
sensors

Article

Effective Efficiency Advantage Assessment of
Information Filter for Conventional Kalman Filter in
GNSS Scenarios

Yanning Zheng 1, Siyou Wang 1 and Shengli Wang 2,*
1 College of Geomatics, Shandong University of Science and Technology, Qingdao 266590, China
2 Ocean Science and Engineering College, Shandong University of Science and Technology,

Qingdao 266590, China
* Correspondence: shlwang@sdust.edu.cn; Tel.: +86-135-8929-5632

Received: 26 June 2019; Accepted: 4 September 2019; Published: 6 September 2019
����������
�������

Abstract: The Global Navigation Satellite System (GNSS) is a widely used positioning technique.
Computational efficiency is crucial to applications such as real-time GNSS positioning and GNSS
network data processing. Many researchers have made great efforts to address this problem by
means such as parameter elimination or satellite selection. However, parameter estimation is rarely
discussed when analyzing GNSS algorithm efficiency. In addition, most studies on Kalman filter
(KF) efficiency commonly have defects, such as neglecting application-specified optimization and
limiting specific hardware platforms in the conclusion. The former reduces the practicality of the
solution, because applications that need such analyses on filters are often optimized, and the latter
reduces its generality because of differences between platforms. In this paper, the computational cost
enhancement of replacing the conventional KF with the information filter (IF) is tested considering
GNSS application-oriented optimization conditions and hardware platform differences. First,
optimization conditions are abstracted from GNSS data-processing scenarios. Then, a thorough
analysis is carried out on the computational cost of the filters, considering hardware–platform
differences. Finally, a case of GNSS dynamic differencing positioning is studied. The simulation
shows that the IF is slightly faster for precise point positioning and much faster for the code-based
single-difference GNSS (SDGNSS) with the constant velocity (CV) model than the conventional KF,
but is not a good substitute for the conventional KF in the other algorithms mentioned. The real test
shows that the IF is about 50% faster than the conventional KF handling code-based SDGNSS with the
CV model. Also, the information filter is theoretically equivalent to and can produce results that are
consistent with the Kalman filter. Our conclusions can be used as a reference for GNSS applications
that need high process speed or real-time capability.

Keywords: computational efficiency; Global Navigation Satellite System; information filter;
Kalman filter

1. Introduction

The Kalman filter is a widely used data-processing tool in many areas of engineering, including
positioning and navigation [1]. Due to the diversity and complexity of real engineering problems,
the conventional Kalman filter (KF) is not always able to get acceptable results, which necessitates
improved versions for different purposes. There are some examples: for nonlinear models, the
extended Kalman filter, particle filter, and cubature filter have been proposed and applied in Global
Navigation Satellite System (GNSS) precise point positioning (PPP) [2,3]; for the inaccuracy of the
stochastic model and coarse error, the adaptive Kalman filter, H∞ filter, and maximum correntropy
Kalman filter can be applied in algorithms such as an integrated GNSS/inertial navigation system
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(INS) [4]; the decentralized Kalman filter and Kalman consensus filter are used to handle distributed
computing problems, such as underwater cooperative navigation [5]; and several square root filters
have been proposed for better numerical performance, and work well in many scenarios [6,7].

For some engineering realms, computational complexity gets as much attention as other issues,
such as nonlinear properties and numerical performance. The generation of real-time state space
representation (SSR) products in International GNSS Service (IGS) analysis centers is an example.
The existing literature on computational optimization and assessment can be mainly classified into
three problems: GNSS network data processing, fast satellite selection algorithm, and fast ambiguity
resolution. For fast and real-time GNSS network data processing, Ge et al. proposed a strategy based
on parameter elimination, and processing time reduced to less than one-third compared to previous
methods [8]. In a study by Gong et al., the processing time of multi-GNSS network data was reduced
by almost two orders by employing blocked QR factorization algorithms [9]. QR factorization is a
decomposition process that for matrix A, we have A = QR, where Q and R are an orthogonal matrix
and upper triangular matrix, respectively [10]. The key idea of the study is that reorganizing algorithms
in the form of large granularity operations can reduce data copying between registers, cache, and
memory, and reduce time cost. Barbu et al. used QR factorization and an improved matrix reduction
procedure to lessen the computational time for GINS software [7]. The authors discussed the proposed
method in detail, but did not do much analysis on computational cost improvement. Fu et al. studied
real-time clock estimation and its quality control, with some discussion of processing time cost to
ensure real-time performance [11]. However, since the major concern of the article is clock estimation,
the authors did not compare the computational cost performance with previous approaches. For the
satellite selection method, since it is sometimes applied to reduce computational burden, its own
computational cost will be crucial. Articles by Liu et al. and Meng et al. proposed fast satellite selection
approaches, but both sacrificed optimality slightly [12,13]. For fast ambiguity resolution, Jazaeri et al.
used lattice theory and demonstrated obvious optimization of the time cost [14]. Baselga discussed an
ambiguity-free method, with advantages including shorter running time [15]. These studies brought
many useful methods to improve computational cost from multiple aspects, but the computational
cost of filters used in positioning and navigation algorithms is not mentioned much.

There are some studies on the computational cost performance of different Kalman filters. Bierman
compared five filters based on their computational cost, and concluded that the information filter
(IF) is faster than the KF, and so is its square root version [16]. However, the test covered only a
few situations, and was based on one old-model computer. Modern computers have many features
that old-model computers don’t have, which makes the conclusion of this study not so suitable for
modern computers. Mendel made a thorough analysis of the computational complexity and storage
requirements of the Kalman filter [17]. The author analyzed individual arithmetic operations, but only
demonstrated two specific examples for the overall time cost. An article by Bierman and a book by
Grewal et al. mentioned that the decorrelation of observations can unify algorithms with correlated
observations and with independent observations in the analysis of computational efficiency [16,18].
Since such decorrelation can be achieved by LDLT decomposition, this statement will hold only if
the computational advantage of a diagonal observation covariance matrix over a nondiagonal one is
much greater than the cost of the LDLT decomposition. Thus, algorithms with correlated observations
and those with independent observations cannot be unified in computational cost analysis. Then,
optimizations based on observation independencies are algorithm-specified. From the literature above,
one can determine the following defects: (1) the arithmetic operation time used in these studies may not
suit modern 64-bit computers; (2) the differences between hardware platforms were not seriously taken
into account; and (3) algorithm-specific optimization should be considered for practicality, because
computational cost is always tightly related to optimization.

In this paper, the computational improvement of replacing the KF with the IF in positioning and
navigation scenarios is studied. Hardware platform differences are taken into account to alleviate
any platform limitation of the results and conclusions, and algorithm-specified optimizations are
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considered for better practicality. The related GNSS positioning and navigation scenarios and their
descriptions are as follows:

1. Precise point positioning (PPP): PPP uses pseudo-range and carrier-phase observations from
a single GNSS receiver, precise satellite orbit, and clock products, and refined systematic error
models to achieve high-precision positioning [19]. PPP usually uses the KF as the parameter
estimator. The ionosphere-free PPP (IFPPP) algorithm uses an ionosphere-free combination of
observations, with estimated parameters of position corrections in the x, y, and z directions, a wet
component of zenith tropospheric delay, a receiver clock bias, and ambiguities with ionospheric
combination [19]. The uncombined PPP (UPPP) algorithm uses raw observations, with estimated
parameters of conventional PPP plus slant ionospheric delay parameters [20].

2. GNSS difference positioning (DGNSS): DGNSS uses pseudo-range or carrier-phase observations
from two receivers to determine their coordinate difference [19]. Single-differenced DGNSS
(SDGNSS) only applies the difference between two receivers; double-differenced DGNSS
(DDGNSS) applies the difference both between two receivers and between a reference satellite
and other satellites. Pseudo-range (code-based) DGNSS (code-DGNSS) traditionally only uses
pseudo-range for position estimation, and carrier-phase DGNSS (real-time kinematic, RTK) uses
carrier-phase observations. In this paper, DGNSS is also combined with a constant velocity
(CV) model and Doppler observations. When a receiver is mounted to a vehicle such as an
automobile, it is possible to apply specific dynamic model restriction in the parameter estimation
process. Constant acceleration (CA) and constant velocity (CV) models are two examples [21].
The CA model assumes the target performs uniformly accelerated motion between two epochs,
and the CV model assumes the target performs uniform motion between two epochs. Such a
model exploits the advantage of multisource information for better precision and robustness,
and requires KF as the data-processing tool. With proper process noise, these dynamic models
will at least not degrade the positioning results, and the closer the real dynamic characteristics
to the given model, the better the solution. Since the CV model introduces velocity parameters
into the filter, information about velocity is required to make the model really effective, and
Doppler observations exactly suit the need. So, the test will use Doppler observations along with
pseudo-range observations. This special code-DGNSS model is called code-DGNSS with CV in
this paper.

3. GNSS/INS (inertial navigation system) integrated navigation: This type of algorithm integrates
results from GNSS and INS. Here, the GNSS algorithm in use can be either undifferenced or
differenced, leading to algorithms including PPP/INS, RTK/INS, and so on. Further, there are two
major integration methods: loosely coupled (LC) integrates position solutions from GNSS and
INS directly, and tightly coupled (TC) integrates GNSS observations and observations derived
from INS position solutions [22]. The Kalman filter is used to conduct such integration.

The rest of this paper is organized as follows: basic definitions of the filters; algorithm characteristics
and corresponding filter optimizations; computational cost polynomials formulation; theoretical
analyses; case study; and conclusions.

2. Basic Definitions of the Filters

In this section, the equations of KF and IF are provided, and the related variables and symbols
are defined.

2.1. Conventional Kalman Filter

Assume the state space model of the stochastic system is:{
xk+1 = Fxk + w
L = Bxk+1 + v

(1)
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and w and v are independent Gaussian sequences with zero means:
E
(
w j
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(2)

where x is the system state vector, F is the state transition matrix, w is the process noise vector, L is
the observation vector, B is the observation matrix, v is the observation noise vector, W is the process
noise covariance matrix, R is the observation noise covariance matrix, k and k+1 indicate two adjacent
epochs, j and k are two arbitrary epochs, and E is the mathematical expectation operator. The estimated
state value and its covariance can be calculated by KF with the following equations [18,23]:

¯
xk+1 = F

^
xk (3)

¯
Qk+1 = F

^
QkFT + W (4)

K =
¯

Qk+1BT
(
B

¯
Qk+1BT + R

)−1

(5)

^
xk+1 =

¯
xk+1 + K

(
L−B

¯
xk+1

)
(6)

^
Qk+1 = (E−KB)

¯
Qk+1 (7)

where K is the Kalman filter gain matrix. The bars over some variables mean that they are predicted
based on historical information, and the carets over some variables mean that they are estimated
values based on historical information and observations of the current epoch. Equations (3) and (4)
constitute the time update step of the filters. Equations (5)–(7) constitute the measurement update step
of the filters.

2.2. Information Filter

The IF is a kind of KF. It uses information vector S = Ix and information matrix I = Q−1 to replace
parameter vector x and parameter covariance matrix Q used in KF [24]. It was first proposed for
spacecraft navigation to handle the lack of initial state information in backward filtering [25]. For the
same state space model of Equation (1), IF can be updated with the following equations [24,25]:

M =

(
FT +

^
IkF−1W

)−1

(8)

¯
Ik+1 = M

^
IkF−1 (9)

¯
Sk+1 = M

^
Sk (10)

^
Ik+1 =

¯
Ik+1 + BTR−1B (11)

^
Sk+1 =

¯
Sk+1 + BTR−1L (12)

Equations (8)–(10) constitute the time update step. Equations (11) and (12) constitute
the measurement update step. I and S can be transformed to Q and x, or conversely as
Equations (13) and (14), if I is invertible: {

Q = I−1

x = QS
(13)
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{
I = Q−1

S = Ix
(14)

Since the computer implementations of IF often store and update I and S, Equation (13) is used
only if epoch solutions are needed, and Equation (14) is used only for the filter initialization.

It should be emphasized that IF is derived from KF directly and is theoretically equivalent
to KF. Mutambara made a detailed comparison in his book, and concluded that the difference
between their solutions is merely numerical error [24]. Thus, all of our discussions are based on their
solution equivalence.

3. Algorithm Characteristics and Corresponding Filter Optimizations

Efficiency assessment is usually related to optimization. Thus, taking optimizations specified by
algorithm characteristics into account will make the analysis of efficiency more practical for application.
In this section, several GNSS data-processing algorithms are discussed to find out their characteristics
and possible filter optimizations.

3.1. Characteristics of GNSS Data-Processing Algorithms

Data-processing algorithms have different characteristics, which have an influence on the
computational cost. Here, these characteristics are abstracted as factors for further discussion,
by inspecting real GNSS positioning and navigation algorithms. Essentially, these factors decide what
operations can be removed or replaced with simpler ones in each filter update cycle. Please note that
these algorithms are discussed from three aspects: (1) solution requirement, (2) dynamic model, and
(3) observation model.

1. Undifferenced GNSS algorithms: (1) For GNSS applications for static positioning purposes, only
the parameter estimation and covariance of the last epoch is necessary, while all epoch solutions
are needed for kinematic positioning. (2) In many undifferenced GNSS algorithms, matrices F and
W are invariant to epochs. (3) Undifferenced GNSS algorithms use undifferenced observations;
thus, the R matrices are diagonal.

2. DGNSS: (1) Since these algorithms are widely used in kinematic positioning, the position solution
from each epoch is often of interest. (2) For DGNSS using a constant velocity (CV) or constant
acceleration (CA) dynamic model, matrices F and W are invariant in epochs, unless the stability
of the clock bias cannot be guaranteed (such as with clock jump). (3) The R matrices can be either
diagonal (single-differenced) or nondiagonal (double-differenced) in these algorithms.

3. GNSS/INS integrated navigation: (1) Similar to RTK algorithms, these algorithms also need each
epoch solution. (2) Due to the intricate nonlinear dynamic model of the INS, matrix F is generally
determined by the current position, velocity, and attitude, and is variant to epoch. (3) Impacted
by the sophisticated inertial measurement unit (IMU) dynamic model, matrix R is nondiagonal.

From the discussions above, it is easy to notice the variety of algorithm characteristics. For these
characteristics, three filter factors are summarized in Table 1, which will be essential to the subsequent
discussions. Please note that two additional options are considered, 2B and 3A. These options do not
correspond to any algorithms in this paper, but appear in other scenarios, and can make the analysis
more comprehensive. For example, option 2B could correspond to a simple population growth model
in the form of xk+1 = (1 + f )xk, where f is the growth rate; option 3A could correspond to a simplified
GNSS network adjustment algorithm with fixed B and R matrices, since it can be tempting to lose a
little optimality and make it possible to provide a real-time network solution.
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Table 1. Filter factors. DGNSS: GNSS difference positioning, DDGNSS: double-differenced
DGNSS, GNSS: Global Navigation Satellite System, INS: inertial navigation system, PPP: precise
point positioning.

Factors Available Options Examples

1. Solution
requirements

A. Only the final solution based on all
data is required. PPP with static position parameters

B. Epoch solutions are required. Any dynamic positioning and navigation
algorithm

2. Dynamic models

A. Dynamic model is fixed (F and W
used in each epoch are the same). PPP and DGNSS

B. Dynamic model is not fixed, but
matrix F is a diagonal matrix.

C. Dynamic model is not fixed, and
matrix F is not a diagonal matrix.

GNSS/INS loosely or tightly coupled
integrated navigation algorithms

3. Observation models

A. Observation model is fixed (B and R
used in each epoch are the same).

B. Observation model is not fixed, but
matrix R is a diagonal matrix.

Undifferenced and single-differenced
GNSS algorithms

C. Observation model is not fixed, and
matrix R is not a diagonal matrix.

DDGNSS algorithms and GNSS/INS
integrated navigation algorithms

3.2. Filter Optimizability

With the table above, we can analyze the filter Equations (3)–(14) to determine the optimizable
arithmetic operations using different options of each factor. Since the last options of each factor
correspond to unoptimized situations, they will be used as references.

Factor 1: For KF, obtaining the epoch solutions Q and x is necessary for the filter update. Thus,
even if the epoch solutions are not needed, they will still be obtained, and no calculation can be
simplified. For IF, Equation (13) can be omitted if epoch solutions are not required, which can reduce
some computational cost.

Factor 2: For KF, matrices F and W are used only in Equation (4). Assume that option A is
selected and color is applied to Equation (4) as in Equation (15), where red indicates quantities that
vary with epochs, and green indicates quantities that are constant. Since every computational step
of this equation involves variable quantities directly or indirectly, no calculation can be simplified.
Assume that option B is selected. As Equation (4) does not involve an inversion of F, the computational
cost will remain unchanged. For IF, matrices F and W are used in Equations (8) and (9). Assume that
option A is selected and color is applied to Equations (8) and (9) as Equations (16) and (17). Here,
F−1W and F−1 can be calculated before the filter starts, and the computational cost of a single filter
update procedure can be reduced. Assume that option B is selected. The inversion of F will become
easy and fast when F is diagonal, which means less computational cost:

¯
Qk+1 = F

^
QkFT + W (15)

M =

(
FT +

^
IkF−1W

)−1

(16)

¯
Ik+1 = M

^
IkF−1 (17)

Factor 3: For KF, matrices B and R are used in Equations (5)–(7). Assume that option A is selected
and color is applied to Equations (5)–(7) as in Equations (18)–(20). Since every computational step
of these equations involves variable quantities directly or indirectly, no calculation can be simplified.
Assume that option B is selected. As these three equations do not involve an inversion of R, the
computational cost will remain unchanged. For IF, matrices B and R are used in Equations (11)
and (12). Assume that option A is selected and color is applied to Equations (11) and (12) as in
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Equations (21) and (22). Here, the calculation of BTR−1B in Equation (21) and BTR−1 in Equation (22)
can be done beforehand and removed from the filter update of each epoch. Assume that option
B is selected. The inversion of R will become easy and fast when R is diagonal, which means less
computational cost:

K =
¯

Qk+1BT
(
B

¯
Qk+1BT + R

)−1

(18)

^
xk+1 =

¯
xk+1 + K

(
L−B

¯
xk+1

)
(19)

^
Qk+1 = (E−KB)

¯
Qk+1 (20)

^
Ik+1 =

¯
Ik+1 + BTR−1B (21)

^
Sk+1 =

¯
Sk+1 + BTR−1L (22)

From the discussion above, we can see that, due to its computational properties, the KF happens
to gain no computational cost benefit from different factor options. For each factor of a given algorithm,
when the factor option A (for factors 1, 2, and 3) or B (for factors 2 and 3) is met, some computation
in the filter update procedures of IF can be omitted or simplified. These optimizations of IF are
summarized in Table 2.

Table 2. Optimization of the information filter (IF) using different factor options. Factors and options are
from Table 1. Optimizations are summarized from previous discussion about each factor in Section 3.2.

Factors Options Optimizations

1
A Equation (13) is omitted in the filter update procedure.

B None

2

A F−1W in Equation (8) and F−1 in Equation (9) are calculated
beforehand and omitted in the filter update procedure.

B Calculation of F−1 in Equations (8) and (9) gets easier and faster.

C None

3

A BTR−1B in Equation (11) and BTR−1 in Equation (12) are calculated
beforehand and omitted in the filter update procedure.

B Calculation of R−1 in Equations (11) and (12) gets easier and faster.

C None

Please note that the options of different factors are independent. For example, the options of
factor 2 involve matrices F and W, and the options of the other two factors do not involve these two
matrices. This makes the analysis easier, because the computational cost of every combination of these
factor options can be expressed by the same group of basic computational cost functions. Also, for the
convenience of description, the factor option combines with options a1, a2, and a3 for factors 1, 2, and 3,
respectively, where ai ∈ {A, B, C}will be called factor combination a1a2a3.

4. Computational Cost of Polynomial Formulation

The computational cost of the filters is analyzed in a very straightforward way: The filter update
procedures consist of matrix operations, which are addition (including subtraction), multiplication,
and the inversion of specific magnitudes. The matrix operations consist of scalar operations, which
are addition (including subtraction), multiplication, and division. In this section, the computational
complexities of the matrix operations are first expressed in the form of scalar operation number
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polynomials; then, equations to assemble polynomials for given factor combinations from a group of
basic polynomials are put forward; finally, this group of basic polynomials is given.

Table 3 shows the polynomials that represent the computational cost of matrix operations. Please
note that two matrix inversion algorithms are included. The polynomials of addition and multiplication
can be obtained easily from the definition of matrix operations. The polynomials of LU and LDLT
decompositions can be obtained from their computational implementations, which can be found in
Sauer’s book and Sun’s article [10,26]. LU decomposition calculates the lower triangular matrix L and
upper triangular matrix U for a given matrix A in which A = LU; and LDLT decomposition calculates
the lower triangular matrix L and diagonal matrix D for a given matrix A in which A = LDLT.

Table 3. Scalar operation number polynomials of matrix operations.

Matrix Operations
Scalar Operations

Addition Multiplication Division

Addition (Ax×y + Bx×y) xy 0 0

Multiplication
(Ax×y ·By×z) xyz xyz 0

Inversion (LU = Ax×x) 5
3 x3 + 3

2 x2
−

1
6 x 5

3 x3 + 1
2 x2
−

1
6 x x2

Inversion
(LDLT = Ax×x)

4
3 x3 + 1

2 x2 + 7
6 x 4

3 x3 + x2 + 5
3 x 1

2 x2 + 3
2 x

Ptyp,ope,a1,a2,a3(n, t) is used to refer to the polynomial of the filter type typ and scalar operation
ope, with option combination a1a2a3 of Table 2, where typ ∈ {KF, IF}; ope ∈ {A, M, D} (A for addition,
M for multiplication, and D for division); a1 ∈ {A, B}, a2 ∈ {A, B, C}, a3 ∈ {A, B, C}; n is the observation
number; and t is the dimension of the system state. The values and compositions of n and t for general
GNSS algorithms are discussed in Section 5.4.

Since different factor options have no effect on the computational cost of KF, we have:

PKF,ope,a1,i,a2,i,a3,i(n, t) = PKF,ope,a1, j,a2, j,a3, j(n, t) (23)

for two arbitrary factor combinations, a1,ia2,ia3,i and a1, ja2, ja3, j. So, one polynomial is enough for the KF.
For the IF, due to the independencies between options of different factors, Equation (24) is used to

obtain the polynomial of arbitrary factor combinations a1a2a3, where P′IF,ope,i,ai(n, t) is the polynomial
representing the additional scalar operation number of option ai relative to option A of filter factor i.

PIF,ope,a1,a2,a3(n, t) = PIF,ope,A,A,A(n, t) +
3∑

i=1

P′IF,ope,i,ai(n, t) (24)

With Tables 2 and 3, we can assemble every part on the right-hand side of Equation (24) by
recording matrix operations and accumulating their polynomials. Please note that F−1, where F is
asymmetrical, uses LU decomposition, and other matrix inversions use LDLT decomposition. The
inversion on the diagonal matrix is done by obtaining reciprocals of diagonal entries. These polynomials
are summarized in Tables 4–6.
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Table 4. Polynomial coefficients of scalar addition operation. IF: information filter, KF: Kalman filter.

Filter Factors Options Polynomial Coefficients
t3 t2n tn2 n3 t2 tn n2 t n

KF AAA 3 3 2 4/3 3 2 3/2 1 13/6

IF

AAA 14/3 9/2 1 5/6

1 B-A 4/3 3/2 7/6

2
B-A 1
C-A 8/3 3/2 –1/6

3
B-A 1 2
C-A 1 2 4/3 1/2 7/6

Table 5. Polynomial coefficients of scalar multiplication operation.

Filter Factors Options Polynomial Coefficients
t3 t2n tn2 n3 t2 tn n2 t n

KF AAA 3 3 2 4/3 1 2 1 5/3

IF

AAA 14/3 3/2 1 –1/6

1 B-A 4/3 2 5/3

2
B-A 1
C-A 8/3 1/2 –1/6

3
B-A 1 2
C-A 1 2 4/3 1 5/3

Table 6. Polynomial coefficients of scalar division operation.

Filter Factors Options Polynomial Coefficients
t3 t2n tn2 n3 t2 tn n2 t n

KF AAA 1/2 3/2

IF

AAA 1

1 B-A 1/2 3/2

2
B-A 1
C-A 1

3
B-A 1
C-A 1/2 3/2

5. Theoretical Analyses

In this section, the test of scalar operation time cost conducted on multiple hardware platforms is
discussed first to gain insight into the differences between platforms; then, the computational cost
difference between KF and IF is analyzed, considering different factor combinations, observation
numbers, and parameter numbers. Then, another test is carried out to validate our analysis on various
platforms; and finally, another comparison of the two filters is carried out from the perspective of
GNSS algorithms.

5.1. Test of Scalar Operation Time Cost

To measure the time cost of an individual scalar operation, a C++ program is designed. This
program can do a single arithmetic operation 2× 109 times and calculate the duration. This pseudo-code
has several features to ensure its effectiveness: (1) it operates only three variables when measuring
time cost, which can reduce memory access; (2) it performs the same set of operations (addition,
multiplication, division, and empty loop) 10 times to smooth the results; and (3) by introducing a test
on an empty loop, the code takes irrelevant operations into account, such as loop jump and system
time query.

Due to the complexity and variety of hardware platforms, the time cost test results from different
platforms are not always consistent with each other. This greatly limits the study of computational



Sensors 2019, 19, 3858 10 of 20

efficiency. To determine the diversity, a group of various X64 hardware platforms were selected to run
the test. Their basic information and test results are shown in Table 7.

Table 7. Tests of scalar operation time cost with different hardware platforms. CPU, central processing
unit; OS, operating system.
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The time costs of multiplication and division are divided by those of addition to obtain the
time–cost ratios in the form of 1 : a : b, where:

a =
dtM− dtEmpty
dtA− dtEmpty

(25)

b =
dtD− dtEmpty
dtA− dtEmpty

(26)

and the ratios are plotted in Figure 1. In Figure 1, the x and y axes are a and b. The circles with numbers
correspond to the test results in Table 7. The ranges of a and b are approximately [1, 2.2] and [40, 100],
respectively. Thus, a reference ratio point 1 : 1.6 : 70 is selected by minimizing the maximum differences
with the circles on a or b. The triangle represents this reference ratio point, and the assessment is
discussed in the next subsection. It shows that multiplication consumes about one to two times more
time than addition, and division consumes about 40–100 times more time than addition.Sensors 2019, 19, x FOR PEER REVIEW 11 of 20 
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5.2. Time Cost Analysis

Using the selected ratio set 1 : a0 : b0 = 1 : 1.6 : 70 to assemble linear combinations of the
polynomials from Table 4 through Table 6, computational cost polynomials for each factor combination
and both filters are generated, and the ratio tIF/tKF for parameter number and observation number
ranging from 1 to 1000 is calculated. The results are plotted in Figure 2. Please note that both the x and
y axes and the z axis (color) are in log10 scale. Arranging color in a linear scale compresses the ratios
when the IF is faster than the KF into the range of [0,1], but a log10 scale can solve this problem.
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Figure 2. Computational cost ratio tIF/tKF.

From the plot, we can make the following conclusions:

1. From all 18 panels, we can see that the properties of the observational model affect the relative
computational efficiency performance most obviously when n > t is satisfied, but the impacts
of different types of dynamic models or whether epoch solutions are required are not very
distinguishable. This can be explained by the following. (a) When n > t holds, R is larger than M
and F, and its inversion dominates the overall computational cost. (b) When n < t holds, although
the complexities of F−1 and I−1 depend on the corresponding filter characteristics and seem to
influence the computational cost, the inversion in the computation of M, which uses inefficient
LU decomposition and has invariant complexity to filter characteristics, dominates the overall
computational cost and suppresses the impact of the dynamic model and the requirement of
epoch solutions.

2. By comparing the panels of 3:A and 3:B with the panels of 3:C, we see that when the observational
model is fixed or when R is diagonal, the IF shows much less time cost than the KF when n > t.
Since the time cost differences are so large in such a situation, replacing the KF with the IF can
reduce the time duration of the filter update to be almost negligible, but when n < t is satisfied,
there is no big difference when using both filters.

3. From the panels of 3:C, we see that, for algorithms with a changeable, nondiagonal matrix R,
the IF has no computational efficiency advantage, but it will not be obviously slower than the
KF, either.

4. The decorrelation process in some studies, which is needed only when option C of factor 3 is
satisfied, generally can be achieved by an n× n LDLT decomposition on matrix R, and enables
option C of factor 3 to be handled as option B [16,18]. However, since the major computational
advantage of option B compared with C is the omission of the n× n LDLT decomposition on R,
the conclusions in those studies may not hold when R is nondiagonal. This can be proved by
comparing the panels of 3:B with the panels of 3:C.
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5.3. Applicability Assessment

Our analysis is still based on a given platform assumption that the time–cost ratio between
addition, multiplication, and division is 1 : 1.6 : 70; thus, it is important to determine the maximum
error dratio of replacing a real value from hardware platforms with the given result. In this subsection,
the assessment is carried out by (1) giving a scalar operation time–cost ratio set at 1 : a0 : b0 = 1 : 1.6 : 70;
(2) giving another ratio set 1 : a : b; (3) for 1 ≤ t ≤ 10000, 1 ≤ n ≤ 10000, and all 18 factor combinations,
searching for the largest relative error (dratio) as Equations (27)–(29); and (4) plotting the largest error
as a function of a and b. Figure 3 shows the result.

dratio =
log10(ratio(a0, b0)) − log10(ratio(a, b))

log10(ratio(a, b))
(27)

ratio(x, y) =
tIF(1, x, y)
tKF(1, x, y)

(28)

ttyp(x, y, z) = xPtyp,A,a1,a2,a3(n, t) + yPtyp,M,a1,a2,a3(n, t) + zPtyp,D,a1,a2,a3(n, t) (29)
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Figure 3. Maximum relative error of replacing the arbitrary ratio set 1 : a : b with 1 : a0 : b0 = 1 : 1.6 : 70.

Figure 3 shows that the ratio sets of all the platforms we tested previously can be replaced with
1 : a0 : b0 = 1 : 1.6 : 70, with maximum relative errors less than around 10%. Since efficiency analyses
are often biased by multiple factors that are hard to control and quantify, such as thermal dissipation,
and the results differ from time to time, such a relative error upper bound is acceptable and will not
affect the overall conclusions.

5.4. Time–Cost Ratio Prediction on General GNSS Positioning and Navigation Algorithms

To optimize the computational complexity of general GNSS positioning and navigation algorithms,
we can analyze the result from the last subsection to determine which is the fastest filter for a given
algorithm. Table 8 shows the compositions and numbers of parameters and observations in GNSS
algorithms, wherLU e s stands for satellite number. Table 9 shows the number of parameters, number
of observations, and factor combination of each considered GNSS algorithm, where the dynamic
feature of the position parameter is achieved by setting the proper process noise. GNSS systems in
use are the Global Positioning System (GPS), BeiDou Navigation Satellite System (BDS), Galileo, and
Global’naya Navigatsionnaya Sputnikovaya Sistema (GLONASS), and dual-frequency observations
are used in all algorithms. Figure 4 demonstrates the variations of computational cost ratio to number
of satellites, ranging from 3 to 45.
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Table 8. Compositions and numbers of parameters and observations in GNSS algorithms. ZTD, zenith troposphere delay. IFPPP: ionosphere-free precise point
positioning, SDGNSS: single-difference GNSS, RTK: real-time kinematic, UPPP uncombined precise point positioning.

Algorithm

Number of Parameters 1 Number of Observations

Position
Corrections

Velocity
Corrections

Attitude
Corrections 2

Wet
Component

of ZTD

Receiver
Clock Offset

Receiver
Clock Drift

Ionospheric
Delay 3 Ambiguity Gyroscope

Bias
Accelerometer

Bias
Pseudo
Range Doppler Carrier Phase Other Observations

IFPPP with static position
parameter 3 0 0 1 4 0 0 s 0 0 s 0 s 0

IFPPP with dynamic position
parameter 3 0 0 1 4 0 0 s 0 0 s 0 s 0

UPPP with static position
parameter 3 0 0 1 4 0 s 2 × s 0 0 2 × s 0 2 × s 0

UPPP with dynamic position
parameter 3 0 0 1 4 0 s 2 × s 0 0 2 × s 0 2 × s 0

Code-SDGNSS with CV 3 3 0 0 4 4 0 0 0 0 2 × s 2 × s 0 0
Code-DDGNSS with CV 3 3 0 0 0 0 0 0 0 0 2 × s − 8 2 × s − 8 0 0
RTK/INS loosely coupled 3 3 3 0 0 0 0 0 3 3 0 0 0 6 4

RTK/INS tightly coupled 3 3 3 0 0 0 0 2 × s − 8 3 3 2 × s − 8 2 × s − 8 2 × s − 8 0
RTK/INS tightly coupled with

all ambiguities fixed 3 3 3 0 0 0 0 0 3 3 2 × s − 8 2 × s − 8 2 × s − 8 0

Code-DDGNSS/INS tightly
coupled 3 3 3 0 0 0 0 0 3 3 2 × s − 8 2 × s − 8 0 0

IFPPP/INS tightly coupled 3 3 3 1 4 4 0 s 3 3 s s s 0

1 Tropospheric gradients are not included; 2 These parameters are elements of the misalignment angle rotation vector; 3 Pseudo-range and carrier-phase observations of two frequencies of
the same satellite share the same ionospheric delay parameter; 4 These observations include position and velocity error observations.



Sensors 2019, 19, 3858 14 of 20

Table 9. Number of parameters, number of observations, and factor combination of GNSS algorithms.
CV: constant velocity.

Algorithms Combinations Number of Parameters Number of
Observations

IFPPP with static position
parameter AAB s + 8 2× s

IFPPP with dynamic position
parameter BAB s + 8 2× s

UPPP with static position
parameter AAB 3× s + 8 4× s

UPPP with dynamic position
parameter BAB 3× s + 8 4× s

Code-SDGNSS with CV BAB 14 4× s

Code-DDGNSS with CV BAC 6 4× s− 16

RTK/INS loosely coupled BCC 15 6

RTK/INS tightly coupled BCC 2× s + 9 6× s− 24

RTK/INS tightly coupled with all
ambiguities fixed BCC 15 6× s− 24

Code-DDGNSS/INS tightly
coupled BCC 15 4× s− 16

IFPPP/INS tightly coupled BCC s + 24 3× s
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From the plot, we can see that:

1. The IF is slower than the KF or at the same level for algorithms with differencing between satellite
and IMU data. This is mostly because these algorithms use the nondiagonal variant matrix R.
For other algorithms, such as undifferenced PPP and code-SDGNSS, the IF is a good choice for
replacing the KF and optimizing the running time.

2. The RTK/INS loosely coupled algorithm has a fixed ratio, because raw GNSS observations are not
directly used.

3. Code-SDGNSS has an outstanding curve among all algorithms. This is because it does not use
carrier-phase observations and correlated observations.

4. The computational difference between whether or not epoch solutions are required is hardly
distinguishable in Figure 2; it is more obvious in Figure 4. Taking 20 satellites as an example, if the
filter outputs a solution at every epoch, IF can save 22% and 11% computational cost compared
with KF for IFPPP and UPPP, respectively. If the goal of data processing is the final position
solution of the fixed station, this computational reduction will be 33% and 24% for IFPPP and
UPPP, respectively.
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6. Case Study

To verify the consistency between the analyses so far and filter performance in real data-processing
scenarios, a case study based on the GNSS pseudo-range dynamic positioning algorithm with the
constant velocity (CV) model is conducted. Generally, undifferenced and double-differenced (DD)
algorithms are used in applications more than single-differenced (SD) algorithms. Compared with the
SD model, the DD model has fewer observations and parameters, and thus is more computationally
efficient using conventional KF; also, the DD model is important for integer ambiguity resolution.
Our test will emphasize the correlation between DD observations, and show that SD pseudo-range
positioning, which uses uncorrelated observations, is much more efficient when using the IF. Aside
from the SD model, this section also involves the CV model and Doppler observations. With proper
process noise, dynamic models such as CV and CA will at least not degrade the results of dynamic
positioning, and the closer the real dynamic characteristics to the given model, the better the solution.
Since the CV model introduces velocity parameters into the filter, information about velocity is
required to make the model really effective, and Doppler observations exactly suit the need. So, the
test uses Doppler observations along with pseudo-range observations. In this section, the GNSS
single-differenced/double-differenced dynamic positioning algorithm with the CV model is briefly
introduced; then, the details of the test are provided, and finally, the test result is studied.

6.1. GNSS Differencing Positioning Algorithm Using Pseudo-Range and Doppler Observations

The linearized observation equations of GNSS pseudo-range and Doppler observations are:
ρr1,s1 + vρ,r1,s1 =

x0
r1−xs1

R0
r1,s1

dxr1 +
y0

r1−ys1

R0
r1,s1

dyr1 +
z0

r1−zs1

R0
r1,s1

dzr1 + c · dtr1 − c · dts1 + R0
r1,s1 + ∆other

Dr1,s1 + vD,r1,s1 =
.
x0

r1−
.
xs1

V0
r1,s1

d
.
xr1 +

.
y0

r1−
.
ys1

V0
r1,s1

d
.
yr1 +

.
z0

r1−
.
zs1

V0
r1,s1

d
.
zr1 + c · d

.
tr1 − c · d

.
ts1 + V0

r1,s1 + ∆other
(30)

where ρ is pseudo-range observations; D is Doppler observations; v is observation error;
[xr1, yr1, zr1] and [xs1, ys1, zs1] are the positions of receiver r1 and satellite s1, respectively;[ .
xr1,

.
yr1,

.
zr1

]
and

[ .
xs1,

.
ys1,

.
zs1

]
are the velocity of receiver r1 and satellite s1, respectively; Rr1,s1 =√

(xr1 − xs1)
2 + (yr1 − ys1)

2 + (zr1 − zs1)
2 is the distance between the satellite and the receiver;

Vr1,s1 =

√( .
xr1 −

.
xs1

)2
+

( .
yr1 −

.
ys1

)2
+

( .
zr1 −

.
zs1

)2
is the relative velocity between the satellite and

the receiver; c is light speed in a vacuum; dtr1 and dts1 are the clock offsets of receiver r1 and satellite
s1, respectively; ∆

.
tr1 and ∆

.
ts1 are the clock drifts of receiver r1 and satellite s1, respectively; ∆other

denotes all other systematic errors not appearing in the equations; and (∗)0 indicates the approximate
value of (∗) and also where it is linearized.

For two receivers, r1 and r2, if r2 is fixed on the ground, we have the single-differenced (SD)
equations:

∆ρs1 + ∆vρ,s1 =
x0

r1−xs1

R0
r1,s1

∆dx +
y0

r1−ys1

R0
r1,s1

∆dy +
z0

r1−zs1

R0
r1,s1

∆dz + c · ∆dtr1,r2 + ∆R0
s1 + ∆other

∆Ds1 + ∆vD,s1 =
.
x0

r1−
.
xs1

V0
r1,s1

d
.
xr1 +

.
y0

r1−
.
ys1

V0
r1,s1

d
.
yr1 +

.
z0

r1−
.
zs1

V0
r1,s1

d
.
zr1 + c · ∆d

.
tr1,r2 + ∆V0

s1 + ∆other
(31)

where ∆ indicates differencing between receivers.
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Further, after differencing between a selected reference satellite and other satellites, we have the
double-differenced (DD) equations:

∇∆ρ+∇∆vρ =
(

x0
r1−xs1

R0
r1,s1
−

x0
r1−xs2

R0
r1,s2

)
∇∆dx +

(
y0

r1−ys1

R0
r1,s1
−

y0
r1−ys2

R0
r1,s2

)
∇∆dy

+

(
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R0
r1,s1
−

z0
r1−zs2

R0
r1,s2

)
∇∆dz +∇∆R0 + ∆other

∇∆D +∇∆vD =

(
.
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.
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V0
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.
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.
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V0
r1,s2

)
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V0
r1,s1
−

.
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.
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.
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−

.
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r1−
.
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)
∇d

.
zr1 +∇∆V0 + ∆other

(32)

where ∇ indicates differencing between satellites.
Generally, for one GNSS system, two receivers, and s satellites, using only pseudo-range and

Doppler observations, the SD model has 2× s differenced observations and the DD model has 2× (s− 1)
differenced observations. The DD model seems to have a little advantage in computational cost.
However, since such differencing will change matrix R, the computational cost difference between the
two models using IF needs further study. Assuming s = 3, we have matrix R of the undifferenced model
as Equation (33). Then matrix R of the SD and DD models is as Equations (34) and (35), respectively. It
can be seen that the DD model will transform R to nondiagonal.

R =



Rr1,s1

Rr1,s2

Rr1,s3

Rr2,s1

Rr2,s2

Rr2,s3


(33)

R =


Rr1,s1 + Rr2,s1

Rr1,s2 + Rr2,s2

Rr1,s3 + Rr2,s3

 (34)

R =

[
Rr1,s2 + Rr2,s2 + Rr1,s1 + Rr2,s1 Rr1,s1 + Rr2,s1

Rr1,s1 + Rr2,s1 Rr1,s3 + Rr2,s3 + Rr1,s1 + Rr2,s1

]
(35)

6.2. Test Settings

Our test used four GNSS datasets collected by two receivers. One receiver (named master) was
fixed on the ground, and the other (named rover) was mounted on a van. The major information about
the datasets is shown in Table 10.

The data-processing program was implemented in C++ language, with Eigen 3 as the linear
algebra library [27]. The hardware platform was No. 11 in Table 7. The CV dynamic model in use was
Equation (36), where t0 is the epoch interval. The SD model corresponds to factor combination BAB,
and the DD model corresponds to factor combination BAC. The filters contained six (three for position
and three for velocity) or 10 (the six just mentioned, plus two for clock offsets and two for clock drifts)
parameters when using the DD or SD model, respectively. Pseudo-range and Doppler observations
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were used. By using timing tools offered by the operating system, the running duration of each filter
update cycle was collected. 

xk+1
yk+1
zk+1
.
xk+1
.
yk+1.
zk+1


=

[
E3×3 to · E3×3

0 E3×3

]


xk
yk
zk
.
xk
.
yk.
zk


(36)

Table 10. Hardware information and test settings. IMU: inertial measurement unit.

Master
Antenna Type: Novatel GPS-704-X Typical Test Environment Urban

Receiver Type: Novatel ProPak6

City

Dataset 1: Huantai, Shandong

Rover

Antenna Type: Novatel GPS-704-X Dataset 2: Huantai, Shandong
Receiver Type: Novatel ProPak6 Dataset 3: Nanjing, Jiangsu

IMU Type: Novatel SPAN-LCI Dataset 4: Nanjing, Jiangsu

Rover Type: Van
Time and
Duration

Dataset 1: 2016.11.13 08:37–12:50

Typical Baseline Length 4 km Dataset 2: 2016.11.13 14:02–16:23

GNSS Used GPS/BDS Dataset 3: 2016.07.26 13:50–14:29

Sampling Rate (second) 0.2 Dataset 4: 2016.07.26 14:59–15:31

6.3. Test Results and Analysis

Figures 5–8 demonstrate the distributions of the time duration ratio tIF/tKF and the satellite
number in the filter update step of each epoch, where tIF and tKF are the total durations of filter update
procedures of the IF and KF, respectively. Figure 9 shows the total filter update time durations.
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Figure 5. Time–cost ratio and satellite number histogram of dataset 1.
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Figure 6. Time–cost ratio and satellite number histogram of dataset 2.
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From the plots above, it can be seen that:

1. From Figure 5 to Figure 9, when the SD model is used, the IF takes about only 0.375–0.5 times
the time duration of the KF, but when the DD model is used, this ratio is about 1.1. The average
number of satellites in each dataset ranged from 15 to 20. Using that range and the number
of parameters mentioned at the beginning of this section, we can read from Figure 4 that the
predicted time–cost ratio ranges from 0.3 to 0.5 for the SD model, and from 1 to 1.05 for the DD
model, which has good consistency with the test result.

2. From Figure 5 to Figure 8, the plots of time duration ratios and number of satellites have some
dependency. This can be seen most easily from dataset 3, which has the most concentrated
satellite number and time duration ratio distributions among all four.

3. From Figure 9, for the overall time duration, the KF runs obviously faster with the DD model
than with the SD model, which can be attributed to fewer parameters and observations. The
IF runs much faster with the SD model than with the DD model, which is consistent with our
analysis that the computational advantage of IF over KF comes mostly from the assumption that
matrix R is diagonal.
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7. Conclusions

In this paper, we studied the computational differences between KF and IF, considering
computational optimization specified by characteristics of different GNSS-related positioning and
navigation algorithms, and the practicality of the results on various hardware platforms.

The major contributions and conclusions of this work are as follows:

1. Algorithm-specified optimizations of the IF were abstracted from GNSS-related positioning and
navigation algorithms and tested theoretically. Among all three tested factors, the observation
model was shown to impact the computational complexity of the IF the most. Also, the dynamic
model and the solution requirement (whether epoch solutions are needed) were shown to
influence the complexity.

2. Performance differences between the KF and IF in specific GNSS-related scenarios were studied.
The IF did not perform better than the KF for algorithms with differencing between satellites or
when using IMU data, while it seems to be a good alternative to the KF with better computational
efficiency for GNSS-only algorithms with independent observations, especially those with fewer
parameters, e.g., code-SDGNSS.

3. Differences between hardware platforms were studied to quantify the maximum error of applying
our works on different platforms. Fifteen computers covering different CPU series from Intel
and Advanced Micro Devices (AMD), operating systems of different versions of Windows and
Linux, and desktop PCs, laptops, workstations, and servers were tested. The results show that
the maximum error of using our calculated computational cost ratios to approximate those of
other platforms is less than 10%, which guarantees the practicality of our conclusions on most
X64 platforms. However, other platforms such as X86 and ARM still need further study.

4. SD and DD GNSS algorithms with the constant velocity dynamic model were chosen as case
studies to study the performance differences between the KF and IF in real data-processing
scenarios. The results show that the SD-KF model is, on average, 22% slower than the DD-KF
model, which is consistent with it having slightly more parameters. However, the SD-IF model
not only runs much faster than the DD-IF model (an average of 49% faster) but it also runs much
faster than two KF models (average 55% and 45% faster than the SD-KF and DD-KF models,
respectively).
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