the sympathetic outflow to the kid-
neys, skeletal muscle vasculature and adrenal gland. A study conducted in non-obese
rats reported that intravenous or intracerebroventricular (ICV) infusions of leptin increase
sympathetic activity in the kidneys and adrenal glands [29]. According to these data, in
non-obese Sprague-Dawley rats, intracarotid artery infusion of leptin for 12 days signif-
icantly increased mean arterial pressure and heart rate [30]. In addition, to explore the
hypothalamic pathway of sympathetic activation of leptin, a study conducted on rats
investigated the effect of leptin on circulating catecholamines and found that leptin ad-
ministration caused a significant and dose-dependent increase in plasma concentration
of norepinephrine and epinephrine [31]. These data suggest a relevant effect of leptin on
arterial blood pressure.

Obesity is associated with circulating hyperleptinemia as a consequence of leptin
resistance, suggesting that obese subjects have resistance to the anorectic and weight-
reducing effects of leptin. At the same time, elevated plasma leptin levels may increase
blood pressure and contribute to the development of hypertension [32].

Several studies confirmed the link between leptin and hypertension, reporting in-
creased leptin levels in obese hypertensive individuals in comparison to obese normoten-
sive subjects. Moreover, leptin deficiency in humans was associated with obesity and
metabolic syndrome, without SNS activation or hypertension. These data confirm a role
for leptin-mediated sympathetic activation in the pathogenesis of hypertension in obe-
sity [5]. Conversely, sympathetic overactivity appears to be ineffective in favoring energy
expenditure and, therefore, weight loss. Studies conducted on agouti obese mice with
hyperleptinemia demonstrated that the anorexic and weight-reducing effects of leptin
were attenuated compared to lean mice, while the effects of leptin on renal SNA were
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preserved [33]. This phenomenon of attenuation of the metabolic action (satiety and weight-
reducing action) and preservation of the sympathetic actions of leptin was also observed
during brain intracerebroventricular administration of leptin [34]. Therefore, the ability of
leptin to influence cardiovascular sympathetic nerve hyperactivity seems to be unaltered
in obesity [35] while being ineffective in regulating energy homeostasis.

Based on these findings, Mark et al. suggested a “selective leptin resistance”, in at
least some forms of obesity, limited to its metabolic effects (satiety and weight loss), while
it retains its sympatho-excitatory effects on the cardiovascular system via the SNS, through
actions in the brain region of the DMH (Figure 3). This phenomenon might partially explain
how hyperleptinemia can be associated with obesity but still contribute to sympathetic
overactivity and hypertension because of the preservation of its sympathetic actions [36].
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Figure 3. The concept of selective leptin resistance. The sympatho-excitatory effects of leptin on the
cardiovascular system are maintained through its action in the brain region of the DMH, while its
metabolic effects result ineffective, suggesting that some form of obesity may be characterized by a
“selective leptin resistance” [36]. DMH, dorsomedial hypothalamus.

More recently, the evaluation of the differential effects of acute and chronic leptin
stimulation on thermogenesis and lipolysis [37] but also on glucose metabolism [38] has
gained much interest.

The activation of SNS by leptin occurs after food intake or cold exposure and induces
lipolysis in WAT and heat production in BAT. In particular, sympathetic activation results
in mobilization from WAT of free fatty acids (FFA), which are then used by BAT to dissipate
energy as heat (Figure 4) [5]. Studies conducted on wild-type (WT) and leptin-deficient ob
animals demonstrated that leptin treatment leads to a rapid depletion of fat mass [39]. In
addition, the leptin-deficient ob/ob mice display low body temperature and do not survive
acute cold exposure [40]. These data suggest a lipolytic and thermogenic effect of leptin
respectively in WAT and BAT through the activation of SNS, which is not maintained in
obese subjects [41]. Moreover, leptin has also been suggested to increase the formation
of beige fat (Beige AT) through the browning of WAT, which contributes to adaptive
thermogenesis and body fat reduction (Figure 4). Therefore, a failure in leptin action may
contribute to the decrease of beige adipose tissue formation with a consequent reduction of
energy expenditure [42].
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Figure 4. Cold exposure- or food intake-stimulated sympathetic activation through leptin action
results in lipolysis in white adipose tissue (WAT) and thermogenesis in brown adipose tissue (BAT)
and beige fat (Beige AT). Sympathetic nervous system (SNS) activated by leptin results in mobi-
lization from WAT of free fatty acids (FFA), which are then used by BAT inducing heat production.
Sympathetic activation also induces the formation of Beige AT through the browning of WAT, which
contributes to adaptive thermogenesis [5].

Following the above, leptin levels reflect nutritional availability [43] and it exerts
metabolic and thermogenic effects not only by changing sympathetic neural activity but also
by dynamically regulating the architecture of the sympathetic nervous structure in adipose
tissue. These effects of leptin on innervation in fat are mediated by the action of agouti-
related peptide (AgRP) and pro-opiomelanocortin (POMC) neurons in the hypothalamic
arcuate nucleus (ARC), as demonstrated by the reduced innervation in fat, following
the deletion of the gene encoding the leptin receptor in either population. These AgRP
and POMC neurons act via brain-derived neurotropic factor-expressing neurons in the
paraventricular nucleus (PVN) of the hypothalamus, depending on its ability to modulate
the level of SNS innervation of WAT and BAT. Moreover, several studies demonstrated
that POMC neurons activated by leptin contribute to the normal regulation of glucose
metabolism [38].

Indeed, leptin was shown to contribute not only to normal body weight regulation but
also to the physiological control of blood glucose levels. It has been recently reported that
leptin may improve glucose homeostasis and insulin sensitivity by increasing peripheral
tissue glucose uptake and reducing liver glucose production [38]. Therefore the leptin
resistance in obese subjects may contribute to developing IR. Moreover, several studies
highlight a regulation of leptin secretion by insulin; it has been widely demonstrated
in vivo that insulin stimulates leptin secretion from adipose tissue by transcriptional or
post-transcriptional mechanisms [44]. At the same time, leptin has been demonstrated to
directly affects pancreatic beta cell gene expression and lead to decreased insulin secretion.
These data suggest the presence of crosstalk between leptin and insulin with regulatory
feedback, which results altered in obese and IR subjects [45] (Figure 5) with a consequent
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relevant effect on glucose metabolism and sympathetic activity. Interestingly, a study that
evaluated a sympathovagal balance in insulin-sensitive and IR subjects during the day life
reported a sympathetic prevalence during the night in IR subjects compared to insulin-
sensitive group highlighting the relevant role of the compensatory hyperinsulinemia on
the sympathetic activity in the night time [46]. Therefore, these findings can suggest a
subsequent hyperleptinemia associated to hyperinsulinemia which may contribute to the
enhanced sympathetic activity and risk of hypertension development.
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Figure 5. Leptin has an effect on appetite and insulin-glucose axis. In the hypothalamus, leptin
activates pro-piomelacortin/cocaine-and-amphetamine responsive transcript (POMC/CART) neu-
rons and inhibits neuropeptide Y/agouti-related peptide (NPY/AgRP) neurons, leading to anorexia.
(A) In leptin-sensitive individuals, leptin inhibits insulin production and secretion from pancreatic
beta cells while insulin stimulates leptin secretion from adipose tissue. Leptin increases glucose
uptake in skeletal muscle tissue and stimulates liver insulin sensitivity via the sympathetic nervous
system (SNS). (B)The leptin-resistant overweight individuals are resistant to the anorectic and weight-
reducing effects of leptin, despite the increase in plasma leptin levels. Leptin resistance leads to
hyperinsulinemia which, in turn, increases plasma leptin [45]. ARC, arcuate nucleus; LHA lateral
hypothalamic area; NTS nucleus of the solitary tract; PVN, periventricular nucleus.

The link between energy balance and fertility has also been investigated. It has been
demonstrated that leptin may influence the neural circuits related to reproduction. The
study of Hill et al. reported that female mice lacking both leptin and insulin receptors in
POMC neurons exhibit lengthened reproductive cycles, follicular arrest, hyperandrogen-
emia, and are sub-fertile [47]. These data suggest that POMC neurons may be the direct
target of leptin and insulin actions important for fertility.

We may conclude that leptin signalling regulates the plasticity of the sympathetic
architecture of adipose tissue via a top-down neural pathway that is crucial for energy
homeostasis. However, the picture of the mechanisms involved in the pathogenesis of
obesity is more complex, and within the neural circuity regulating energy balance, the
participation of non-neuronal cells, such as glia, has been recently demonstrated [48].
The interactions of a high-fat diet, leptin signaling, and neuroinflammation have been
described in the medial hypothalamus to be relevant to energy balance regulation. Indeed,
leptin-deficient Ob/Ob mice exhibit profound hypothalamic gliosis when maintained on a
high-fat diet [49].
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4. Effect of Circadian Clock on Metabolism and Energy Balance: The Link between
Leptin and Circadian Control

The circadian clock plays a crucial role in many biological processes and is organized
in the central clock located in the suprachiasmatic nucleus (SCN) of the hypothalamus
and in the peripheral clocks located in peripheral tissues (adipose tissue, liver, skeletal
muscle and digestive tract). The light is the main synchronizer for the SCN, which in
turn transmits timing signals to the peripheral clocks. In addition, other stimuli such as
hormones, nutrients, feeding/fasting state, sleep-wake state, physical activity can affect
the circadian rhythm in peripheral tissues [50].

The circadian clock is the main regulator of metabolism and energy homeostasis, and
its disruption may lead to metabolic disorders and contribute to overweight and obesity.
In animal models, SCN alterations, as well as clock gene mutations, result in dyslipidemia,
insulin-resistance and hyperglycemia. In humans, circadian disorders such as deterioration
of the sleep–wake cycle due to insufficient sleep, shift work and social jet lag have been
shown to be associated with symptoms of the metabolic syndrome, including an impaired
glucose tolerance and insulin sensitivity, hypertriglyceridemia and an increase in body
mass index (BMI) and mean arterial blood pressure [51].

The presence of circadian clocks in WAT and BAT has been reported, and several pieces
of evidence showed that the secretion of leptin is characterized by a circadian rhythm with
serum leptin peak levels occurring during the night in mice and humans [52]. It has been
extensively highlighted that the circadian clock plays a critical role in controlling the leptin
endocrine feedback loop to maintain the homeostasis of energy balance [53]. In the CNS,
the SCN clock rhythmically transmits the signal to the peripheral adipose tissue clock and
potentiates the response of ARC neurons to circulating leptin (Figure 6). Studies conducted
in rodents demonstrated that the ablation of the SCN eliminates leptin circadian rhythmicity
suggesting that the central circadian clock regulates leptin expression. In white adipocytes,
the BMAL1/CLOCK heterodimer that received signal from SCN directly controls leptin
expression by regulating the activity of CCAATenhancer-binding protein alpha (C/EBPα),
the most potent transcriptional activator for leptin (Figure 6) [54,55]. Therefore, a disruption
of the circadian rhythm can affect leptin secretion with a consequence on metabolic process
and energy balance. According to these data, research that used the mouse jet-lag model
to stimulate circadian dysfunction demonstrated that chronic jet-lag resulted in high and
arrhythmic serum levels of leptin. These results have been correlated with a weight
gain and increase in fat mass independently of changes on the diurnal profiles of food
intake or physical activity [54]. Importantly, the same research reported that leptin may
affect the central circadian control directly via its receptor in ARC via POMC neuron and
that circadian dysfunction, including chronic jet lag, leads by itself to leptin resistance.
In addition, a recent study conducted in mice exposed to a constantly shifting lighting
environment in order to chronically disrupt their circadian timing system demonstrated a
decrease in central leptin signaling in light cycle-disrupted mice as indicated by a reduction
in the number of phosphorylated signal transducer and activator of transcription 3 (STAT-3)
immunoreactive cells in the ARC of the hypothalamus. Furthermore, cycle-disrupted mice
displayed a significant increase in fasting blood glucose and showed an increase in body
weight [56]. These data suggest that chronic light cycle disruption leads to altered leptin
and insulin signaling, which may explain the association between circadian dysfunction
and metabolic disorders and weight gain. In addition, it has been shown that high-fat
diet (HFD) feeding also disrupts behavioral and molecular circadian rhythms, including
eating behavior, locomotor activity, and expression of circadian clock genes [57]. In fact,
a recent study conducted on mice examined the effect of HFD feeding on leptin signal
transduction throughout the day; the results showed a decrease in leptin sensitivity in HFD
mice compared to low-fat diet (LFD) mice. Furthermore, the authors provide evidence that
HFD-induced leptin resistance is a temporary phenomenon and occurs only at specific
intervals during the 24-h cycle suggesting that restricting food intake to leptin-sensitive
time periods may be beneficial for metabolic health [51].
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Figure 6. The leptin endocrine feedback loop to maintain the homeostasis of energy balance. In the
CNS, the SCN clock rhythmically transmits the signal to the peripheral adipose tissue clock and po-
tentiates the response of ARC neurons to circulating leptin. In white adipocytes, the BMAL1/CLOCK
heterodimer that received signals from SCN directly controls leptin expression by regulating the
activity of C/EBPα. Leptin stimulates SNS activity via the ARC of the hypothalamus to maintain
energy homeostasis [54]. CNS, central nervous system; SCN, suprachiasmatic nucleus; ARC, arcuate
nucleus; C/EBPα, CCAATenhancer-binding protein alpha; SNS, sympathetic nervous system.

Interestingly, studies conducted on human adults showed an increase in food intake
when sleep is acutely restricted, and food is provided ad libitum [58]. It has been reported
that acute sleep restriction can lead to a decrease in leptin secretion and an increase in
ghrelin plasma levels, promoting weight gain in healthy adults [59]. Moreover, it has
been demonstrated that shifting from an insufficient to adequate sleep program decreased
night food intake and led to weight loss [58]. These findings suggest that increased
food intake during insufficient sleep is a physiological adaptation to provide the energy
needed to support additional wakefulness; however, when food is easily accessible, food
intake exceeds the energy needed. Recently, a study conducted on healthy participants
investigated the effect of insufficient sleep on fasting metabolic hormones, and the results
showed no difference in fasted leptin between participants with chronic sleep restriction
and controls. These findings suggest that sleep restriction may have a limited impact on
fasted concentrations of leptin [60]. Interestingly, a very recent study analyzed the effect
of moderate weight loss on the rhythmic characteristics of the daily synthesis of leptin
and ghrelin; the data demonstrated that although weight loss has been shown to reduce
leptin serum levels, the rhythmic properties were similar in obese subjects underwent
a hypocaloric dietary intervention for 12 weeks compared to normal-weight controls,
suggesting that losing weight restores the daily rhythms of daily leptin synthesis [61].

Recently, the circadian rhythm of blood pressure has also been investigated in mice
and humans [62]. Nocturnal dipping of blood pressure is part of the normal circadian
pattern, and its absence (“non-dipping”) is more frequent in hypertensive patients [63].
Several lines of evidence suggest that shift work that causes disruption of the blood pressure
circadian rhythm was significantly associated with metabolic syndrome [62]. As described
in the literature, the ANS is increasingly recognized as an important pathway that mediates
circadian variation in blood pressure [63]. Therefore, these data suggest that the normal
circadian pattern of blood pressure may be altered by the dysregulation of ANS, likely due
to a dysfunction of leptin circadian rhythm.
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5. Conclusions

As reported in this review, the ANS plays an important role in the regulation of blood
pressure but also in the regulation of body weight, satiety and energy homeostasis. In
particular, we highlight the pivotal role of leptin in increasing energy expenditure, acting
both on the cardiovascular system and BAT thermogenesis through the activation of SNS.

In obese subjects, the sympatho-excitatory effects of leptin on the cardiovascular
system are maintained while its metabolic effects result ineffective, suggesting that some
form of obesity may be characterized by a “selective leptin resistance”. Therefore, in obesity,
the failure in leptin action may lead to a reduction of energy expenditure and contributes to
weight gain; at the same time, a compensatory hyperleptinemia may favor the development
of hypertension and lead to overt cardiovascular disease.

Furthermore, the interplay between insulin and leptin plays a relevant role in glucose
homeostasis and arterial blood pressure; therefore, a dysfunction of insulin and leptin
crosstalk could be related to the alterations of the sympathetic activity and responsible for
the subsequent development of hypertension and/or T2D.

Moreover, it has been highlighted that disruption of the circadian clock may alter
leptin circadian rhythm and synthesis and may induce leptin resistance, causing the im-
paired regulation of metabolism and energy balance and promoting obesity and metabolic
complications. These data place leptin as a major bridge linking circadian control and
energy homeostasis.

However, the effects of leptin on several neural circuits, including the SNA, require
further investigations in order to obtain a more complete picture of the mechanisms
involved in the pathogenesis of obesity and its complications.
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