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Abstract

Annotation of cells in single-cell clustering requires a homogeneous grouping of cell popula-

tions. There are various issues in single cell sequencing that effect homogeneous grouping

(clustering) of cells, such as small amount of starting RNA, limited per-cell sequenced

reads, cell-to-cell variability due to cell-cycle, cellular morphology, and variable reagent con-

centrations. Moreover, single cell data is susceptible to technical noise, which affects the

quality of genes (or features) selected/extracted prior to clustering.

Here we introduce sc-CGconv (copula based graph convolution network for single clus-

tering), a stepwise robust unsupervised feature extraction and clustering approach that for-

mulates and aggregates cell–cell relationships using copula correlation (Ccor), followed by

a graph convolution network based clustering approach. sc-CGconv formulates a cell-cell

graph using Ccor that is learned by a graph-based artificial intelligence model, graph convo-

lution network. The learned representation (low dimensional embedding) is utilized for cell

clustering. sc-CGconv features the following advantages. a. sc-CGconv works with substan-

tially smaller sample sizes to identify homogeneous clusters. b. sc-CGconv can model the

expression co-variability of a large number of genes, thereby outperforming state-of-the-art

gene selection/extraction methods for clustering. c. sc-CGconv preserves the cell-to-cell

variability within the selected gene set by constructing a cell-cell graph through copula corre-

lation measure. d. sc-CGconv provides a topology-preserving embedding of cells in low

dimensional space.

Author summary

One of the important aspects of single cell downstream analysis is to classify cells into sub-

populations. This immediately leads to clustering of cells into homogeneous groups,

which faces lots of issues due to (i) small amount of starting RNA, (ii) cell-to-cell variabil-

ity, (iii) technical noise incorporated within the single cell sequencing technology, and (iv)

unavailability of discriminating selected/extracted genes (features) in the preprocessing

step of downstream analysis. We proposed sc-CGconv, stepwise feature extraction and
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clustering framework, which leverage landmark advantage of copula and graph convolu-

tion network in single-cell analysis domain. sc-CGconv outperforms the state-of-the-art

feature selection/extraction methods in the preprocessing steps, performs well with small

sample size data, can preserve the cell-to-cell variability within the extracted features, pro-

vides a topology-preserving embedding of cells in low dimensional space. sc-CGconv

therefore successfully addresses the above-mentioned key challenges.

This is a PLOS Computational Biology Methods paper.

Introduction

Recent developments of single cell RNA-seq (scRNA-seq) technology made it possible to gen-

erate a huge volume of data allowing the researcher to measure and quantify RNA levels on

large scales [1]. This has led to a greater understanding of the heterogeneity of cell population,

disease states, cell types, developmental lineages, and many more.

A fundamental goal of scRNA-seq data analysis is cell type detection [2, 3]. The most imme-

diate and standard approach performs clustering to group the cells, which are later labeled

with specific type [4, 5]. This provides an unsupervised method of grouping similar cells into

clusters that facilitate the annotation cells with specific types present in the large population of

scRNA-seq data [3, 6, 7].

The standard pipeline of downstream analysis of scRNA-seq data starts from the processing

of the raw count matrix, and goes through the following steps [8, 9]: i) normalization (and

quality control) of the raw count matrix ii) gene selection, and cell filtering iii) dimensionality

reduction, iv) unsupervised clustering of cells into groups (or clusters) and v) annotation of

cells by assigning labels to each cluster. Clustering of cells is not a distinct process in the down-

stream analysis, instead is a combination of several steps starting from step-(i) to step-(iv).

Each step has an immense impact on the cell clustering process. A good clustering (or classify-

ing cell samples) can be ensured by the following characteristics of features obtained from the

step-(iii): the features should contain information about the biology of the system, should not

have features containing random noise, and should preserve the structure of data while reduc-

ing the size as much as possible.

Although there are a plethora of methods [1, 10–14] available for performing each task

within the pipeline, the standard approaches consider a common sequence of steps for the pre-

processing of scRNA-seq data [15, 16]. This includes normalization by scaling of sample-

specific size factors, log transformation, and gene selection by using the coefficient of variation

(highly variable genes [5, 17]) or by using average expression level (highly expressed genes).

Scanpy used several dispersion based methods [1, 18] for selecting highly variable genes

(HVG). In Seurat package [19], standardized variance is calculated from the normalized data

to find out the HVGs. Alternatively, some methods exist for gene selection, such as GLM-PCA

[15] selects genes by ranking genes using deviance, M3Drop [12] selects genes leveraging the

dropouts effects in the scRNA-seq data. After gene selection and dimensionality reduction,

most of the methods for single cell clustering followed a Louvain/Leiden based graph cluster-

ing method (Scanpy and Seurat). The standard approaches for gene selection (or feature

extraction) fail to produce a stable and predictive feature set for higher dimension scRNA-seq

data [20]. Moreover, the existing approaches overlook the cellular heterogeneity and patterns

across transcriptional landscapes, which ultimately affects cell clustering. This motivates to go
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for a robust and stable technique that can deal with the larger dimension of the single cell data,

while preserving the cell-to-cell variability.

Here, we introduce sc-CGconv, stepwise feature extraction and clustering approach that

leverages the Copula-based dependency measure [13] and its implication for identifying stable

features from large scRNA-seq data. Notably, this approach largely and effectively masks all

the aforementioned limitations associated with other feature selection and clustering

approaches in unsupervised cases. sc-CGconv takes a two-step strategy: first, a structure-aware

gene sampling based on Local Sensitive Hashing (LSH) is performed to obtain a sub-optimal

gene set [21]. In the next step, a copula-based multivariate dependency measure is utilized to

map the cells into a graph which is further learned by a graph convolution network. A robust-

equitable copula correlation (Ccor) is utilized for constructing the cell-cell graph. The first step

ensures preserving the cell-to-cell dependence structure within the sub-sample of genes, while

the second step puts all the cells into an encompassing context retaining the dependency struc-

ture among the cells, resulting in a topology-preserving embedding of the fine-grained graph

using the GCN. The latent embedding resulting from the trained GCN is utilized for

clustering.

The advantages of sc-CGconv are: a new robust-equitable copula correlation (Ccor) mea-

sure for constructing cell-cell graph leveraging the scale-invariant property of Copula, and

reducing the computational cost of processing large datasets due to the use of structure-aware

using LSH. Furthermore, to highlight the potency of sc-CGconv over the existing methods, we

compared our method with seven well-known gene selection and clustering methods of

scRNA-seq data: Gini-clust [22], GLM-PCA [15], M3Drop [12], Fano factor, and HVG followed

by clustering of Seurat V3/V4 [23], scGeneFit [24] followed Kmeans clustering, and SC3 clus-

tering [4]. For the methods which are specific for gene selection (GLM-PCA, M3drop) we per-

form kmeans clustering after selecting the informative genes. We further carry out a stability

test to prove the efficacy of sc-CGconv for producing topology preserving embedding of cells

from scRNA-seq data in the presence of technical noise. The results show that sc-CGconv not

only can extract the most informative and non-redundant features but is also less sensitive

towards technical noise present in the scRNA-seq data.

We demonstrate in experiments that (i) sc-CGconv leads to a pure clustering of cells in

scRNA-seq data, (ii) the annotation of cells is accurate for unknown test samples (iii) the

marker genes which are identified in the annotation step have a clear capability to segregate

the cell types in the scRNA-seq data, and (iv) sc-CGconv can handle substantially large data

with utmost accuracy.

Results

Overview of sc-CGconv

In the following, we present the workflow of the proposed method sc-CGconv.

sc-CGconv: Workflow

See Fig 1 for the workflow of our analysis pipeline. We describe all important steps in the para-

graphs of this subsection.

A. Preprocessing of raw datasets. See Fig 1A. Raw scRNA-seq datasets are obtained from

public data sources. The counts matrix M 2 Rc�g
, where c is number of cells and g represents

number of genes, is normalized using a transformation method called (Linnorm) [25]. We

choose cells having more than 1000 genes with non-zero expression values and choose genes

having a minimum read count greater than 5 in at least 10% among all the cells. log2 normali-

zation is employed on the transformed matrix by adding one as a pseudo count.
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B. Structure-aware feature sampling using LSH. See Fig 1B. Here, LSH is used to parti-

tion the data points (genes) of the preprocessed count matrix into different buckets. Locality

Sensitive Hashing (LSH) [26–28] operates on a reduced dimension to find approximate near-

est neighbors. LSH uses special locality-sensitive hash functions where the chances of similar

objects hashing into the same bucket are more than the collision of dissimilar objects, [29]. By

virtue of the hash function the relative distance between the data points in the input space is

preserved in the output space. A k-nn graph is formed by searching the five nearest neighbours

within the bucket for each gene. A sub-sample of genes is obtained by performing a greedy

approach for selecting the genes within each bucket. It results in a subset of genes, that are con-

sidered as feature set, FLSH = {fs : s = 1, � � �, m} for the cell-cell graph construction in the next

stage. Here the aim is to find out an important non-redundant subset of features (genes) while

preserving the structure of the data.

C. Constructing cell-cell graph using copula correlation. See Fig 1C. A robust equitable

correlation measure Ccor is utilized to measure the dependence between each pair of cells over

the sampled transcriptome obtained from the LSH step. For each node (cell) a ranked list of

nodes (cells) is generated based on the Ccor scores. We assume a cell pair having a larger Ccor
value shares the most similar transcriptomic profile. Next, a k-nearest neighbour graph is con-

structed based on the ranked list of each node (cell).

Fig 1. Workflow of the analysis. A. scRNA-seq count matrix are downloaded and preprocessed using linnorm. B. LSH based sampling is performed on

the preprocessed data to obtain a subsample of features. C. A cell neighbourhood graph is constructed using copula correlation. D. A three layer graph

convolution neural network is learned with adjacency matrix and node feature matrix as input. It aggregates information over neighbourhoods to

update the representation of nodes. The final representation obtained is called graph embedding which is utilized for cell clustering.

https://doi.org/10.1371/journal.pcbi.1009600.g001
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D. Learning low dimensional embedding from cell-cell-graph. See Fig 1D. We employ a

network embedding strategy (here: Graph Convolution Network [30]), which extracts node

features from the constructed cell-cell graph. In detail, GCN has the advantage that it can uti-

lize the power of convolution neural network to encode the relationship between samples. The

graph structure (generally represented as adjacency matrix) together with the information

encoded in each node is utilized in the NN. We encode the entire graph (adjacency matrix)

into a fixed-size, low-dimensional latent space. Thus GCN encoder preserves the properties of

all the nodes (cells) relative to their encompasses in the network. The result of this step is a fea-

ture matrix where rows refer to nodes (cells) and columns refer to the inferred network

features.

Training of graph convolution network on cell-cell graph

To train the GCN model with our datasets, we first randomly split the cell-cell graph into an

8:1:1 ratio of the train, validation, and test sets. The test edges are not included in the training

set, however, we keep all the nodes of the graph in the training set. Now, we train the model

using the training edges and check the performance of the trained model for recovering the

removed test edges. The model is trained with 50 epochs using Adam optimizer with a learning

rate of 0.001 and a dropout rate of 0.1. Adam [31] is an optimization algorithm that can be

used instead of the classical stochastic gradient descent procedure to update network weights

iterative based on training data. It is appropriate for problems with very sparse gradients. The

rectified linear activation function (ReLU) is a piecewise linear function that will output the

input directly if it is positive, otherwise, it will output zero. It has become the default activation

function for most of the neural networks models because of its simplicity and better perfor-

mance. The learning rate is initially chosen as 0.001 as it gives better performance in our

experiments. Table 1 shows the average precision and receiver operating characteristic (ROC)

score (ROC plot is given in Fig A in S1 File) for the four networks obtained from the datasets.

We took the low dimensional embeddings from the output of the encoder of the trained

model.

sc-CGconv can produce topology-preserving single-cell embedding

The resulting embedding of sc-CGconv can be utilized to generate the single-cell embeddings

for clustering. Here we compare sc-CGconv with three manifold learning and graph drawing

algorithms such as UMAP, t-SNE, and ForceAtlas2 to quantify the quality of resulting embed-

ding. To see how similar the topology of low-dimensional embedding (within the latent space

Z) is to the topology of the high-dimensional space (X), we adopted a procedure similar to

Wolf et al. [35]. Here, we define a classification setup where the ground truth is defined as a

kNN graph GX = (V, EX) fitted in the high dimensional space X. The edge set EFC which defines

all possible edges is the state space of the classification problem. In this setting, the embedding

Table 1. Performance of GCN on networks created from four datasets. First two columns of the table shows total number of edges and number of nodes of the four net-

works. The rest of the columns show ROC and average precision score for validation and test edges. V. ROC and V. AP refer to validation ROC and validation average pre-

cision score, whereas T. ROC and T. AP refer to the same for test set.

Dataset #edges #nodes V. ROC V. AP T. ROC T. AP

Baron [32] 41876 8569 87.32 87.08 85.87 86.39

Klein [33] 13885 2717 84.79 83.21 83.46 82.81

Melanoma [34] 340875 68579 83.38 86.48 83.1 82.30

PBMC68k [1] 342890 68793 84.98 86.78 82.9 83.8

https://doi.org/10.1371/journal.pcbi.1009600.t001
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algorithm predicts whether an edge e 2 EFC is an element of EX. We put label ‘1’ for the edge

e 2 EFC if e 2 EX, otherwise put label ‘0’. For each edge e 2 EFC, the embedding will put label ‘1’

with the probability qe and put label ‘0’ with probability 1 − qe. The cost function to train such

a classifier is formed as a binary cross-entropy function H(P, Q) or logloss, which is equivalent

to the negative log-likelihood of the labels under the model. It is defined as

HðP;QÞ ¼
X

e2EFC

X

l20;1

pelogðqeÞ ¼
X

e2EFC

pelog
1

qe

� �

þ ð1 � peÞlog
1

1 � qe

� �

ð1Þ

Now the Kullback-Leibler (KL) [36] divergence of the predicted distribution Q and the ref-

erence distribution P is measured as KL(P, Q) = H(P, Q) − H(P), where HðPÞ ¼ �
P

e2EFC
pe,

which ultimately leads to the equation

KLðP;QÞ ¼
X

e2EFC

pelog
pe

qe

� �

þ ð1 � peÞlog
1 � pe

1 � qe

� �

: ð2Þ

We measured the KL divergence between P and Q for t-SNE [37], UMAP [38], ForceAtlas2

[39], PHATE [40], SAUCIE [41], and the sc-CGconv. Fig 2 shows the statistics of KL measures

for the different embeddings in the four used datasets.

Comparison with State-Of-The-Art Methods

In scRNA-seq datasets, single cells are the unit of analysis, and it is crucial to correctly identify

the clusters to which they belong. These reference clusters are typically based on the expression

profiles of many cells. Misclassification of cells is the common issue for annotating clusters as

single-cell gene expression datasets often show a high level of heterogeneity even within a

given cluster. To establish the efficacy of sc-CGconv over such procedures, we have selected

seven state-of-the-art methods that are widely used for gene selection and clustering of the sin-

gle cell data.

Here, we compare sc-CGconv with the following seven methods I) Gini Clust [22]: a feature

selection scheme using Gini-index followed by density-based spatial clustering of applications

with noise, DBSCAN [42]. II) GLM-PCA [15]: a multinomial model for feature selection and

dimensionality reduction using generalized principal component analysis (GLM-PCA) fol-

lowed by k-means clustering III) Seurat V3/V4 [23]: a single cell clustering pipeline which

selects Highly Variable Gene (HVG) that exhibit high cell-to-cell variation in the dataset (i.e,

they are highly expressed in some cells, and lowly expressed in others) followed by Louvain

clustering IV) Fano Factor [43], a measure of dispersion among features. Features having the

maximum Fano Factor are chosen for Kmeans clustering. V) scGeneFit [24], a marker selec-

tion method that jointly optimizes cell label recovery using label-aware compressive classifica-

tion, resulting in a substantially more robust and less redundant set of markers. Vi) SC3 [4], a

single-cell consensus (Kmeans) clustering (SC3) tool for unsupervised clustering of scRNA-

seq data. Vii) M3drop [44] which takes advantage of the prevalence of zeros (dropouts) in

scRNASeq data to identify features.

The R package for Gini-Clust [22] is employed with default settings. For GLM-PCA and

HVG, we consider the default settings as described in [15, 23]. For scGene-Fit, the parameters

(redundancy = 0.25, and method = ’centers’) are used as suggested by their github page. For

SC3 we adopted the default parameters for clustering all the datasets.

sc-CGconv requires the number of iterations (iter) as the input parameters of LSH step. we

set as iter as 1 for all datasets. The parameter of Clayton Copula (see section Method for

details) is set as θ = −0.5. This θ is set as it gives better performance in our experiments. For
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GCN, we used 3-layer GCN architecture which performs three propagation steps during the

forward pass and convolves 3rd order neighborhood of every node. We take the dimension of

the output layer of the first and second layers as 256 and 128. For the decoder, we use a simple

inner product decoding scheme.

All experiments were carried out on Linux server having 50 cores and x86_64 platform.

To validate the clustering results, we utilized two performance metrics, Adjusted Rand

Index (ARI) and Silhouette Score [45]. Table 2 depicts the efficacy of sc-CGconv over the other

methods. For the other competing methods, we select the top 1000 features/genes in the gene

selection step and use the default clustering technique meant for this method. For sc-CGconv,

after obtaining the low dimensional embedding of 128-dimension, we performed a simple k-

means for clustering the cells. It is evident from the Table that sc-CGconv provides higher ARI

(and average silhouette width) values for all four datasets. To know the effectiveness of the fea-

ture extraction method within the sc-GCconv, we have replaced it with PCA while keeping the

Fig 2. Performance of different embedding algorithms on four datasets. Kl divergence (KL div) is computed by rerunning embedding algorithms 50

times.

https://doi.org/10.1371/journal.pcbi.1009600.g002
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other procedure intact. The last column of Table 2 shows the results of sc-Gcconv with PCA as

feature extractor.

sc-CGconv preserves cell-to-cell variability

Once features or low dimensional embedding are estimated to be important, it is essential to

ask whether the cell-to-cell variability has been preserved within this low dimensional space.

To determine this, we computed the Euclidean distance between each pair of cells, both in

original dimension and in low dimension space. Thus two Euclidean distance matrices are

obtained, one for the original feature space, and the other for the reduced dimension. The Cor-

relation score (Kendall τ) is computed between these two distance matrices. Fig 3 depicts the

correlation measures for all the competitive methods in the four scRNA-seq datasets.

sc-CGconv can identify marker genes

We followed the conventional procedure of Scanpy to find out markers (DE genes) from the

clustering results. The clustering is performed on the low dimensional embedding obtained

from the sc-GCconv. Scanpy utilized the Leiden graph clustering method to group the cells

into different clusters. Wilcoxon rank-sum test [46] is utilized to find out the significant

(p< 0.05) DE genes for each cluster which are treated as marker genes. We took the top 50

marker genes with their p-value threshold of 0.05 on the PBMC 68k dataset.

We found that 19 marker genes from the Melanoma dataset, 12 marker genes from the

PBMC dataset, 8 marker genes from the Baron dataset, and 4 marker genes from the Klein

dataset, are biologically significant according to CellMarker database [47]. The list of biologi-

cally significant marker genes for all four datasets is given in Table A in S1 File. The results of

marker gene analysis of the Melanoma data can be found in S2 Text, Table A, and Figs B and

C in S1 File.

Execution time

All experiments were carried out on a Linux server having 50 cores and X86_64 platform. As

our proposed method is a deep learning based feature extraction method, it takes more time

than any filter-based feature selection technique (e.g. Fano, Gini − clust). To check how the

competing methods scale with the number of cells (and classes) we performed an analysis. We

Table 2. Comparison with state-of-the-art: Adjusted Rand Index (ARI) and Average Silhouette Width (ASW) are reported for seven competing methods on four

datasets.

Dataset Method

sc-CGconv Gini Clust GLM-PCA+Kmeans Fano+Kmeans Seurat

ARI ASW ARI ASW ARI ASW ARI ASW ARI ASW

Baron [32] 0.68 0.52 0.6 0.48 0.42 0.4 0.52 0.46 0.62 0.47

Melanoma [34] 0.43 0.45 0.56 0.52 0.15 0.29 0.18 0.24 0.42 0.29

Klein [33] 0.86 0.8 0.76 0.7 0.43 0.58 0.4 0.3 0.8 0.72

PBMC [1] 0.50 0.3 0.51 0.46 0.38 0.29 0.31 0.26 0.29 0.14

scGeneFit+Kmeans SC3 M3drop sc-GCconv (PCA)

ARI ASW ARI ASW ARI ASW ARI ASW

Baron [32] 0.62 0.43 0.60 0.4 0.54 0.48 0.60 0.49

Melanoma [34] 0.25 0.4 0.38 0.35 0.33 0.26 0.38 0.34

Klein [33] 0.82 0.75 0.80 0.66 0.67 0.54 0.71 0.76

PBMC [1] 0.47 0.48 0.48 0.31 0.35 0.3 0.41 0.30

https://doi.org/10.1371/journal.pcbi.1009600.t002
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have generated simulated data (using splatter) by varying the number of cells (and classes).

Four simulated data are generated with the number of cells and classes as follows: 500 cells

with two classes, 1000 cells with three classes, 1500 cells with four classes, and 2000 cells with

five classes. All data are generated with equal group probabilities, 2000 number of features,

fixed dropout rate (0.2), and 40% DE gene proportion. 1000 features are selected in each com-

pared method and 128 embedded features are chosen using sc-CGconv. The runtime is com-

pared with all seven different competing methods. The execution time (minute) for each

dataset is given in Table 3.

Conclusions

In this paper, we have developed a step-wise sampling based feature extraction method for

scRNA-seq data leveraging the Copula dependency measure with graph convolution network.

On one hand, LSH based sampling is used to deal with ultra-large sample size, whereas Copula

dependency is utilized to model the interdependence between features (genes) to construct the

Fig 3. Correlation score between two distance matrices, defined on original and reduced dimension. Figure shows

the comparisons among the competing methods based on the correlation scores (Kendall τ) obtained from four

different scRNA-seq datasets.

https://doi.org/10.1371/journal.pcbi.1009600.g003

Table 3. Execution time in minute for eight competing methods.

Datasets # Cells # Class Execution Time (in Minute)

sc-CGconv Gini Clust GLM-PCA Fano Seurat scGeneFit SC3 M3drop

Data1 500 2 9 2 1 1 3 3 5 4

Data2 1000 3 13 2 1 1 7 5 8 6

Data3 1500 4 17 3 1 3 11 10 13 12

Data4 2000 5 20 5 3 5 14 13 17 15

https://doi.org/10.1371/journal.pcbi.1009600.t003
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cell-cell graph. Graph convolution network has been utilized to learn low dimensional embed-

ding of the constructed graph. There are four striking characteristics of the proposed method:

I) It can sample a subset of features from original data keeping the structure intact. Therefore,

minor clusters are not ignored. This sampling is achieved by using the LSH based sampling

method. II) sc-CGconv utilizes scale invariant dependency measure which gives a superior

and stable measure for constructing the dependency graph among the cells. III) GCN provides

topology-preserving low dimensional embedding of the cell graphs. It can effectively capture

higher-order relations among cells. IV) LSH based structure-aware sampling of features

showed a significant lift in the accuracy (Correlation, ARI values) in large single cell RNA-seq

datasets.

Another important observation is that sc-CGconv yields the highest ARI values for Klein

and Pollen datasets in comparison to other State-Of-The-Art methods. The rationale behind

this is that sc-CGconv utilized copula correlation measure, which correctly models the correla-

tions among the feature set. In the holistic viewpoint, the sc-CGconv algorithm performs

much better than the other methods.

The computation time of sc-CGconv is equivalent to the number of sampled features. The

process may be computationally expensive when a large number of features are selected in the

LSH step. However, as copula correlation returns stable and non-redundant features, in reality,

a small set of selected features will be effective to construct the cell-cell graph. We observed in

scRNA-seq data 1000 sampled features will serve the purpose.

Taken together, the proposed method sc-CGconv not only outperforms in topology preserv-

ing generation of cell embedding but also can able to identify good clusters for large single cell

data. It can be observed from the results that sc-CGconv leads both in the domain of single cell

clustering by extracting informative features and generating low dimensional embedding of

cells from large scRNA-seq data. The results prove that sc-CGconv may be treated as an impor-

tant tool for computational biologists to investigate the primary steps of downstream analysis

of scRNA-seq data.

Method

Overview of datasets

We used four public single-cell RNA sequence datasets downloaded from Gene Expression

Omnibus (GEO) https://www.ncbi.nlm.nih.gov/geo/ and 10X genomics (https://support.

10xgenomics.com/single-cell-gene-expression/datasets). Table 4 shows a summary of the used

datasets. See S1 Text in S1 File for a detailed description of the datasets.

The formal details of sc-CGconv

Copula. The term Copula [48] originated from a Latin word Copulare, which means ‘join

together’. The Copula is utilized in several domains in statistics to obtain joint distributions

from uniform marginal distributions. Following the famous Sklar’s theorem, Copula (C) func-

tion is defined as follows [49, 50]

Table 4. A brief summary of the dataset used here.

Dataset Dataset Descrition #Features #Instances #Class

Baron [32] Human pancreas cell 20125 8569 8

Klein [33] Mouse Embryo Cell 24175 2717 4

Melanoma [34] Human Tumor Cell 19783 68579 14

PBMC68k [1] Human Blood tissue 32738 68793 11

https://doi.org/10.1371/journal.pcbi.1009600.t004
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Let, (U1, U2, � � �, Un) be the random variables whose marginal distributions are uniform

over [0, 1]. A copula function C : [0, 1]n! [0, 1] is defined as the joint distribution:

Cðu1; u2; � � � ; unÞ ¼ PðU1 � u1;U2 � u2; . . . ;Un � unÞ: ð3Þ

Sklar’s theorem extends this definition to more general random variables with possibly non-

uniform marginals. The theorem states that, for any set of n random variables (X1, . . ., Xn),

their joint cumulative distribution function H(x1, � � �, xn) = P [X1� x1 . . . Xn� xn] can be

described in terms of its marginals Fi(xi) = P [Xi� xi] and a Copula function C, formally stated

as:

Hðx1; x2; � � � ; xnÞ ¼ CðF1ðx1Þ; F2ðx2Þ; � � � ; FnðxnÞÞ: ð4Þ

Among several categories of Copulas [51], Clayton Copula from Archimedean family is one of

the most widely used function for high dimensional datasets [52].

Clayton Copula. Let, ϕ be a strictly decreasing function such that ϕ(1) = 0, and ϕ[−1](x) is

the pseudo inverse of ϕ(t) such that ϕ[−1](x) = ϕ−1(x) for x 2 [0, ϕ(0)) and ϕ[−1](t) = 0 for x� ϕ
(0). Let U1, U2, . . ., Un be the random variables having uniform marginal distributions. Then,

the general family of Archimedean copula is described as,

CArchiðu1; u2; � � � ; unÞ

¼ �
½� 1�
ð�ðu1Þ þ �ðu2Þ; � � � ;þ�ðunÞÞ;

ð5Þ

where, ϕ(.) is called the generator function. The Clayton Copula is a particular Archimedian

copula when the generator function ϕ is given by,

�ðxÞ ¼
ðx� y � 1Þ

y
; ð6Þ

with θ 2 [−1,1)0).

Copula based correlation measure (Ccor). We model the dependence between two ran-

dom variables using Kendall tau(τ) [53] measure. Note that we defined Kendall tau correlation

using copula based dependence measure. In [54], Ding et al. first proposed a way to define the

correlation by using copula dependence measure. They proposed Ccor as a robust and equita-

ble measure which is defined as half the L1-distance of the copula density function from inde-

pendence. In [13, 55]Ccor was defined in terms of Kendall’s tau (τ) measure. Here we retain

the definition of Ccor proposed in [13]. Kendall’s tau (τ) is the measure of concordance

between two variables; defined as the probability of concordance minus the probability of dis-

cordance. Formally this can be expressed as

tXY ¼ ½Pðx1 � x2Þðy1 � y2Þ � 0� � ½Pðx1 � x2Þðy1 � y2Þ � 0� ð7Þ

The concordance function (Q) is the difference of the probabilities between concordance

and discordance between two vectors (x1, y1) and (x2, y2) of continuous random variables with

different joint distribution H1 and H2 and common margins FX and FY. It can be proved that

the function Q depends on the distribution of (x1, y1) and (x2, y2) only through their copulas.

According to Nelson [48], there is a relation between Copula and Kendall τ that can be
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expressed as:

tCðX;YÞ ¼ tXY ¼ 4

Z Zþ1

0

Cðu; vÞ dCðu; vÞ � 1; ð8Þ

Where, u 2 FX(x) and v 2 FY(y). τ(CX,Y) is termed as Ccor in our study. Here the copula

density C(u, v) is estimated through the clayton copula defined in the previous section.

We have used τC(X,Y) to model the dependency between transcriptomic profiles among the

cells.

Feature extraction using sc-CGconv

sc-CGconv takes a stepwise approach for feature extraction from the scRNA-seq data: first, it

obtains a sub-sample of genes using locality sensitive hashing, next it generates a cell neighbor-

hood graph by utilizing the copula correlation (Ccor) measure, and finally, a graph representa-

tion learning algorithm (here GCN) is utilized to get the low dimensional embedding of the

constructed graph.

Structure preserving feature sampling using LSH. LSH [28] reduces the dimensionality

of higher dimension datasets using an approximate nearest neighbor approach. LSH uses a

random hyperplane based hash function, which maps similar objects into the same bucket.

LSH is used to partition the data points (genes) of the preprocessed count matrix (M0) into k
(here k = 10) different buckets such that |G0|> 2k, where G0 ¼ fg 0j ; j ¼ 1; � � � ; ge0g is the set of

genes in M0. A k-nn graph is formed by searching the five nearest neighbours within the bucket

for each gene. Each gene is visited sequentially in the same order as it appears in the original

dataset and is added to the selected list while discarding its nearest neighbours. If the visited

gene is discarded previously, then it will be skipped and its neighbors will be discarded. Thus a

sub-sample of genes is obtained, which is further down-sampled by performing the same pro-

cedure recursively. The number of iterations for downsampling is user defined and generally

depends on the size of the data points. We use cosine distance to compute the nearest neigh-

bours of a gene. LSHForest [56] python package is utilized to implement the whole process.

Thus, a subset of m number of genes, where,(m< ge0) are obtained from the above sam-

pling stage. These genes are considered as feature set, FLSH = {fs : s = 1, � � �, m} for the next

stage of cell-cell graph construction.

Cell neighbourhood graph construction. For graph construction, we rank each node

(cell) according to the Ccor values. For a node (cell) we compute the Ccor values to all of its

possible pairs. A k-nearest neighbour list is prepared for each node based on the Ccor values. A

high value of Ccor assumes there is a high similarity between the cell pair over the transcrip-

tomic profile, while a smaller value signifies low similarity. The output of this step is an adja-

cency matrix representing the connection among the cells according to the k-nearest

neighbour list and a node feature matrix storing the Ccor values for each node pair.

Extracting node features using GCN. We have utilized graph convolution network

(GCN) [30] to learn the low dimensional embedding of nodes from the cell-cell graph. Given a

graph G = (V, E), the goal is to learn a function of signals/features on G which takes i) A

optional feature matrix X 2 N × D, where xi is a feature description for every node i, N is the

number of nodes and D is the number of input features and ii) A description of the graph

structure in matrix form which typically represents adjacency matrix A as inputs, and pro-

duces a node-level output Z 2 N × F, where F represents the output dimension of each node

feature. The graph-level outputs are modeled by using indexing operation, analogous to the

pooling operation uses in standard convolutional neural networks [57].
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In general every layer of neural network can be described as a non-linear function:

Hðlþ1Þ ¼ f ðHðlÞ;AÞ; ð9Þ

where H(0) = X and H(l) = Z, l representing the number of layers, f(., .) is a non linear activation

function like ReLU. Following the definition of layer-wise propagation rule proposed in [30]

the function can be written as

f ðHðlÞ;AÞ ¼ sðD̂ � 1=2ÂD̂1=2HðlÞWðlÞÞ; ð10Þ

where Â ¼ Aþ I, I represents identity matrix, D̂ is the diagonal node degree matrix of Â,

D̂ii ¼
P

j Aij, W represents trainable weight matrix of the neural network. Intuitively, the

graph convolution operator calculates the new feature of a node by computing the weighted

average of the node attribute of the node itself and its neighbours. The operation ensures iden-

tical embedding of two nodes if the nodes have identical neighboring structures and node fea-

tures. We adopted the GCN architecture similar to [30], a 3-layer GCN architecture with

randomly initialized weights. For the cell-cell graph, we take the adjacency matrix (A) of the

neighbourhood graph and put identity matrix (I) as the node feature matrix. The 3-layer GCN

performs three propagation steps during the forward pass and effectively convolves the 3rd-

order neighborhood of every node. The encoder uses a graph convolution neural network

(GCN) on the entire graph to create the latent representation

Z ¼ GCNðA;XÞ ð11Þ

The encoder works on the full adjacency matrix A 2 Rn×n and X 2 Rn×m is the node feature

matrix, obtained from LSH step. Here we used a simple inner product decoder that try to

reconstruct the main adjacency matrix A. The decoder function follows the following equation:

Aði; jÞ ¼ SigmoidðzT
i � zjÞ; 8ði; jÞ 2 V � V ð12Þ

where zi, zj reflect the representations of nodes i, j, as computed by the encoder. The trained

model is applied to the test edges to see how effectively it can discover the deleted edges (see

‘Training of GCN on cell-cell graph’ in Result section). After training and evaluation of the

model, the low dimensional embedding is kept and used in the cell clustering task.

Supporting information

S1 File. Supporting information. S1 Text: Overview of the datasets. S2 Text: Marker analysis

with sc-CGconv. Table A: Marker genes identified from the clustering results with sc-CGconv.

Fig A: Performance of GCN on networks created from four datasets: receiver operating char-

acteristic (ROC) curve for the validation is given for four datasets (see Table 1 of the main text

for ROC score). Fig B: Marker analysis using sc-CGconv. After clustering DE genes are identi-

fied using clustering of PBMC data with sc-CGconv and results of marker genes on ultra large

PBMC datasets. Panel-A. 2D UMAP visualization of PBMC dataset with original cell annota-

tions. Panel-B. 2D UMAP visualization of clustering results with sc-CGconv. Panel-C. visuali-

zation of 12 markers which are overlayed based on their expression –low (blue) to high

(yellow)- on the reference PBMC UMAP plot. Fig C: Figure depicts the results of marker gene

analysis on melanoma datasets. Panel-A. 2D UMAP visualization of melanoma data with origi-

nal annotation. Panel B. 2D UMAP visualization of clustering results with sc-CGconv. Panel-

C. visualization of 9 markers which are overlayed based on their expression –low (blue) to

high (yellow).

(PDF)
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