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Transcriptional differentiation driving 
Cucumis sativus–Botrytis cinerea interactions 
based on the Skellam model and Bayesian 
networks
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Abstract 

Robust statistical tools such as the Skellam model and Bayesian networks can capture the count properties of tran-
scriptome sequencing data and clusters of genes among treatments, thereby improving our knowledge of gene 
functions and networks. In this study, we successfully implemented a model to analyze a transcriptome dataset of 
Cucumis sativus and Botrytis cinerea before and after their interaction. First, 4200 differentially expressed genes (DEGs) 
from C. sativus were clustered into 17 distinct groups, and 670 DEGs from B. cinerea were clustered into 12 groups. 
Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were applied on 
these DEGs to assess the interactions between C. sativus and B. cinerea. In C. sativus, more DEGs were divided into 
terms in the molecular function and biological process domains than into cellular components, and 277 DEGs were 
allocated to 19 KEGG pathways. In B. cinerea, more DEGs were divided into terms in the biological process and cellular 
component domains than into molecular functions, and 150 DEGs were allocated to 26 KEGG pathways. In this study, 
we constructed networks of genes that interact with each other to screen hub genes based on a directed graphical 
model known as Bayesian networks. Through a detailed GO analysis, we excavated hub genes which were biologically 
meaningful. These results verify that availability of Skellam model and Bayesian networks in clustering gene expres-
sion data and sorting out hub genes. These models are instrumental in increasing our knowledge of gene functions 
and networks in plant–pathogen interaction.
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Introduction
An increasing number of virulent infectious diseases 
has been witnessed in the past two decades in natural 
populations and managed landscapes. In recent years, 
severe economic losses have been caused by an unprec-
edented number of fungal and fungal-like diseases in 

both animals and plants (Fisher et al. 2012). Gray mold, 
caused by Botrytis cinerea is a widespread plant fun-
gal pathogen with a necrotrophic nutritional mode and 
threatens over 230 plants in species worldwide, includ-
ing economically important crops such as cucumber 
(Wang et al. 2020). This polyphagous pathogen has been 
classified as the second most important phyto pathogen 
and the global impact of B. cinerea on plants and plant 
products is evident due to their broad host ranges (Abbey 
et al. 2019; AbuQamar et al. 2017; Gao and Zhao 2017). 
Due to the increasingly severe economic losses caused 
by B. cinerea, an increasing amount of attention has been 
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paid to necrotrophic plant pathogens over the past dec-
ade. Cucumber is susceptible to infection by B. cinerea 
(Yuan et al. 2019), which is among the top five important 
cucumber pathogens (Yu et  al. 2019). It is important to 
understand the molecular mechanisms underlying host–
pathogen interactions in devising strategies to control 
diseases (Vela-Corcía et al. 2019). For this purpose, many 
Botrytis infection mechanisms have been reported in 
typical plants (El Oirdi et  al. 2011; Hou et  al. 2019; Hu 
et al. 2019; Lakkis et al. 2019; Petrasch et al. 2019; Tian 
et al. 2018; Zhu et al. 2019).

Technological advances facilitate the collection of gene 
sequencing, gene expression, proteomic, and metabo-
lomic data. The combination of these technologies can 
yield more information about the mechanisms of plant 
resistance to pathogens and pathogen–plant infection 
mechanisms. Transcriptome sequencing is widely imple-
mented to measure the levels of transcripts expressed 
across various treatments (Kong et  al. 2015; Liu et  al. 
2018; Xiong et  al. 2018). Sophisticated statistical mode-
ling offers another way for investigating disease dynamics 
at multiple biological scales. In addition, it complements 
and extends the knowledge obtaining from experimental 
tools (Kirschner and Linderman 2009). Genes divided 
into the same group may have similar features by cluster 
analysis, which help us explore the gene functions and 
networks (Eisen et  al. 1998; Ramoni et  al. 2002; Sturn 
et al. 2002) .

However, most model-based cluster analysis 
approaches have their drawbacks. The Skellam model 
parameters are estimated by the hierarchical EM algo-
rithm. Skellam modeling is more biologically relevant 
by comparing with k-means and self-organization map-
ping (Jiang et  al. 2014) reported a Skellam modeling 
method which grouped genes into different clusters by 
the patterns of gene expression under different condi-
tions. Therefore, Skellam modeling represents a valuable 
method to group gene expression data from transcrip-
tome sequencing and enhance our knowledge of gene 
functions and networks.

The aim of this study was to apply the Skellam frame-
work to explore and cluster co-expression patterns of 
genes derived from C. sativus and B. cinerea. We found 
that the Skellam model was capable of identifying and 
clustering co-expression models of genes among varied 
treatments. Moreover, our results will offer insights into 
the mechanisms of C. sativus–B. cinerea interactions.

Materials and methods
Transcriptome sequencing data
Botrytis cinerea is one of the most common crop path-
ogens. Here, we used C. sativus L. (obtained from the 
Institute of Vegetables and Flowers, Chinese Academy 

of Agriculture Science) as the host and B. cinerea strain 
B05.10 (provided by China General Microbiological 
Culture Collection Center) as the pathogen to assess 
their interaction. Transcriptome sequencing data were 
obtained from our previous study (Kong et  al. 2015). 
Considering C. sativus and B. cinerea as an intercon-
nected system, transcriptome sequencing was conducted 
using infected C. sativus leaves, and pure cultured C. 
sativus and pathogen were measured in the same sets. 
Differential expression between control and treated sam-
ples was analyzed by the Bioconductor software pack-
age edgeR (McCarthy et al. 2012). A false discovery rate 
of 0.05 was set as the threshold for significantly different 
expression.

Mixture model‑based likelihood
The model design followed the method of our previ-
ous study (Jiang et al. 2014). Suppose in a transcriptome 
dataset we measure the organism for reads of n genes 
with two treatments (1 and 2), and expression reads of 
gene i are described as Xi and Yi, respectively. Briefly, the 
joint likelihood of the expression data zi = (Xi − Yi) of n 
genes is written as

where Θ are unknown parameters, πj is the probability of 
group j(j = 1, . . . , J ) among the total genes, and fj(zi) is 
the density function of two expression difference values 
for gene i belonging to group j in the two treatments.

If the two variables are expressed as one dependent 
random variable, zi = U1 − U2 , the Skellam distribution 
of zi for gene i is described by a joint probability density 
function, expressed as

where θj1 and θj2 are the mean expression values of genes 
which belong to group j in treatments 1 and 2, respec-
tively, with the two parameters arrayed in �J = (θj1, θj2) . 
Here, fj(zi) in mixture model (1) is specified by 
fj(Z = zi|Λj).

Implementation of the EM algorithm
The maximum-likelihood estimates were computed by 
implementing the EM algorithm. In the E step, the condi-
tional expectation of Xi was calculate by
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where f ∗j  is defined in (2). The posterior probability of 
gene i was calculated which belongs to group j,

In the M step, the estimates of parameters πj and �j 
was obtained by

The E and M steps are iterated between Eqs.  (3–7) 
until the estimates of the unknown parameters converge 
to stable values. The estimates obtained this way are the 
maximum likelihood estimates (MLEs) of the parameters.

Optimization of the number of groups
For a given number of clusters J, we calculated the likeli-
hood L by (1) and the BIC by − 2 log(L) + J log(n), where 
n is the number of genes in the model. A low value of BIC 
corresponds to an optimal number of clusters.

Hypothesis tests
For a given group j , whether its genes are differently 
expressed between the two treatments can be tested by 
testing

If the H0 is accepted, this means that group of genes 
expressed between two treatments is stable. Otherwise, 
they show different amounts of expression before and 
after interaction, in which case they can be used as a 
predictor of interaction-induced changes. For a pair of 
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(8)H0:θj1 = θj2 vs. H1:θj1 �= θj2 ∀j = 1, . . . , J .

groups, we further tested whether they interacted with 
each other to determine interaction-induced changes.

Enrichment analysis
The GO enrichment analyses of genes were tested using 
the hypergeometric distribution and the definition of the 
hypergeometric distribution is as follows,

where T and n are the total numbers of genes and DEGs, 
respectively, and S and z are the numbers of genes and 
DEGs that belong to a certain functional category, 
respectively. The significant GO categories were selected 
with false discovery rate less than 0.05. Hypergeometric 
distribution method was also used to examine the statis-
tical enrichment of DEGs in the KEGG pathways (Abbey 
et al. 2019; Young et al. 2010).

Gene regulatory network reconstruction
Gene regulatory network are visual representations of 
mechanisms that make up the functioning of an organism 
under given conditions. The methods that were proposed 
and developed include analyses based on correlations, 
ordinary or partial differential equations, and Bayesian 
networks. Bayesian networks are a promising tool for 
inferencing gene regulatory network (Vignes et al. 2011). 
In this study, we considered that this approach was suit-
able for the experimental design and data property. The 
structure and parameters of the underlying graph were 
estimated by a score-based structure learning algorithm 
similarly to what was done in previous reports (Scutari 
and Denis 2014; Vignes et al. 2011).

Results
Differential expression analysis
A false discovery rate of 0.05 was set as the threshold 
for significantly different expression. In order to under-
stand the response of C. sativus to B. cinerea infection, 
GO analysis was implemented to the above DEGs, and 
enrichment analysis was applied based on the hypergeo-
metric distribution, using a false discovery rate (FDR) of 
< 0.05 as the cutoff.

In C. sativus, more DEGs were divided into terms in 
the molecular function and biological process domains 
than to cellular component terms. The dominant terms 
in each domain were “phosphotransferase activity”, 
“oxidation–reduction process”, and “integral to mem-
brane”, respectively (Additional file  7: Figure S1A). The 
most significantly enriched GO terms in the molecular 
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function domain included “phosphotransferase activ-
ity—alcohol group as acceptor” (GO:0016021), “GTP 
binding” (GO:0015979), “ATP binding” (GO:0005576), 
“protein tyrosine/serine/threonine phosphatase activ-
ity” (GO:0005506), and “heme binding” (GO:0009765). 
The most significantly enriched GO terms in the bio-
logical process domain included “oxidation–reduction 
process” (GO:0055114), “negative regulation of tran-
scription”, “DNA-dependent” (GO:0009734), “protein 
phosphorylation” (GO:0004601), “oxidation–reduction 
process” (GO:0009522), and “carbohydrate transport” 
(GO:0004497) (Additional file 1: Table S1).

In B. cinerea, more DEGs were divided into terms in 
the biological process and cellular component domains 
than to molecular function terms. The dominant terms 
in each domain were “transport”, “cytosol”, and “hydro-
lase activity”, respectively (Additional file  7: Figure 
S1B). The most significantly enriched GO terms in the 
molecular function domain included “hydrolase activity” 
(GO:0005975), “oxidoreductase activity” (GO:0004553), 
“TBP-class protein binding” (GO:0003868), “purine 
nucleobase transmembrane transporter activity” 
(GO:0070884; GO:0046355), and “RNA polymer-
ase I activity” (GO:0045461). The most significantly 
enriched GO terms in the biological process domain 
included “transport” (GO:0030248), “oxidation–reduc-
tion process” (GO:0055114; GO:0016812), “metabolic 
process” (GO:0016491; GO:0007346), “mitochondrial 
transport” (GO:0008864), “vesicle-mediated transport” 
(GO:0030245), and “methylation” (GO:0004076) (Addi-
tional file 2: Table S2).

To further clarify the functions of DEGs, they were 
mapped to KEGG terms to identify genes involved in sig-
nificantly enriched biosynthetic or signal transduction 
pathways in C. sativus and B. cinerea. 277 DEGs were 
assigned to 19 KEGG pathways in C. sativus (Additional 
file  3: Table  S3). The top five significantly enriched bio-
synthetic pathways included “phenylpropanoid biosyn-
thesis”, “photosynthesis”, “biosynthesis of antibiotics”, 
“fatty acid elongation”, and “valine, leucine, and isoleucine 
degradation” (Additional file 8: Figure S2A). The pathway 
involving the highest number of DEGs was “biosynthe-
sis of antibiotics” (86; 31.05%), followed by “phenylpro-
panoid biosynthesis” (53; 19.13%), “starch and sucrose 
metabolism” (35; 12.64%), “pentose phosphate pathway” 
(22; 7.94%), and “glycine, serine, and threonine metabo-
lism” (14; 5.05%). Therefore, we considered the DEGs 
involved in these pathways as candidates associated with 
C. sativus susceptibility to B. cinerea.

In B. cinerea, 150 DEGs were assigned to 26 KEGG 
pathways (Additional file  4: Table  S4). Among these, 
“starch and sucrose metabolism”, “pentose and glucuro-
nate interconversions”, “cyanoamino acid metabolism”, 

“biosynthesis of antibiotics”, and “phenylpropanoid bio-
synthesis” were the top five most significantly enriched 
pathways (Additional file  8: Figure S2B). The pathway 
involving the highest number of DEGs was “biosynthe-
sis of antibiotics” (27; 18.00%), followed by “starch and 
sucrose metabolism” (16; 10.67%), “pentose phosphate 
pathway” (11; 7.33%), “phenylpropanoid biosynthesis” 
(9; 6.00%), “cyanoamino acid metabolism” (7; 4.67%), and 
“glyoxylate and dicarboxylate metabolism” (7; 4.67%).

Clustering using the Skellam model
The Skellam model was used to cluster RNA genes into 
distinct groups. Because it incorporates sample size 
information, we used the Bayesian information crite-
rion (BIC) as the model-selection criterion. First, we 
clustered 4200 differentially expressed genes (DEGs) in 
C. sativus into distinct groups. From the plot of the BIC 
against the group numbers, all the DEGs are categorized 
into 17 distinct groups (Fig. 1A). We had illustrated the 
mean expression in each group of C. sativus and these 17 
groups displayed differential levels in expression (Fig. 2A 
and Additional file 5: Table S5). Figure 3A plotted the pat-
tern of the C. sativus gene expression differences before 
and after fungal infection, which showed that DEGs in 
11 groups were up-regulated, whereas those in 6 groups 
were down-regulated. The gene groups were not parallel 
and different patterns of gene expression plasticity was 
exhibited in response to environmental changes from an 
uninfected state to an infected one. Subsequently, based 
on the BIC values under different numbers of clusters, 
670 DEGs in B. cinerea were clustered into 12 groups 
(Fig.  1B). The mean expression values in each group of 
B. cinerea were showed in Fig. 2B and Additional file 6: 
Table S6. The pattern of pathogen gene expression differ-
ences before and after host infection, in which DEGs in 
7 groups were up-regulated, whereas those in 5 groups 
were down-regulated (Fig. 3B).

Plasticity expression pattern
Of these 17 groups in C. sativus, gene expression levels 
from groups 1, 2, 3, 4, 7, 8, 9, 12, 13, 15, 17 (account-
ing for nearly 42.5% of genes) were clearly up-regu-
lated after B. cinerea infection. Nearly 50% of genes 
(groups 6, 10, 11, 14, 16) were clearly down-regulated 
and gene expression levels from group 5 (about 9.4%) 
tended to be slightly down-regulated. In group 7, the 
most significantly enriched GO term responded to 
“oxidative stress” (GO:0006979), indicating that the 
plant reacted to pathogen infection. GO term “cell 
wall” (GO:0005618) was significantly enriched in group 
11 and term “photosystem” was significantly enriched 
in group 14. In B. cinerea, of these 12 groups, only 
the mean expression values of group 2 (about 18.4%) 
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were clearly down-regulated after infecting C. sativus. 
Approximately 40.15% of genes from groups 3, 4, 5, 9 
were slightly down-regulated. Genes in other groups 
are up-regulated after infecting C. sativus. Hypothesis 
tests were performed to examine whether each cluster 
of genes expressed significantly differently between the 
two treatments and determined whether a particular 
pair of gene groups interacted with the environment. 
Plasticity gene expression was statistically significant 
(P < 0.05). This indicated that DEGs tended to obvious 
changes in response to B. cinerea infection. All pairs of 
gene clusters displayed significant gene-environment 
interactions (P < 0.05).

Gene regulatory network
The core-periphery structure is a vital feature of many 
biological networks, including protein-protein interac-
tion networks as well as gene regulatory and metabolic 
networks (Csermely et  al. 2013). In this study, we con-
structed networks of genes that interacted with each 
other to screen hub genes based on a directed graphical 
model known as Bayesian networks. Through a detailed 
GO analysis, we detected hub genes which were biologi-
cally meaningful.

For example,the gene regulatory network of group 
7 in C. sativus was shown in Fig.  4A. All the 116 genes 
were displayed in green (Additional file  5: Table  S5), in 

Fig. 1  Plot of BIC values over the number of groups calculated from the transcriptomic data. A C. sativus; B B. cinerea 

Fig. 2  Differentiation patterns of genes from distinct groups. A There are 17 groups expressed in c. sativus; B there are 12 groups expressed in B. 
cinerea. In each group, the mean expression curve is indicated by a thick line over expressions curves of individual genes (thin lines)
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which two in red were No. 63 (Csa5G285030, Proteinase 
inhibitor) and 73 (Csa1G265640, Uncharacterized pro-
tein). They were two hub genes detected by the Bayes-
ian networks. Csa5G285030 was enriched in “response 
to wounding” (GO:0009611), which might be involved 

in response to stress such as wounding and pathogens. 
Group 12 contained 149 genes in the network (Addi-
tional file  5: Table  S5), in which No. 29 (Csa2G075440) 
was screened as a hub gene. Csa2G075440 was annotated 
as “disease resistance protein RPS2” in KEGG orthology 

Fig. 3  Relative differences among gene expression curves of different groups expressed in A C. sativus and B B. cinerea 

Fig. 4  The gene regulatory network by Bayesian networks in A group 7 of C. sativus and B group 10 of B. cinerea 
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and enriched in the pathway of “plant–pathogen interac-
tion” (Bent et  al. 1994). In B. cinerea, the mean expres-
sion values of group 10 were clearly up-regulated after 
infecting C. sativus. There were 15 genes in this group, 
in which No. 4 (B0510_3699) was identified as one of the 
hub genes (Fig. 4B). The gene probably encodes 1,4-beta-
d-glucan cellobiohydrolase which participates in regu-
lating the hydrolase activity or hydrolyzing O-glycosyl 
compounds (GO:0004553) for pathogens to invade plant 
cells or exploit the polysaccharides of plant cell walls 
(Additional file 6: Table S6) (Kong et al. 2015).

Discussion
Plant–pathogen interactions are a topic of scientific inter-
est. With the advent of deep-sequencing-based transcrip-
tome sequencing, the expression levels of transcripts can 
be precisely measured in any tissue (Wang et  al. 2009). 
Pathogen gene expression programs in answer to the host 
environment and host gene expression in response to 
pathogens can be monitored more easily by this method. 
It is crucial to measure the dynamic behavior of gene 
expression for interpreting the genetic mechanisms of 
host–pathogen interactions.

By transcriptome sequencing, we previously had inves-
tigated whole-transcriptome profile changes in C. sati-
vus and B. cinerea before and after infection. However, 
in order to analyze the transcriptome sequencing results 
better, a powerful statistical method is needed. Here, we 
present a computational model combined with transcrip-
tome sequencing data to investigate C. sativus–B. cinerea 
interactions.

As a useful tool, cluster analysis can help us analyze 
gene expression derived from different gene expres-
sion patterns. Using traditional methods, gene clus-
tering is only performed by their expression at single 
points or their joint expression at multiple points and 
doesn’t consider how different conditions affect the 
expression of genes. The Skellam model treats the co-
expression of genes under different conditions as a 
system and integrates the capacity of a cross-treat-
ment genes to co-respond to environmental changes 
into clustering procedures, for better understand-
ing the gene responses to certain external conditions 
(Jiang et  al. 2014). Nevertheless, most existing model-
based cluster analysis approaches have not adapted to 
the particular properties of transcriptome sequenc-
ing data or do not consider extraordinary experimen-
tal conditions. However, the current Skellam model 
allows for the classification of two reaction norms in 
response to an environmental signal. To model succes-
sive changes in gene expression in response to environ-
mental stimuli, the extended statistical sekllam model 
such as the bivariate Skellam, multivariate Skellam and 

Poisson–Skellam probability distribution are required 
(Akpoue and Angers 2016; Bulla et al. 2015; Gan et al. 
2015; Lu et al. 2015; Wang et al. 2014).

Skellam modeling has been used successfully to clus-
ter genes from early Arabidopsis thaliana embryos into 
groups (Jiang et  al. 2014). For example, group 9 was 
related to proteins like ATP-involved ATP synthase 9. 
Group 8 was associated with proteins such as patho-
genesis-related thaumatin-like protein. Moreover, dur-
ing the initial stages, both the maternal and paternal 
genomes were active with essentially equivalent contri-
butions to the embryonic transcriptome; however, the 
activated gene sets differed. Meanwhile, as mentioned 
above, Jiang et  al. (2014) clustered the transcriptome 
sequencing dataset of early A. thaliana embryos by the 
level of maternal and paternal genome contributions. 
The validation of this model has also been performed 
by simulation studies.

Plant–pathogen interactions are complicated pro-
cesses which cause a series of molecular responses at 
various expression levels. Compared with our previ-
ous study, the GO enrichment analysis in the present 
study showed that several of the same GO terms were 
among the top 10 significantly enriched terms involved 
in B. cinerea infection, including hydrolase activity, 
metabolic process, oxidation–reduction process, and 
oxidoreductase activity (Additional file  2: Table  S2). 
In C. sativus resistance, only one of the same GO 
terms, oxidation–reduction process, was significantly 
enriched (Additional file  1: Table  S1). Meanwhile, the 
KEGG enrichment analysis of C. sativus showed that 
only three of the most enriched pathways (“photosyn-
thesis”, “valine, leucine, and isoleucine degradation” and 
“pentose phosphate pathway”) were the same as those 
identified in our previous research (Additional file  3: 
Table S3). In B. cinerea, several KEGG pathways, such 
as “starch and sucrose metabolism”, were the same as 
those identified in our previous study (Additional file 4: 
Table  S4). Some significantly enriched biosynthetic 
pathways, including “phenylpropanoid biosynthesis”, 
“photosynthesis”, “valine, leucine and isoleucine deg-
radation”, “starch and sucrose metabolism” and “zeatin 
biosynthesis”, were in agreement with the major path-
ways involved in plant–pathogen interactions identified 
in a similar study (Liu et  al. 2016). A previous report 
found that some genes involved in the phenylpropanoid 
pathway were induced during the compatible interac-
tion between Lactuca sativa and B. cinerea (De Cre-
mer et al. 2013). The response of susceptible plants was 
slower and milder than that of resistant plants, although 
this metabolic pathway was activated in both suscepti-
ble and resistant plants (Tan et  al. 2015). Meanwhile, 
“photosynthesis” was the second-most significantly 
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enriched pathway, consistent with our previous study, 
which confirms that photosynthesis plays an important 
role in pathogen resistance (Kong et al. 2015).

Through a detailed network analysis, we can better 
chart a picture of the mechanistic regulation of genes for 
pathogens infection and stress tolerance in plants. Sev-
eral hub genes have been detected by Bayesian networks 
such as genes encoded “disease resistance protein RPS2” 
in the plant. RPS2 confers resistance to strains of the bac-
terial phytopathogen Pseudomonas syringae carrying the 
avirulence genes avrRpt2 (Bent et al. 1994; Leister et al. 
1996). 1,4-Beta-d-glucan cellobiohydrolase was identified 
as a hub gene in the pathogen, which meant for patho-
gens to invade the polysaccharides of plant cell walls they 
must secrete enzymes to disassemble cell wall polysac-
charides (Kong et al. 2015; Zhu et al. 2017).

It is crucial to measure the dynamic behavior of gene 
expression for explaining the genetic mechanisms of 
host–pathogen interactions; however, most studies of 
gene expression based on transcriptome sequencing have 
been performed in a static state. The Skellam distribution 
and Bayesian networks facilitate us to elucidate a more 
precise characterization of host–pathogen interactions 
and co-evolution. Finally, it is necessary to integrate the 
multivariate Skellam distribution and Bayesian networks 
to support further investigations using more sophisti-
cated statistical models.
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