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Disability in multiple sclerosis is generally classified by sensory andmotor symptoms, yet cognitive impairment has been identified as a
frequent manifestation already in the early disease stages. Imaging- and more recently blood-based biomarkers have become increas-
ingly important for understanding cognitive decline associated with multiple sclerosis. Thus, we sought to determine the prognostic
utility of serum neurofilament light chain levels alone and in combination withMRImarkers by examining their ability to predict cog-
nitive impairment in early multiple sclerosis. A comprehensive and detailed assessment of 152 early multiple sclerosis patients
(Expanded Disability Status Scale: 1.3+1.2, mean age: 33.0+10.0 years) was performed, which included serum neurofilament light
chain measurement, MRI markers (i.e. T2-hyperintense lesion volume and grey matter volume) acquisition and completion of a set of
cognitive tests (Symbol Digits Modalities Test, Paced Auditory Serial Addition Test, Verbal Learning and Memory Test) and mood
questionnaires (Hospital Anxiety and Depression scale, Fatigue Scale for Motor and Cognitive Functions). Support vector regression,
a branch of unsupervisedmachine learning,was applied to test serumneurofilament light chain and combinationmodels of biomarkers
for the prediction of neuropsychological test performance. The support vector regression results were validated in a replication cohort
of 101 early multiple sclerosis patients (Expanded Disability Status Scale: 1.1+ 1.2, mean age: 34.4+10.6 years). Higher serum neu-
rofilament light chain levels were associated with worse Symbol Digits Modalities Test scores after adjusting for age, sex Expanded
Disability Status Scale, disease duration and disease-modifying therapy (B=−0.561; SE=0.192; P=0.004; 95% CI=−0.940 to
−0.182). Besides this association, serum neurofilament light chain levels were not linked to any other cognitive or mood measures
(all P-values. 0.05). The tripartite combination of serum neurofilament light chain levels, lesion volume and grey matter volume
showed a cross-validated accuracy of 88.7% (90.8% in the replication cohort) in predicting Symbol Digits Modalities Test perform-
ance in the support vector regression approach, and outperformed each single biomarker (accuracy range: 68.6–75.6% and 68.9–
77.8% in the replication cohort), as well as the dual biomarker combinations (accuracy range: 71.8–82.3% and 72.6–85.6% in the
replication cohort). Taken together, early neuro-axonal loss reflects worse information processing speed, the key deficit underlying
cognitive dysfunction inmultiple sclerosis. Our findings demonstrate that combining blood and imagingmeasures improves the accur-
acy of predicting cognitive impairment, highlighting the clinical utility of cross-modal biomarkers in multiple sclerosis.
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Graphical Abstract

Introduction
Disability in multiple sclerosis is generally classified by sen-
sory and motor symptoms, yet cognitive impairment has
been identified as a frequent manifestation already in the
early disease stages.1,2 The most commonly affected cogni-
tive domains include information processing speed, atten-
tion, and episodic memory, as well as impairments in
executive function and verbal fluency.3,4 Deficits in these
core domains have a detrimental influence on working abil-
ity and quality of life.5,6 Thus, monitoring cognitive decline
in multiple sclerosis is crucial for individualized treatment
decisions and development of new therapeutic paradigms.

Neuropsychological evaluation utilizes different test bat-
teries to examine several cognitive domains and is thus
able to give an in-depth characterization of patients’ cogni-
tive performance. However, neuropsychological examina-
tions are laborious, often limited to large facilities and thus
not generally available in the clinical routine. Therefore, it
is necessary to identify surrogate markers, which can be ob-
tained by widely available methods and additionally serve as
a biomarker of early cognitive impairment in multiple scler-
osis patients. However, a substantial gap still exists between
candidate biomarkers, validated biomarkers and clinically
useful biomarkers in multiple sclerosis.7

MRI provides the most established biomarker for cogni-
tive deficits in multiple sclerosis. In particular, conventional

structural MRI metrics, like T2-hyperintense lesion volume
(LV) and grey matter volume (GMV), have been proven to
be reproducible and well-validated in predicting cognitive
performance in multiple sclerosis.8–11

Besides these imaging markers with good spatial reso-
lution, serum neurofilament light chain (sNfL) is an emer-
ging fluid biomarker of neuro-axonal injury in many
neurological conditions.12–14 In multiple sclerosis, sNfL le-
vels are elevated during clinical relapses and correlate with
an increase in T2-hyperintensive, as well as new
gadolinium-enhancing lesions and brain atrophy.15–20

Thus, sNfL represents a marker for neuro-axonal damage
and predicts disability progression.14,15 Nonetheless, little
is known about the association of sNfL levels and cognitive
decline in multiple sclerosis. The few recent studies have de-
monstrated mixed and inconsistent results depending on the
investigated cohort. However, these studies may have been
limited by their statistical power due to rather small sample
sizes.21–24

Even though sNfL and MRI metrics have proven value in
multiple sclerosis, there still is an urgent clinical need to be
able to predict more accurately whether a patient will pro-
gress based on baseline measurements. Models combining
blood- and imaging-based biomarkers that represent mul-
tiple aspects of multiple sclerosis pathology with key
individual-level factors may improve prediction of cognitive
performance.25–27 This is particularly true for complex and
heterogeneous neurological disorders such as multiple
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sclerosis, in which a single marker might not be effective and
only combinations of biomarkers can create signatures that
are useful for improving the individual disease profiles.7

Hence, we here aimed to determine the utility of sNfL levels
alone and in combination with MRI markers by examining
their ability to predict cognitive impairment in early multiple
sclerosis.

Methods
Participants
In total, 152 multiple sclerosis patients underwent MRI
scans (details listed in the following context) and sNfL meas-
urement at the outpatient clinic of the Department of
Neurology, at the University Medical Center in Mainz
(Germany) (Table 1). Of the 152 patients included, 34 had
clinically isolated syndrome (CIS) with no dissemination in
time, whereas the remaining 118 had relapsing–remitting
multiple sclerosis (RRMS) as diagnosed according to the
2017 revised McDonald diagnostic criteria.28 The mean dis-
ease duration of all patients at time point of the first sNfL
measurement (study entry) was 1.4+2.2 years.
Neuropsychological assessment (see details in the following
context) took place within a mean of 9.3+ 12.5 months
after study inclusion. Each patient was clinically assessed
by an experienced neurologist and their Expanded
Disability Status Scale (EDSS) score was determined at study
entry, along with demographic data. To confirm the reliabil-
ity of the obtained results, we replicated the analyses by in-
cluding an independent cohort of 101 early multiple
sclerosis patients from our outpatient clinic (Table 1). Of
the 101 patients included, 15 had CIS, whereas the remain-
ing 86 had RRMS as diagnosed according to the 2017 re-
vised McDonald diagnostic criteria.28 The mean disease

duration of all patients until the first sNfL measurement
was 1.0+ 2.7 years. EDSS was determined at study entry;
neuropsychological test assessment [in these patients, only
the Symbol Digits Modalities Test (SDMT)] was performed
within a mean of 2.8+ 5.3 months after study inclusion.
All cognitive evaluations were performed at least 30 days
after a high-dose corticosteroid treatment, and no patient ex-
perienced a relapse within 30 days of cognitive assessment.

Standard protocol approvals,
registrations and patient consents
The study was approved by the local ethics committee (num-
bers: 2018–13622, 837.019.10); written informed consent
was obtained from all patients.

Clinical, cognitive and mood
assessment
Cognitive performance was measured with the German
Versions (if necessary) of the three neuropsychological in-
struments applied in multiple sclerosis studies: SDMT,
Paced Auditory Serial Addition (PASAT) and the Verbal
Learning and Memory Test (VLMT).29–31 For each subject,
a z-score was calculated from normalized and normative va-
lues existing for each test, resulting in three test-specific
z-scores per patient (SDMT score, VLMT score and
PASAT score), corrected for age, sex and education accord-
ing to normative values standardized on the basis of healthy
individuals. No patient included in our cohorts had previ-
ously performed these cognitive assessment tests. In add-
ition, patients were clinically assessed for affective
parameters by means of the Hospital Anxiety and
Depression Scale—which includes separate anxiety and de-
pression subscales (HADS-A and HADS-D). Fatigue was

Table 1 Demographics and clinical characteristics

Demographics and clinical characteristics Study cohort (n= 152) Replication cohort (n= 101) P-value 95% CI

Age: y, mean+ SD (median) 33.0+ 10.0 (31) 34.4+ 10.6 (34) 0.267a −1.26 to 4.05
Sex, female: n (%) 107 (70.4) 70 (69.3) 0.853b —

Disease course at diagnosis
RRMS (%) 118 (77.6) 86 (85.1) 0.148b —

CIS (%) 34 (22.4) 15 (14.9)
Age at onset: y, mean,+ SD(median; 25th; 75th percentile) 30.9+ 9.9 (29; 23; 39) 31.64+ 9.84 (29; 24; 38) 0.673a −1.95 to 3.01
Age at diagnosis: y, mean,+ SD
(median; 25th; 75th percentile)

31.61+ 10.0; (30; 24; 40) 33.42+ 10.7 (32; 25; 39) 0.233a −1.01 to 4.15

Disease duration: y, mean,+ SD
(median; 25th; 75th percentile)

1.4+ 2.2; (0.2; 0; 1.5) 1.0+ 2.7 (0; 0; 1) 0.265a −1.09 to 0.30

EDSS: mean+ SD
(median; 25th; 75th percentile)

1.3+ 1.2 (1; 0; 2) 1.1+ 1.2 (1; 0; 2) 0.405a −0.44 to 0.18

Treatment at time of MRI
None (%) 43 (28.3) 33 (32.7) 0.456b —

DMT (%) 109 (71.7) 68 (67.3)
sNfL pg/ml: median
(25th; 75th percentile)

9.6 (5.3; 16.8) 10.3 (6.8; 15.7) 0.633a −0.08 to 0.13

aTwo-sided student’s t-test.
bχ2 test.
95% CI= 95% confidence interval; sNfL= serum neurofilament light chain; RRMS= remitting–relapsing multiple sclerosis; CIS= clinical isolated syndrome; SD= standard deviation;
EDSS= expanded disability scale score; DMT= disease-modifying therapy.
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measured with the common and established Fatigue Scale for
Motor and Cognitive Functions (FSMCs)32 used in the diag-
nostic set-up and in the regular clinical follow-up. The FSMC
is a patient self-reported questionnaire, which consists of 20
questions and evaluates themotor and cognitive components
of fatigue. Currently, the FSMC tool is recommended for a
multi-dimensional approach to reliably assess fatigue in pa-
tients with multiple sclerosis.33

Serum neurofilament measurements
Serum samples were collected by attending physicians at the
University Medical Center Mainz. Samples were processed at
room temperature within 2 h: Serum samples were spun at
2000× g at room temperature for 10 min, aliquoted in poly-
propylene tubes and stored at −80°C. sNfL concentrations
were measured as previously described.13 In brief, duplicates
were measured by single-molecule array on a SiMoA HD-1
(Quanterix, USA) according to themanufacturer’s instructions
using theNF-LightAdvantageKit (Quanterix,USA).Themean
intra-assay coefficient of variation (CV) of duplicate determi-
nations for concentration was 6.9%. Inter-assay CV was
2.5% for the low control mean with 3.7 pg/mL and 6.4% for
the high control mean with 129.9 pg/mL. All measurements
were performed in a blinded fashion with regard to diagnosis
and clinical status of patients.

MRI data acquisition
MRI data acquisition was performed as previously de-
scribed.34 Structural MRI was performed on a 3-Tesla
MRI scanner (Magnetom Tim Trio, Siemens, Germany)
with a 32-channel receive-only head coil. In all patients, im-
aging was performed using a sagittal 3D T1-weighted
magnetization-prepared rapid gradient echo sequence (TE/
TI/TR= 2.52/900/1900 ms, flip angle= 9°, field of view=
256× 256 mm2, matrix size= 256× 256, slab thickness=
192 mm, voxel size= 1× 1× 1 mm3) and a sagittal 3D
T2-weighted fluid-attenuated inversion recovery (FLAIR) se-
quence (TE/TI/TR= 388/1800/5000 ms, echo-train length=
848, field of view= 256× 256 mm2, matrix size= 256×
256, slab thickness= 192 mm, voxel size= 1× 1× 1 mm3).
Major anatomical abnormalities were excluded by a clin-
ician scientist blinded to the patient data based on the sub-
ject’s T1-weighted and FLAIR images of the whole brain.

Quantification of white matter lesion
and grey matter volume
The quantification of white matter (WM) lesion and grey
matter (GM) volume was performed as previously de-
scribed.34 In brief: The volumes of WM lesions were evalu-
ated using the cross-sectional pipeline of the lesion
segmentation toolbox,35 included in the Statistical
Parametric Mapping (SPM8) software. Three-dimensional
FLAIR images were coregistered to 3D T1-weighted images
and bias-corrected. After partial volume estimation, lesion

segmentation was performed with 20 different initial thresh-
old values for the lesion growth algorithm.35 For each pa-
tient, the optimal threshold (κ value, dependent on image
contrast) was determined and average values were calcu-
lated. A uniform κ value of 0.1 was applied in all patients
to automatically estimate LV and filling of 3D T1-weighted
images. Subsequently, the filled 3D T1-weighted images
and the native 3D T1-weighted images were segmented into
GM, WM and CSF and then normalized to Montreal
Neurological Institute space. The quality of the segmenta-
tions was visually inspected to increase reliability.

Statistic analysis
Statistical analysis was performed using SPSS 23 (SPSS,
Chicago, IL, USA) and GraphPad Prism 5 software.

Summary statistics are presented as mean+ standard de-
viation (SD), median (25th and 75th percentile), or number
(percentage), where applicable. Normal distribution was as-
sessed by visual inspection and Kolmogorov–Smirnov test.
The value of sNfL was log10-transformed to achieve ap-
proximate normality. sNfL values were then related to the
respective test scores (SDMT, PASAT, VLMT, HADS-A,
HADS-D and FSMC) by multiple linear regressions and ad-
justed for age, sex, EDSS, disease duration and disease-
modifying therapy (DMT). MRI parameters (LV and
GMV) were correlated with SDMT z-scores by multiple lin-
ear regressions adjusted for age, sex, EDSS, disease duration
and DMT. Results from the linear regression model are ex-
pressed as regression coefficient (B) and standard error
(SE). Demographics and clinical characteristics of the main
and replication cohort were compared using two-sided stu-
dent’s t-test and χ2/Fischer exact test. A P-value of ,0.05
was considered statistically significant.

Support vector machine regression
model
The support vector machine (SVM) analysis is a machine
learning tool for classification and regression. Although
less popular than SVM, support vector regression (SVR)
has been proven to be an effective tool in real-value function
estimation.36 SVR represents a multiple regression method
that is able to associate the observed and trained values
and ultimately demonstrates the regression coefficient for
the prediction accuracy. Here, we specifically applied SVR
to test the significant results observed in our initial regression
analysis, namely the association of sNfL, LV and GMVwith
SDMT, in order to test their combined predictive accuracies.
We applied a data-driven regressionmodel without explicitly
stating a functional form indicating a non-parametric tech-
nique.36 The dependent variables were the respective
SDMT z-scores and the independent variables were sNfL,
LV and GMV. In brief: the algorithm looks for an optimally
separating threshold between the respective datasets by
maximizing the margin between classes’ closest points. The
points located on the boundaries are the so-called support
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vectors, and the centre of the range represents the optimal
separating threshold. In most cases, a linear separator is
not optimal, thus a higher-dimensional space-projection
needs to be performed where the data points become linearly
interrelated. Owing to its good performance, we applied the
radial basis function kernel for this projection. We used a
grid search (min= 1; max= 10) to find the optimal input
parameters, namely R (type of regression algorithm; 1 to
1000) and gamma (0.25). The selection was checked via
10-fold cross-validation by using 75% of the data for train-
ing of the algorithm and 25% for its testing. Cross-validation
is a verification technique that evaluates the generalization
ability of a model for an independent dataset.36 A soft-
margin classifier of the calculated independent variables
(sNfL, LV and GMV) was used for every parameter, and
spurious correlations were weighted by a penalty constant,
P. To optimize regression accuracy, we repeated the calcula-
tion for every regressor. The validation scheme was applied
to assess whether the included independent variables
(sNfL, LV and GMV) survived in the linear regression. For
the SVR, we corrected for age, sex, EDSS, disease duration
and DMT.

Data availability
Restrictions apply to the availability of these data, which
were used under licence for the present study and are there-
fore not publicly available. The raw data used in preparation
of the figures and tables will be shared in anonymized format
upon reasonable request by a qualified investigator for pur-
poses of replicating procedures and results.

Results
Patient characteristics
An overview of the demographics and clinical characteristics
of the investigated cohort is depicted in Table 1. The mean
(+ SD) age of the included 152 patients was 33.0+ 10.0
years; 107 (70.4%) patients were female and 44 (29.6%) pa-
tients were male. The mean disease duration until the sNfL
measurement was performed was 1.4+ 2.2 years and the
median disability (quantified with the EDSS score) was 1.0
(25th and 75th percentile: 0.0–2.0). Forty-three patients
(28.3%) had no DMT at the time of inclusion, 109
(71.7%) received a DMT.

An overview of the demographics and clinical characteris-
tics of the replication cohort is also depicted in Table 1. The
mean (+ SD) age of the included 101 patients was 34.4+
10.6; 70 (69.3%) patients were female and 31 (30.7%) pa-
tients were male. The mean disease duration until the sNfL
measurement was performed was 1.0+ 2.7 years and the
median disability (quantified with the EDSS score) was 1.0
(25th and 75th percentile: 0.0–2.0). Thirty-three patients
(32.7%) had no DMT at the time of inclusion, and 68
(67.3%) received a DMT. Appropriate statistical

comparisons revealed no differences between the main and
replication cohort (all P-values .0.05), thus showing com-
parability of our samples. An overview of our respective
workflows is depicted in Fig. 1.

Association of serum neurofilament
light chain and MRI parameters with
neuropsychological test scores
In our cohort of early multiple sclerosis patients, sNfL levels
significantly correlated with patient performance in the in-
formation processing speed task after adjusting for age,
sex, EDSS, disease duration and DMT (B=−0.561; SE=
0.192; P= 0.004; 95% CI=−0.940 to −0.182) (Fig. 2A,
Table 2). However, sNfL levels were not significantly asso-
ciated with the other investigated cognitive performance
measures (PASAT: B=−0.248, SE= 0.204; P= 0.225,
95% CI=−0.065 to 0.155; VLMT: B=−0.069; SE=
0.182, P= 0.707, 95% CI=−0.428 to 0.291) or self-report
questionnaires on fatigue (FSMC: B= 3.978; SE= 3.363;
P = 0.239, 95% CI=−2.673 to 10.628), depression
(HADS-D): B= 0.732; SE= 0.721; P= 0.312, 95% CI=
−0.695 to 2.159 or anxiety (HADS-A): B= 0.011; SE=
0.803; P= 0.989, 95% CI=−1.578 to 1.600 (Table 2).
Next, we sought to investigate the association of LV and
GMVwith SDMT performance. LV and GMV are common-
ly used structural MRI parameters, which have been asso-
ciated with neurodegeneration in multiple sclerosis. Both
LV (inversely) and GMV (positively) significantly correlated
with the patients’ performance in SDMT and remained sig-
nificant after multivariate regression for age, sex, EDSS, dis-
ease duration and DMT (LV: B=−0.695; SE= 0.142; P,

0.001, 95% CI=−0.976 to −0.414; GMV: B= 7.759;
SE = 3.222; P= 0.017, 95% CI= 1.389–14.128) (Fig. 2B).

Taken together, sNfL, LV and GMV in patients with early
multiple sclerosis significantly correlate with information
processing speed (SDMT) test performance, whereas tests
for memory, learning, affective parameters and fatigue did
not show an association with sNfL levels.

Prediction model of
neuropsychological test
performances
Next, we sought to create a prediction model to accurately
predict SDMT performance by utilizing sNfL levels, LV
and GMV. Thus, we employed a SVM regression analysis
as described in the methods section. In the SVM approach,
sNfL levels alone were 75.6% accurate at predicting
SDMT scores, LV and GMV reached 68.6 and 69.1% accur-
acy, respectively (Fig. 3A). The combination of sNfL with ei-
ther LV or GMV reached cross-validated accuracies of
76.5% (sNfL+LV) and 82.3% (sNfL+GMV), while LV
andGMV combinedwere 71.8% accurate. The combination
of all three parameters (sNfL+LV+GMV) achieved 88.7%
cross-validated accuracy. To confirm the reliability of our
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results, we replicated the machine learning analysis in an in-
dependent cohort of 101 early multiple sclerosis patients
(Table 1). In contrast to the main cohort, these patients
had only undergone SDMT testing and were hence not eli-
gible for inclusion in our main cohort with multiple neuro-
psychological tests. In the replication cohort, sNfL levels
alone were 77.8% accurate at predicting SDMT scores, LV

and GMV reached 68.9 and 70.9%, respectively (Fig. 3B).
The combination of sNfL with either LV or GMV reached
cross-validated accuracies of 79.7% (sNfL+LV) and
85.6% (sNfL+GMV), while LV and GMV combined
were 72.6% accurate. The combination of all three para-
meters (sNfL+LV+GMV) achieved 90.8% cross-validated
accuracy. Thus, by utilizing three biomarkers we obtained a

Figure 1 Two-stage workflow. (A) Association of sNfL with neuropsychological test performances. (B) Combinations of sNfL and imaging
markers for the prediction of SDMT performance using a support vector regression approach. sNfL= serum neurofilament light chain; SDMT=
Symbol Digits Modalities Test; PASAT= Paced Auditory Serial Addition Test; VLMT= verbal learning and memory test; HADS-A=Hospital
Anxiety and Depression Scale (Anxiety); HADS-D=Hospital Anxiety and Depression Scale (Depression); FSMC= Fatigue Scale for Motor and
Cognitive functions; LV= lesion volume; GMV= grey matter volume.

Figure 2 Relationship between individual markers and SDMT performance. (A) Associations of sNfL levels (log-transformed) with
SDMT (z-scores). N= 149, P= 0.004; 95% CI=−0.940 to−0.182. (B) Association of MRI metrics [LV (log10-transformed) and GMV (fraction)]
with SDMT (z-scores) each with the corresponding 95% confidence intervals. N= 152, LV: P, 0.001, 95% CI=−0.976 to −0.414; GMV: P=
0.017, 95% CI= 1.389–14.128. Histograms represent the data distribution of the cohorts. The P-value was adjusted for age, sex, EDSS, disease
duration and DMT. B=Regression coefficient derived from linear regression; SE= Standard error derived from linear regression.
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robust prediction model for cognitive impairment in early
multiple sclerosis.

Discussion
In our study, we demonstrated that higher sNfL levels were
associated with worse information processing speed in early
multiple sclerosis. Besides this single cognitive domain par-
ameter, sNfL levels were not linked to any other cognitive
or mood measures. Both imaging markers, LV, as well as
GMV were concurrently associated with patients’ informa-
tion processing speed. With the aid of artificial intelligence,
our unsupervised machine learning approach investigated
the cross-validated accuracy in predicting SDMT using the
combination of these three biomarkers. Here, the tripartite
combination of sNfL, LV and GMV was highly accurate in
predicting SDMT performance in the support vector regres-
sion, and outperformed each single biomarker as well as the
dual biomarker combinations. Finally, these results were va-
lidated in an independent replication cohort using the same
machine learning procedure. Hence, we showed that one
blood-based and two imaging-based parameters combined
provide a reliable and reproducible predictor of early infor-
mation processing deficits in multiple sclerosis.

In a first step, we found that sNfL levels were inversely as-
sociated with SDMT performance and thus deficits in infor-
mation processing speed. Using z-scores rather than a
dichotomous classification allowed us to assume that the as-
sociation of sNfL with SDMT was more properly repre-
sented as a continuum. Other cognitive tests, examining
verbal learning and short-term memory (through the
VLMT), auditory information processing, working memory,
and divided attention (through the PASAT) and affective
parameters (HADS-A and -D) did not show a significant as-
sociation with sNfL. The lack of an association of sNfL with
the other neuropsychological parameters seems to challenge
the notion that slowed processing speed always underlie
memory difficulties or anxiety and depression in multiple

sclerosis.37 Even though PASAT revealed a trend towards
an association with sNfL, this relationship failed to reach
statistical significance. Despite also measuring information
processing speed, PASAT focuses on auditory information
processing, has proven less reliable than SDMT and is often
considered too difficult, especially in progressive disease
stages.38 Thus, in clinical as well as research practices,
PASAT has largely been replaced by SDMT.

Previous studies have demonstrated inconsistent results
regarding the association of sNfL and SDMT in multiple
sclerosis,21–24 which may be related to sample sizes or com-
position of cohorts (inclusion of patients with CIS, RRMS
and also progressive forms). Our cohort consisted of CIS
or early RRMS patients with comparably short disease dura-
tions, thus reinforcing the notion that cognitive impairment
is not limited to later or progressive disease stages but can be
present from the onset. Nevertheless, our approach might
also be applicable for patients in more advanced stages of
the disease. However, the plateauing relationship between
T2-lesion burden and clinical disability in the later disease
stages needs to be taken into account.39 Since one part of
our tripartite model relies on LV, it would also require fur-
ther validation in a progressive cohort.

The SDMT has become a frequently investigated tertiary
and exploratory outcome in clinical trials in recent years6

and efforts are underway to further adjust the EDSS for cog-
nition.5 The here observed association of SDMT with sNfL
levels suggest a close connection between cognitive process-
ing and neuro-axonal damage. However, it has to be taken
into account that the SDMT is a sensitive but non-specific
parameter. While it emphasises information processing
speed, multiple sclerosis patients’ general cognitive perform-
ance also depend on cognitive domains such as working
memory, short- and long-term memory, paired-associate
learning, and visual scanning. Hence, pre-existing deficits
in these categories may confound SDMT performances, al-
though this is rather unlikely in our early multiple sclerosis
cohort. However, assessing the premorbid intelligence as a
proxy for the participant’s cognitive reserve would have

Table 2 Associations between sNfL and neuropsychological test performances

Test/questionnaire Ba (n) SEb (n) P-valuec (n) 95% CId

Cognition
SDMT −0.561 (149) 0.192 (149) 0.004 (149) −0.940 to 0.182
PASAT −0.248 (137) 0.204 (137) 0.225 (137) −0.651 to 0.155
VLMT −0.069 (148) 0.182 (148) 0.707 (148) −0.428 to 0.291

Depression and anxiety
HADS-D 0.732 (130) 0.721 (130) 0.312 (130) −0.695 to 2.159
HADS-A 0.011 (130) 0.803 (130) 0.989 (130) −1.578 to 1.600

Fatigue
FSMC 3.978 (142) 3.363 (142) 0.239 (142) −2.673 to 10.628

aRegression coefficient (B) derived from linear regression.
bStandard error (SE) derived from linear regression.
cP-value derived from linear regression adjusted for age, sex, EDSS, disease duration and DMT.
d95% confidence interval (CI) for B.
SDMT= Symbol Digits Modalities Test; PASAT= Paced Auditory Serial Addition Test; VLMT= verbal learning and memory test; HADS-A=Hospital Anxiety and Depression Scale
(Anxiety); HADS-D=Hospital Anxiety and Depression Scale (Depression); FSMC= Fatigue Scale for Motor and Cognitive functions; DMT= disease-modifying therapy.
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been valuable. Besides SDMT, sNfL has previously also been
associated with disease activity and EDSS progression in
multiple sclerosis,15 yet in our cohort we did not find such
correlation. This may be due to our cohorts’ early disease
stages and the overall low EDSS scores.

The underlying neurobiological basis of our findings may
be that neuro-axonal damage (increased sNfL) particularly
disturbs interconnected cognitive neuronal networks—
which are crucially involved in information processing (di-
minished SDMT performance)—while leaving sensory and
motor systems (EDSS functional systems) mostly unaffect-
ed.40 Alternatively, cognitive measures, such as SDMT,
may have a higher sensitivity to detect variance in multiple
sclerosis-related disability not encompassed by physical mea-
sures, especially in our early multiple sclerosis cohort.41

Based on the multiple regression analyses, we evaluated
next whether conventional MRI biomarkers of inflamma-
tion (i.e. LV) and neurodegeneration (i.e. GMV) were like-
wise associated with SDMT performance. This should serve
as a cross-modality validation given that SDMT has been
shown to correlate with both MRI measures in a large
body of studies.11,42,43 In line with these studies, our results

showed that—in addition to sNfL—deficits in information
processing speed were associated with LV and GMV.
Previous studies have also demonstrated an association of
regional volumetric measures (deep GMV, mesial temporal
cortex, and neocortex, as well as total WM lesions) with
different domains of cognitive impairment and neuro-
psychological test performances.8–10,43 Of the investigated
MRI measures, GMV was shown to be the most reliable
marker in predicting cognitive deficits in multiple sclerosis
patients.11 However, the prediction of cognitive decline
on an individual patient’s level has remained challenging
on the basis of MRI features alone.11,42 Some previous at-
tempts to combine MRI biomarkers to identify multiple
sclerosis patients at risk of cognitive impairment have
yielded promising results.25,44 In our study, we sought to
increase the prediction accuracy by combining the two
aforementioned MRI parameters with sNfL in a unsuper-
vised machine learning approach (namely SVM) based on
the idea that algorithms can learn from data and identify
patterns with little human intervention.

Juxtaposing the three biomarkers for cognitive impair-
ment, our machine learning approach revealed that sNfL

Figure 3Cross-validated prediction accuracies for singlemarkers and combinations ofmarkers. Venn diagram depicting the results
of the support vector regression analyses and the resultant cross-validated accuracies (A) in the study cohort and (B) in the replication cohort.
LV= lesion volume; GMV= grey matter volume; sNfL= serum neurofilament light chain.
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achieved the highest cross-validated accuracy in predicting
SDMT performance—in both the study and replication co-
horts. This might be explained by a rapid disruption of
neuro-axonal structures through inflammatory and demye-
linating lesions promptly leading to higher sNfL levels and
clinically to increased neuronal dysfunction,14,15,45 which
manifests in cognitive impairment. GMV, however, prob-
ably displays time-delayed structural changes,46 which are
not as prominent in our early multiple sclerosis cohort.

All double combinations achieved higher accuracies in
predicting SDMT than the single measures alone. This pat-
tern was successfully proven in the replication cohort. And,
finally, the tripartite combination of all three potential pre-
dictors solidly outperformed the single and double predic-
tors. Hence, by applying artificial intelligence, we were not
only able to predict patients’ SDMT performances, but fur-
ther demonstrated that the combination of sNfL, LV and
GMV increased the predictive accuracy from 68.6 to
75.6% for the individual parameters to a cumulative accur-
acy of 88.7% in the main cohort and even 90.8% in the rep-
lication cohort. Thus, it is feasible to predict SDMT
performance, by utilizing widely accessible surrogate para-
meters (MRI and sNfL), without entirely relying on neuro-
psychological testing. In this way—and towards a potential
clinical application—our model might provide a surrogate
screening tool for cognitive decline, whereby multiple scler-
osis patients at risk for cognitive impairment may be selected
for in-depth neuropsychological testing.

Accurate and neurobiologically plausible biomarkers can
improve diagnostics, predict disease outcomes and enable
monitoring of disease progression in many disorders,12 yet
the discovery and clinical implementation of such biomar-
kers has been especially challenging in complex neurological
conditions, such as multiple sclerosis. Our findings now re-
inforce the notion that if a single marker is too vague to fore-
cast cognitive decline, the combination of multiple
biomarkers may represent a robust and reproducible
solution.

Recently, such an approach has been applied with the aid
of molecular and MRI biomarkers to gain insight into
brain volume loss after immunoablative autologous haemato-
poietic stem cell transplantation in multiple sclerosis.26

Another application field is neurodegenerative disorders, like
Alzheimer’s disease, where a combination of CSF-biomarkers
(Aβ40–42 and P-tau) and imaging parameters (hippocampal,
temporo-parietal atrophy and amyloid-PET) has greatly im-
proved diagnostic accuracy in recent years.47,48

Our study has several limitations. The cross-sectional de-
sign does not allow us to describe the time-dependent associ-
ation of sNfL with cognitive decline in multiple sclerosis. In
line with this, our study demonstrates a statistical prediction
neglecting any meaning of time. Although we do not predict
longitudinal cognitive performance, ourmodel highlights the
possibility to use the combination of blood and imaging bio-
markers as a surrogate marker for cognitive impairment in
multiple sclerosis. In addition, sNfL measurements at single
time points can be subject to fluctuations and are therefore

sub-optimal due to lack of intra-individual reproduction.49

Hence, studies are needed to identify variables independent
of disease-related factors thatmodify sNfL levels. In this con-
text, one recent study observed a correlation with body mass
index and blood volume suggesting that potential sNfL asso-
ciationsmight change if corrections for bothmeasures are in-
cluded.50 Another limitation of our study is the interval of
about 9 months between study inclusion and neuropsycho-
logical testing. Finally, data were collected as part of the clin-
ical routine with patients receiving different DMTs.
However, our results did not change after correcting for
DMT versus no DMT.

In conclusion, early neuro-axonal loss measured by sNfL
correlates with worse information processing speed, the
key deficit underlying cognitive dysfunction inmultiple scler-
osis. Combining blood and imaging measures improved the
predictive, cross-validated accuracy of cognitive impair-
ment, highlighting the clinical utility of cross-modal biomar-
kers in multiple sclerosis. Prognostic models based on
combinations of biomarkers such as the one introduced
here may improve the identification of multiple sclerosis pa-
tients who are likely to experience cognitive decline.
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