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Abstract

Genetic stock identification (GSI) using molecular markers is an important tool for management of migratory species. Here,
we tested a cost-effective alternative to individual genotyping, known as allelotyping, for identification of highly informative
SNPs for accurate genetic stock identification. We estimated allele frequencies of 2880 SNPs from DNA pools of 23 Atlantic
salmon populations using Illumina SNP-chip. We evaluated the performance of four common strategies (global FST, pairwise
FST, Delta and outlier approach) for selection of the most informative set of SNPs and tested their effectiveness for GSI
compared to random sets of SNP and microsatellite markers. For the majority of cases, SNPs selected using the outlier
approach performed best followed by pairwise FST and Delta methods. Overall, the selection procedure reduced the number
of SNPs required for accurate GSI by up to 53% compared with randomly chosen SNPs. However, GSI accuracy was more
affected by populations in the ascertainment group rather than the ranking method itself. We demonstrated for the first
time the compatibility of different large-scale SNP datasets by compiling the largest population genetic dataset for Atlantic
salmon to date. Finally, we showed an excellent performance of our top SNPs on an independent set of populations
covering the main European distribution range of Atlantic salmon. Taken together, we demonstrate how combination of
DNA pooling and SNP arrays can be applied for conservation and management of salmonids as well as other species.
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Introduction

The use of molecular markers for determination of an

individual’s origin is an important tool in the management and

conservation of domestic and wild species [1]. Individual genetic

assignment has also been used in forensic cases to detect illegal

trade and translocation of animals [2], illegal harvesting [1], and

source of origin of escaped domesticated animals [3], [4].

Assigning individuals to populations of origin, also known as

genetic stock identification (GSI), has been particularly important

management tool in salmonid fishes [5].

Due to their high variability and availability, microsatellites or

short tandem repeats (STR), have been the markers of choice for

GSI for nearly two decades [5], [6]. However, the numerous

advantages of single nucleotide polymorphism (SNP) markers such

as high abundance, processing efficiency, ease of scoring and

standardizing among laboratories make SNPs attractive for

individual genetic assignment studies [5]. On the other hand,

due to their bi-allelic nature, the power of single SNP loci is

limited, requiring a larger number of independent loci in

comparison to STRs. To overcome low average assignment power

of SNPs compared to multi-allelic loci, selecting a small subset of

highly informative loci from a large number of SNPs has been

proposed [1], [7], [8]. However, initial screening for highly

informative markers from among thousands of SNPs in multiple

populations is expensive.

To overcome the high cost of large-scale SNP genotyping,

determination of allele frequencies from pooled DNA, i.e.,

‘allelotyping’, has been suggested as a cost-effective alternative

for obtaining reliable allele frequency information for thousands of

SNPs [9], [10]. These studies have demonstrated high accuracy

and repeatability of DNA pooling approach, reducing costs up to

100 fold, depending on the number of samples [11]. Allelotyping

has also allowed efficient detection of genes associated with

numerous traits and diseases [12], [13]. Since allelotyping allows

detection of markers with large between-group allele frequency

differences [14], this approach can be applied to identify
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population-informative markers, i.e., a small set of powerful

markers that enables accurate genetic stock identification.

For the past decade GSI has been an invaluable tool for the

management and conservation of Atlantic salmon populations,

enabling estimation of relative contributions of various populations

in mixed stock fisheries [15] as well as identifying the population of

origin of individual fish [16]. For example, these methods are used

for detecting population specific migration patterns [17], estimat-

ing the proportion of farm escapees in salmon fisheries [4], [18]

and identification of non-native hatchery-bred individuals in wild

populations [19].

Here we tested the feasibility of combining DNA pooling and

SNP arrays for identification of highly informative SNPs for

accurate GSI in Atlantic salmon, focusing on individual assign-

ment. We estimated allele frequencies of 2880 SNPs from DNA

pools of 23 salmon populations using an Atlantic salmon Illumina

SNP-chip. We compared the performance of four common

approaches (global FST, pairwise FST, Delta and outlier) to identify

the most informative SNPs. We subsequently evaluated the effects

of specific population dataset and number of SNPs on individual

assignment. We compared the performance of the top SNPs

against 31 STR loci. We also tested the combined power of

existing STR panels with the most informative SNPs. Finally, we

compiled the largest population genetic dataset for Atlantic salmon

to date, both in terms of geographic coverage and the number of

samples, by merging our data with published data [9], [20] and

validated the performance of our top SNPs on an independent set

of populations covering the main European distribution range.

Materials and Methods

Samples & DNA Pooling
In total, 1424 individuals were collected from 23 Atlantic

salmon populations spawning in the rivers along the Norwegian

and Russian north-west and Baltic Sea coasts between 17uE and

57uE (Fig. 1). Salmon juveniles were collected by electrofishing,

sacrificed by decapitation and a tissue sample of each individual

stored immediately in 70% ethanol. The permits for sample

collection were issued by: 1) Federal Agency for Fisheries (Russia),

2) County Governor of Finnmark and Troms (Norway), 3) Center

for Economic Development, Transport and the Environment

(Finland), and 4) Ministry of Environment (Estonia). As the fish

were sacrificed immediately after sampling and no experiments

with living fish were performed the approval of ethics committee

was not required (EU directive 2010/63/EU, Russian Federation

government regulation 2009/921, Norwegian Animal Welfare Act

19/06/2009). This dataset included samples from 14 populations

studied by Ozerov et al. [9] (Table 1). Similar to our previous

work [9], equimolar (10 ng/ul) DNA extracts from 40 to 70

individuals were pooled to provide from three to six technical

replicates for each population sample (Table 1, Fig. 2). The pooled

DNA samples were analyzed in the Center for Integrative

Genetics (CIGENE, Norway) using an Illumina infinium assay

(Illumina, San Diego, CA, USA) and version 2 of the Atlantic

salmon SNP-chip [20], [21] carrying probes for 5568 SNP

markers. Among our study populations, 3928 of those SNP loci

were bi-allelic and were further analyzed in this study. The raw

SNP data were analyzed using Genotyping module v. 1.9.4

(Genome Studio software v. 2011.1, Illumina Inc.). In addition,

the same 23 populations used for DNA pool construction were

individually genotyped using 31 commonly applied [17], [22] STR

markers (Table 1, Table S1 in Appendix S1). The STR data were

analyzed and the genotypes were scored with Genemapper 4.1

software (Applied Biosystems).

Allele Frequency Estimation
Allele frequencies for 23 populations were estimated from DNA

pools comparing pool-specific value of theta with the reference

values of theta derived from 300 Atlantic salmon specimens

genotyped by CIGENE [9]. Briefly, the raw color signal data from

2 alternate alleles is converted into a theta value which ranges

from 0 to 1. In theory, an individual homozygous for an allele

would have a theta value close to 0 or 1, and a value of 0.5 would

indicate a heterozygous genotype. However, in reality a SNP’s

theta for genotype clusters (AA, AB and BB) vary from theoretical

values of 0, 0.5 and 1. Therefore, for estimation of allele frequency

in a pooled sample, the theta value for each SNP is compared to

the mean theta values for AA, AB and BB genotypes calculated by

genotyping of individual samples applying correction algorithm,

method 2 in [23].

Stringent quality control filters resulted in selection of 2880 bi-

allelic SNPs showing low error rates (variation of theta among

technical replicates #0.02) compared to information content [9].

Population-specific allele frequencies for each SNP were estimated

as a mean over 3–6 technical replicates (Appendix S2).

Population Relationships and within Population Diversity
In order to infer the genetic relationships among populations,

pairwise DA [24] distances and pairwise FST were calculated from

allele frequency estimates derived from allelotyping of 2880 SNPs

with the PowerMarker v3.25 software package [25]. The DA

genetic distances were used to construct neighbor-joining trees

with 1000 bootstrap replicates. The same approach was applied

for the 31 STR markers. Consensus dendrograms were construct-

ed separately for SNPs and STRs by using the program

SplitsTree4 v4.11.3 [26]. Similarly, PowerMarker v3.25 [25] was

used to estimate expected heterozygosity (HE) of populations over

all SNP and STR loci.

Selection of the most Informative SNPs
We evaluated four different methods for identification of the

most informative set of SNPs for GSI: Delta [27], global FST,

pairwise FST [28] and the outlier approach [29]. The estimate of

allele-frequency differential, i.e., Delta, is one of the straightforward

ways to evaluate the information content of a SNP. For a bi-allelic

marker, like SNP, the Delta value is estimated as |pAi - pAj|, where

pAi and pAj are the frequencies of allele A in the ith and jth

populations, respectively. Delta value for each SNP marker was

estimated as the mean across all pair-wise comparisons of 23

populations. Another common criterion for selecting the most

informative loci is the population differentiation measure FST: the

unbiased estimates of FST were first calculated over all populations

(global FST) and on a pairwise basis (pairwise FST). SNPs in the

upper quartile of distribution of divergence values were classified

as markers having ‘‘high level’’ of genetic differentiation (Fig. S1 in

Appendix S1). For the first three approaches (i.e., Delta, global FST

and pairwise FST), the top 300 unlinked SNPs (.1 cM distance

from each other) were selected for subsequent analyses.

For identification of SNPs deviating from the neutral expecta-

tions (outliers), a Bayesian likelihood method was used, imple-

mented in Bayescan 2.01 [29]. The method provides posterior

odds (PO) as the ratio of the posterior probabilities indicating how

much more likely the model with selection is compared to the

neutral model. Posterior odd values between 10 and 32

(log10(PO) = 1–1.5) are considered as strong evidence of selection,

between 32 and 100 (log10(PO) = 1.5–2) – as very strong, and PO

above 100 (log10(PO) .2) are viewed as decisive evidence of

selection [1], [29]. Depending on population dataset, 35–111

unlinked outliers (.1 cM distance from each other) potentially
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influenced by divergent selection [30] were identified and used for

subsequent analyses.

To estimate how the number of SNPs affect the performance of

GSI, subsets of the top 25, 50, 75, 100, 125, 150, 200, 250 and 300

SNP loci were selected for each of the four ranking approaches. In

addition, we also chose similarly-sized subsets of random SNPs (i.e.

25, 50, 75, 100, 125, 150, 200, 250 and 300 SNP loci). To evaluate

the effect of populations on the selection of top SNPs we tested the

overall assignment power of the most informative SNPs identified

using three different population datasets. The first dataset included

all 23 populations (dataset I); the second set consisted of 16

populations (1–16) excluding the easternmost and Baltic salmon

(dataset II); and finally, the third set consisted of six populations (1,

3, 5, 11, 13, 15) evenly distributed across the Norwegian and the

Western Barents seas coasts (dataset III; Table 1).

Performance of Top SNPs and STRs for GSI
As the methods applied for GSI require genotype data rather

than allele frequency estimates, the multilocus genotypes were

simulated from the allele frequency estimates assuming Hardy-

Weinberg and linkage equilibrium using bespoke software (see

Appendix S3 for the code). For each subset of SNP loci, 100

multilocus genotypes per population were simulated as a baseline

sample. Another 500 genotypes per population for the mixed stock

fishery sample were simulated for each SNP subset using ONCOR

[31]. A similar approach was applied to the STR data.

The assignment of individuals in a mixture to baseline

populations was performed by using ONCOR [31]. This

approach estimates a probability that an individual (of unknown

origin) belongs to a baseline population by assessing estimates of

the genotype frequencies in each baseline population [32] and an

estimate of the stock composition of the fishery [31]. In ONCOR,

the simulated mixed stock fishery sample was tested against

baseline data set along with the ‘‘Assign individuals to the baseline

population’’ option to assign each fish. All individuals were

assigned irrespective of precision. As the software used was

specifically developed for analyzing samples of individuals the

influence of the distribution of genotypes in the sample being

tested was examined using mixtures of fish with varying

compositions. It was found that at the levels of differentiation

observed here these compositions had only minor influence on the

assignment results (see Table S2 in Appendix S1). In addition to

SNPs, performance was evaluated for 31 STRs. We also evaluated

the performance of a 31-locus STR panel combined with different

numbers of SNPs (1, 2, 5, 10, 25, 50 and 100 top-ranked loci). We

estimated the number of STR or SNP alleles required to achieve

80%, 90% and 95% correct assignments for each ranking

approach and population dataset. We made these estimates by

fitting a non-linear regression model to the curves of correct

assignment percentage against cumulative number of markers. An

Figure 1. Map indicating sampling locations of the studied populations. See Table 1 for population names. European Atlantic salmon
samples [20] used for validation of top ranked SNPs are indicated as filled triangles.
doi:10.1371/journal.pone.0082434.g001
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exponential regression model (y = exp(a+b/x)) was found to best fit

the data.

Analysis of the Independent Dataset
To evaluate the usefulness of our approach, and the effective-

ness of our best SNPs for GSI in different sets of populations,

independent validation was performed on the Atlantic salmon

individuals genotyped by Bourret et al. [20], DRYAD entry

doi:10.5061/dryad.gm367. Specifically, we evaluated the perfor-

mance of our top-ranked loci (dataset II, pairwise FST selection

approach, 25 to 150 SNPs) for GSI on 26 European anadromous

populations ranging from Spain (Narcea) to Russia (Severnaja

Dvina). Compared to our data, only three populations studied by

Bourrret et al. [20] originated from the river systems included in

both datasets (Tana/Teno, Ponoi, Varzuga). Additionally, we

tested the reliability of the allelotyping approach by combining the

allele frequency estimates from DNA pools of 23 populations with

the 38-population dataset of Bourret et al. [20] which consisted of

individual genotypes.

Results

Genetic Diversity and Differentiation: SNPs vs. STRs
As expected, the genetic diversity of SNPs over all populations

was significantly lower compared to STRs (median SNPHe = 0.36

vs. median STRHe = 0.77, Mann-Whitney U-test, P,0.001). The

genetic diversity (HE) of populations over all SNP loci ranged from

0.23 to 0.35, whereas for STR data HE estimates were higher,

ranging from 0.64 to 0.74 (Table 1). However, genetic diversity

estimates within populations (HE) were significantly correlated

between the two marker types (Pearson’s r = 0.93, P,0.0001).

Pairwise population differentiation (FST) estimates over 2880 SNPs

varied from 0.01 (Titovka vs. Ura) to 0.30 (Narva vs. Pechora

Unya), whereas mean pairwise FST values over 31 STRs ranged

Table 1. Information about populations included in the datasets used for SNP selection and their geographic locations.

Population Coordinates NSNP NSTR HE SNPs HE STRs Population dataset

I II III

Norwegian Sea

1 Laukhelle* 69u13’N 17u50’E 42 (4) 42 0.35 0.73 x x x

2 Målselva 69u13’N 18u29’E 70 (3) 70 0.34 0.72 x x

3 Reisa 69u46’N 21u00’E 70 (3) 70 0.31 0.69 x x x

4 Alta* 69u58’N 23u22’E 70 (3) 65 0.32 0.69 x x

5 Repparfjordelv* 70u26’N 24u19’E 69 (4) 67 0.35 0.73 x x x

Western Barents Sea

6 Lakselva* 70u04’N 24u55’E 67 (5) 67 0.32 0.68 x x

7 Iesjoki (Teno/Tana) 69u26’N 24u59’E 70 (3) 70 0.32 0.71 x x

8 Karasjoki (Teno/Tana)* 69u23’N 25u09’E 70 (4) 63 0.33 0.70 x x

9 Inarijoki (Teno/Tana)* 69u00’N 25u46’E 67 (4) 67 0.33 0.70 x x

10 Yläköngäs (Teno/Tana) 69u57’N 26u34’E 58 (3) 58 0.32 0.71 x x x

11 Tana Bru (Teno/Tana)* 70u12’N 28u11’E 60 (2) 59 0.34 0.70 x x

12 Vestre Jakobselv* 70u06’N 29u19’E 70 (4) 59 0.33 0.72 x x

13 Neiden* 69u42’N 29u31’E 63 (4) 63 0.33 0.72 x x x

14 Titovka* 69u30’N 31u58’E 70 (4) 67 0.35 0.74 x x

15 Ura* 69u16’N 32u48’E 44 (3) 44 0.34 0.73 x x x

16 Kola* 68u52’N 33u01’E 70 (6) 70 0.33 0.74 x x

White Sea

17 Ponoi* 66u58’N 41u16’E 70 (4) 70 0.33 0.72 x

18 Varzuga* 66u12’N 36u57’E 70 (4) 70 0.31 0.70 x

19 Onega 63u54’N 38u00’E 70 (3) 70 0.25 0.65 x

20 Mezen Pizhma 65u53’N 44u08’E 48 (3) 48 0.28 0.68 x

Eastern Barents Sea

21 Pechora Pizhma 64u52’N 51u16’E 48 (3) 48 0.26 0.67 x

22 Pechora Unya 61u47’N 57u52’E 48 (3) 48 0.24 0.64 x

Baltic Sea

23 Narva 59u23’N 28u12’E 40 (3) 40 0.23 0.64 x

Total pooled (SNPs) 1424

Total individual (STRs) 1395

NSNP – number of individuals included in the pools and number of technical replicates (in brackets) for SNP-chip analysis, NSTR – number of samples for individual
genotyping using 31 STRs, HE – overall expected heterozygosity for SNPs and STRs.
*Data from Ozerov et al. [9].
doi:10.1371/journal.pone.0082434.t001
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from 0.02 to 0.20 for the same population pairs (Table S3 in

Appendix S1). Similar to genetic diversity, genetic divergence of

the populations (mean pairwise FST) was significantly correlated

between SNPs and STRs (Mantel’s rxy = 0.94, P,0.0001). Thus,

both marker classes revealed very similar population genetic

structuring as illustrated by neighbor-joining trees (Fig. 3).

However, the level of differentiation of SNPs over all populations

was significantly higher than that of STRs (median SNPFst = 0.077

vs. median STRFst = 0.055, Mann-Whitney U-test, P,0.001).

Identification of the most Informative SNPs
As expected, only a small proportion of SNPs (out of 2880)

exhibited high levels of genetic differentiation estimated using

three measures (global FST, pairwise FST and Delta, Appendix S4,

Fig. S1 in Appendix S1). The outlier test for population datasets I,

II and III identified putative signs of divergent selection (log10(PO)

.1, q ,0.05) at 141, 120 and 41 SNPs, respectively (Fig. 4).

However, as several SNPs formed tightly linked groups (,1 cM), a

total of 111, 95 and 35 unlinked outlier SNPs were retained for

subsequent analysis for population datasets I, II and III,

respectively.

The comparison of allele frequency distributions of 100 top

SNPs ranked using Delta or pairwise FST showed that these two

approaches identified loci with a wide range of allele frequencies

among populations (Fig. 5). A similar pattern was evident for

outliers, with a slightly higher proportion of loci (42%) showing

marginal allele frequency distributions (close to 0 or 1). In contrast,

the allele frequencies of a majority of the SNPs (69%) ranked using

global FST measure were biased towards 0 or 1 with relatively few

loci exhibiting intermediate allele frequencies.

Despite the differences described above, there was a substantial

amount of overlap between the top SNPs among all ranking

approaches (Fig. 6). For example, 59 to 68 of SNPs out of the top

100 were identified using paiwise FST and Delta in all three

datasets. Similarly, large proportions of SNPs were shared between

global FST and pairwise FST approach (51%–71%). In addition, a

substantial proportion of outliers (up to 58%) was also ranked as

top SNPs by the three other approaches (Fig. 6A).

In contrast to SNP ranking approaches, populations in the

ascertainment group had a much larger effect on ranking of the

most informative SNPs. For example, a relatively large proportion

of SNPs (up to 80%) ranked by global FST, pairwise FST and Delta

was identified only in a single dataset (Fig. 6B) and a relatively

large proportion of outliers was unique for each dataset (up to

50%).

Performance of Top-ranked SNPs for GSI
Compared to randomly chosen sets of SNPs, the overall

assignment success was considerably higher for top-ranked loci

selected using four different approaches (Fig. 7). Of these, the

outlier method identified the best performing loci, while loci

selected using the global FST approach resulted in the lowest

overall assignment accuracy. However, when the number of SNP

markers reached 100, the overall assignment success for loci

identified by global FST, pairwise FST and Delta was rather similar,

but still lower than for loci identified by the outlier method (Fig. 7,

Table S4 in Appendix S1). In order to achieve 80%, 90% and

95% correct assignment for 23 Atlantic salmon populations, the

outlier approach required 15–20% fewer loci than the three other

approaches (Table 2). For example, 95% overall correct assign-

ment was achieved using 94 outlier SNPs identified using

population dataset II, whereas reaching the same level of

assignment power with SNPs ranked by the three other

approaches required 118 to 125 SNPs (Table 2).

Although the overall GSI success was high, the number of SNPs

required to provide similar accuracy varied in individual

populations. For example, for Western Barents and Norwegian

Sea populations, approximately 100–150 SNPs were necessary to

attain .90% population assignment success, whereas 25–50 top

SNPs were enough to attain similar level of correct assignment in

the Eastern Barents, White and Baltic sea populations (Table S5 in

Appendix S1). However, for markers ranked using population

datasets II and III, i.e., when the most genetically distinct

easternmost and Baltic populations were removed, the assignment

success of .90% for Western Barents and Norwegian Sea salmon

was achieved using 75–100 top-ranked SNPs (Table S5 in

Appendix S1), except for a group of three populations with the

lowest genetic divergence (pairwise FST over 2880 SNPs = 0.016–

0.023; Table S3 in Appendix S1).

When comparing the assignment power for a given number of

independent alleles between two marker classes, the performance

of STRs was lower than that of random and top ranked SNPs. For

example, an 80% overall assignment success was attained with 219

independent alleles for STRs (18 loci) while 96 and 47

independent alleles were sufficient to reach similar accuracy for

random and top-ranked SNPs, respectively (Table 2, Fig. 7). On

the other hand, when the assignment power was estimated for a

given number of loci, STRs performed better than SNPs as less

multi-allelic markers were needed to reach given level of

assignment accuracy compared to bi-allelic markers. When

evaluating the assignment success of individual populations, 18

STRs (219 independent alleles) were sufficient to assign salmon

populations from the Baltic and the White and Eastern Barents

seas with .99% accuracy, whereas all 31 STR markers (536

independent alleles) were required to achieve .90% accuracy for

the Western Barents and Norwegian Sea populations. A combi-

nation of 31 STR markers and 25 top-ranked SNPs increased the

overall assignment accuracy from 97% to 99% (Fig. S2 in

Appendix S1).

Figure 2. Workflow diagram indicating the main steps of the
analyses.
doi:10.1371/journal.pone.0082434.g002
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Validation of Top-ranked SNP on the Independent
Dataset

The set of our top 100 SNPs identified in dataset II using the

pairwise FST selection approach allowed .98% correct assign-

ment in 13 out 26 European anadromous Atlantic salmon

populations (Table S6 in Appendix S1). The lowest assignment

accuracy was observed in British, Scottish and Irish populations

(66%–87%) and was in line with the lower level of genetic

differentiation among salmon populations in this area [33]. Similar

to our North-European dataset, the number of top SNPs required

to achieve 90% and 95% overall correct assignment for 26

European populations was considerably lower compared to

randomly chosen SNPs (Table S7 in Appendix S1). However,

the assignment accuracy of both top-ranked and random markers

reached similar high levels (98%) when over 150 SNPs were used

(Table S7 in Appendix S1).

The constructed neighbor-joining tree consisting of 2763 SNPs

from 61 population data derived by allelotyping and individual

genotyping demonstrated the compatibility of the two approaches

(Fig. 8): the genetic relationships of the populations were consistent

with the results of Bourret et al. [20]. However, the combined

dataset further revealed new insights into genetic relationships

among populations such as separation between northern and

southern Norwegian populations.

Discussion

This is the first study that combines high-throughput SNP

arrays and DNA pooling (i.e., allelotyping) to identify the most

powerful sets of SNPs for genetic stock identification. We

demonstrate how SNP arrays and DNA pooling enable a fast

and cost-effective, yet reliable method for identifying the most

informative markers among thousands of SNPs from large number

of Atlantic salmon populations. In line with the previous studies of

Figure 3. Genetic relationships among 23 Atlantic salmon populations in northern Europe. Neighbour-joining dendrogram is based on
Nei’s DA genetic distances estimated using (A) 2880 SNPs and (B) 31 STR markers. Distinct population groups are colored. The branches with
bootstrap value support ,80% are drawn as dashed.
doi:10.1371/journal.pone.0082434.g003
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human populations [14], the results are most encouraging for

projects involving high-sample throughput and low- to medium-

multiplex SNP genotyping as a much smaller number of SNPs is

needed for accurate genetic stock identification compared to

randomly chosen SNPs. Moreover, we demonstrate the applica-

bility of our approach on a data set compiled from two separate

SNP genotyping projects and illustrate transferability of the data

across studies without the need of laborious standardization in

comparison with e.g. microsatellites [22].

Reliability of DNA Pooling & Allelotyping
Recently, we showed that allelotyping of DNA pools is an

effective method for reliable allele frequency estimation (individual

genotyping vs. allelotyping, Pearson’s r = 0.992) [9]. To further

validate the robustness of allelotyping, we compared our allele

frequency estimates derived from allelotyping to allele frequencies

obtained from individual genotyping by Bourret et al. [20] for

three different river systems (Teno/Tana, Ponoi and Varzuga).

Despite different individual samples, sampling locations and

sampling years we observed very high correlation between the

allele frequency estimates (Pearson’s r = 0.952–0.971) indicating the

reliability of allelotyping approach. Moreover, the costs of analysis

of DNA pools was about 15 times lower compared to the analysis

of the same number of samples individually, i.e. the price for

genome-wide analysis of DNA pools is at least an order of

magnitude lower than individual genotyping [11–14].

This study also allowed a direct comparison of various

population genetic parameters derived from allelotyping and

genotyping of SNPs and STRs, respectively. We observed highly

significant correlation between expected heterozygosity estimates

for the two marker types. Similarly, the estimates of pairwise

genetic differentiation demonstrated highly correlated patterns for

SNP and STR markers. These results are in agreement with the

earlier findings showing high concordance between different

marker types [5], [6], [34], [35]. Likewise, the genetic relationships

among populations inferred by SNPs and STRs were similar with

high bootstrap clustering support for both marker classes.

However, in contrast to other studies [20], [36], we observed a

fine separation of the Western Barents salmon into two groups

(Teno and Western Barents/Norwegian Sea). Furthermore, with a

combined dataset consisting of 61 populations we were able to

confirm the genetic relationships among populations over the

whole distribution range as well as to reveal novel patterns such as

clear separation between northern and southern Norwegian

populations. Taken together, these results not only demonstrate

the reliability of DNA pooling and allelotyping approach, but also

illustrate one of the important advantages of SNPs – good

transferability of the SNP data between independent studies. In

contrast to STRs, which usually require laborious calibration and

standardization of alleles [22], [37], this facilitates efficient

compilation of large SNP datasets from independent studies

creating further synergistic effects. However, SNP allele label

switching may turn out problematic when SNP data sets from

different genotyping platforms are compared.

Detection and Performance of the most Informative SNPs
The evaluation of four SNP selection approaches demonstrated

that all of them substantially improve the accuracy of GSI

compared to randomly chosen SNPs. In most cases, SNPs selected

using the outlier approach showed the highest assignment

accuracy, whereas the global FST approach usually resulted in

lower correct assignment rates. On the other hand, the differences

in individual assignment success were evident only when the

number of SNPs was below 100 while all SNP selection

approaches enabled accurate GSI when more than 100 SNPs

were used. These results are consistent with the earlier results

demonstrating superior performance of outlier loci over neutral

loci for genetic stock identification [30], [38], [39]. Similarly, the

outperformance of pairwise SNP selection methods over the global

FST approach has been shown in both humans [40] and cattle [8].

This is because the global FST approach tends to select for markers

that are specific for the most distinct population or group of

populations while the pairwise approaches allow selection of

markers with high heterozygosity and more evenly distributed

allele frequencies among populations, being thus more informative

for individual assignment [8], [40], [41].

There was also a substantial amount of overlap between the top

loci among all ranking approaches. For example, the overlap of

Figure 4. Identification of outlier loci using a model-based
genome scan approach. (A) population dataset I; (B) population
dataset II; (C) population dataset III. Each SNP locus (filled circle) is
represented by the level of genetic differentiation (FST) and log10(PO) of
being under selection. Outlier loci potentially under divergent selection
are inside dashed rectangle.
doi:10.1371/journal.pone.0082434.g004
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top 100 SNPs selected using global FST, pairwise FST or Delta

ranged from 51 to 71%. Moreover, a large proportion (up to 58%)

of the top 100 SNPs identified using global FST, pairwise FST or

Delta showed signs of divergent selection. This is consistent with

the results of Lao et al. [7] showing that the five most informative

SNPs dividing human populations from different continents

Figure 5. Distribution of allele frequencies for the 100 top-ranked SNPs. Allele frequencies of the 100 top-ranked SNPs in 23 populations
identified using four selection approaches: (A) global FST; (B) pairwise FST; (C) Delta, and (D) outlier. Horizontal line, grey rectangle, whiskers, open
circles, and stars indicate median, 25th and 75th quartiles, non-outlier range, outliers and extreme outliers, respectively.
doi:10.1371/journal.pone.0082434.g005

Figure 6. SNP overlap among different ranking approaches and population datasets. (A) Venn diagrams showing the extent of overlap
among four approaches (global FST, pairwise FST, Delta and outlier) for three population datasets. (B) Venn diagrams showing the extent of overlap
among three population datasets for four ranking approaches. For all SNP ranking methods the top 100 SNPs are presented, except for the outlier
approach where 95 and 35 SNPs were identified as being under selection for dataset II and III, respectively.
doi:10.1371/journal.pone.0082434.g006
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exhibit the signs of local positive selection. Thus, our results

indicate that despite the high assignment power of non-neutral

markers, more simple pairwise methods are nearly as efficient in

ranking the most informative loci for GSI.

On the other hand, our results indicate that the population

dataset might play a larger role for identification of the most

informative markers than the SNP selection approach [42], [43].

For example, the most informative set of loci selected using one set

of human populations have been shown to lack power when

applied to another set of populations [7], [42]. Indeed, our analysis

revealed that the assignment accuracy was more affected by

populations in the ascertainment group used for ranking SNPs

rather than ranking method itself. While the SNPs ranked using

population dataset I allowed quick discrimination of the popula-

tions at the large geographical scale, the markers ranked using

population datasets II and III performed better at regional level.

This can be explained by higher assignment success of the

individuals from the Western Barents Sea and Norwegian Sea

populations. Indeed, the geographically remote Baltic population

and salmon of the White and Eastern Barents seas have very

distinct genetic profiles that allow their discrimination using as few

as 25–50 randomly chosen SNPs. On the other hand, genetic

structure of salmon populations of the Western Barents and

Norwegian seas is more subtle [18], [36] and GSI of these

populations requires a higher number of markers. Thus, the

exclusion of the easternmost salmon populations enabled detection

of loci informative for the Western Barents Sea and Norwegian

Sea salmon increasing the assignment accuracy of these popula-

tions. Given the results of our and previous [7] studies, pairwise-

based methods for ranking the most informative markers for GSI

are more robust to the ascertainment bias and thus are more

applicable with extended datasets.

It must be recognized that our approach to perform power

analyses of the top ranked SNPs for genetic stock identification

yields overly optimistic accuracies, see [44]. Our accuracy levels

are upwardly biased for two reasons: i) we simulated genotypes

Figure 7. Overall assignment success for SNPs and STRs in dataset I. SNPs were ranked using i) global FST (blue), ii) pairwise FST (brown), iii)
Delta (green) and iv) outlier approach (red). Overall assignment success of STRs and randomly chosen SNPs are shown as gray and black lines,
respectively. The bars are representing standard deviation of assignment success among all populations for each ranking approach. The standard
deviation bars were arranged for visual purposes to avoid overlapping.
doi:10.1371/journal.pone.0082434.g007

Table 2. Estimated number of independent alleles of SNPs and STRs required to achieve 80%, 90%, and 95% overall correct
assignment in 23 Atlantic salmon populations for each ranking method.

Population dataset used for SNP ranking

I (23) II (16) III (6)

Global
FST

Pairwise
FST Delta Outlier

Global
FST

Pairwise
FST Delta Outlier

Global
FST

Pairwise
FST Delta Outlier

Random
SNPs STRs*

80% 76 68 59 50 57 50 53 47 62 53 58 n/a 96 219 (,18)

90% 113 104 100 81 90 82 87 71 98 87 95 n/a 149 336 (,24)

95% 167 153 147 114 124 118 125 94 133 123 136 n/a 198 460 (,28)

*Estimated number of STR loci is indicated in parentheses.
doi:10.1371/journal.pone.0082434.t002
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from estimated allele frequencies assuming the loci are indepen-

dent of each other, and ii) we used the same set of samples to both

select and evaluate the usefulness of the loci. To assure the

accuracy of identified top SNPs for GSI we performed partial

cross-validation of the loci on the completely independent dataset

as has been proposed earlier [44]. Our 100 top ranked SNPs

performed well for GSI among European anadromous Atlantic

salmon, allowing .95% assignment success in 17 out of 26

populations. In comparison, 100 randomly chosen SNPs allowed

the accuracy of .95% in 12 of 26 populations. Although the

overall assignment accuracy of 100 top ranked SNPs (92%) was

relatively similar to that of 100 randomly chosen SNPs (89%), the

increase of GSI accuracy for particular populations (e.g. British

and Irish) was up to 19% when using top ranked SNPs. Similar to

our dataset, the assignment accuracy of both top-ranked and

random markers reached comparable high levels when the

number of SNPs exceeded 150 (95% and 96% for randomly

chosen and top-ranked SNPs, respectively). These results indicate

that our top-ranked loci can be efficiently applied for GSI in the

whole European distribution range of Atlantic salmon.

Assignment Power: SNPs vs. STRs
There are several ways to compare the effectiveness of different

genetic marker classes for individual assignment: locus by locus,

total number of alleles, and cost per information unit have been

commonly applied [6], [45]. In this study 25 STR loci (374

independent alleles) provided similar GSI accuracy as , 100 top-

ranked SNP loci (100 independent alleles). This is consistent with

recent comparisons between these two marker classes in chum

(Onchoryncus keta) [45], sockeye (Oncorhynchus nerka) [46] and Atlantic

salmon [6], demonstrating that more STR alleles are needed to

achieve similar levels of assignment accuracy compared to the

most informative SNPs identified from larger panels of markers.

The combination of 31 STR markers and 25 top-ranked SNPs

increased the overall assignment success from 97% to 99%,

representing a significant improvement of GSI by the reduction of

the assignment error from 3% to 1%. Moreover, for some

individual populations from the Western Barents and Norwegian

seas, the combination of 31 STRs and 25 top-ranked SNPs

allowed for an increase of assignment success up to 7%. This is in

agreement with the results from studies on Chinook salmon

(Onchoryncus tschawytscha), where a combination of 13 STRs and 92

SNPs provided a considerable increase of overall assignment

success (from 76% to 84%) compared to application of both

marker types separately [5]. Thus, addition of highly informative

SNPs to already available STR panels may considerably increase

the power of GSI even when the overall assignment accuracy of

STRs is already high.

Conclusions

This is the first study that demonstrates how the combination of

SNP arrays and DNA pooling enables fast and cost-effective, yet

reliable identification of the most informative markers among

thousands of SNPs from large number of populations. The outlier

approach was shown to be the most effective in ranking highly

informative SNPs for GSI compared to three other methods

(global FST, pairwise FST and Delta). Compared to randomly

chosen SNPs, the ranking procedures reduced the number of

SNPs required for accurate GSI by up to 53%. However, GSI

accuracy was more affected by populations in the ascertainment

group rather than ranking method itself. We also demonstrated

the usefulness of our top-SNPs on the independent set of

Figure 8. Genetic relationships among 61 Atlantic salmon populations throughout the species distribution range. Neighbour-joining
dendrogram is based on Nei’s DA genetic distances over 2763 SNPs. Landlocked populations are indicated with ‘‘LL’’. The branches with bootstrap
value support ,80% are represented as dashed lines.
doi:10.1371/journal.pone.0082434.g008
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populations covering nearly the whole European distribution

range of Atlantic salmon. Taken together, this cost-effective

approach described here for detection of the most informative

SNPs for genetic stock identification can be readily adapted and

applied for conservation and management of salmonids, as well as

of other species.
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